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A soliton mechanism is proposed, for the first time, for the endothermal structural rearrangement 
of the asymmetric bistable chain. It is shown that a topological soliton can exist in a two- 
component asymmetric bistable system, and this soliton can convert the uniform ground state into 
an intermediate dynamic metastable state which is topologically equivalent to a second, 
uniform state of the system which is stable (if the disturbance is sufficiently weak). Such a soliton 
is dynamically stable, and for given parameters of the system it can propagate at only one 
speed. In the process of propagation, the metastable state relaxes in the region behind the soliton 
front. As long as the relaxation region is separated from the soliton front by the metastable 
region, it has virtually no effect on the soliton dynamics. O 1995 American lnstitute of Physics. 

1. INTRODUCTION 

Under certain conditions, structural transitions can occur 
in condensed systems with two uniform equilibrium states 
which are separated by an energy barrier. Typical examples 
are A-B and B-A transitions in DNA molecules,'-4 structural 
rearrangement as a result of proton transfer in chains of hy- 
drogen and topochemical reactions in molecular 
~ r ~ s t a l s . ~ - ' ~  Degenerate bistable systems are especially inter- 
esting. In such systems both equilibrium states have the same 
energy, and this makes possible a soliton mechanism for 
structural transitions.13-l5 Obviously, the energy degeneracy 
condition sharply narrows the class of processes studied. Al- 
though the existence of topological solitons in nondegenerate 
systems seems to be impossible at first glance, it has recently 
been ~ h o w n ' ~ " ~  that, generally speaking, this is not the case. 
In contrast to the ordinary situation, however, solitons in the 
degenerate case transfer the system not into a final state, but 
rather into an intermediate, time-dependent state. There 
arises the natural question of whether or not the elementary 
wave mechanism of a structural transition in nondegenerate 
bistable systems can produce such solitons? The problem is 
that here the analysis cannot be limited to only the motion of 
the soliton itself, since a special relaxation process must ac- 
complish the transition of a nondegenerate system from the 
intermediate into the final state (this stage is absent in degen- 
erate systems). 

In Refs. 16 and 17 it is shown that when an exothermal 
structural transition propagates the velocity of the soliton is 
supersonic and the relaxation process occurring behind the 
wave front has virtually no effect on the velocity and shape 
of the front. This means that the topological soliton ad- 
equately describes the intermediate asymptotic process of 
propagation of an exothermal structural transition. Is this re- 
sult valid for an endothermal transition? We shall show be- 
low that an endothermal topological soliton propagates with 
a unique subsonic speed, so that a relaxation process propa- 
gating with the sound velocity must overtake the soliton. As 
a result, the soliton will have a finite lifetime, determined by 

the length of the section where the chain is in the intermedi- 
ate (metastable) state. 

2. TWO-COMPONENT MODEL OF A BISTABLE SYSTEM 

We shall study a quasi-one-dimensional molecular sys- 
tem (chain) consisting of bistable monomeric links. The 
schematic model of such a system is displayed in Fig. 1. Let 
R,(t) be the displacement of the nth monomer of the chain 
and r,(t) the conformational state of the monomer. Then the 
Hamiltonian of the system can be represented in the form 

where the energy of the outer sublattice is 

the energy of the inner sublattice is 

and the intersublattice interaction energy is 

Here M and m are, respectively, the total and reduced mass 
of a monomer in the chain and K and k are, respectively, the 
force constants of the outer and inner sublattices. 

The asymmetric double-well intramonomer interaction 
potential which gives rise to the two stable stationary states 
(conformations) of an isolated monomer is approximated by 
the function 

The parameter e0> 0 of tht: potential characterizes the height 
of the energy barrier separating the two stable conformations 
of the monomer, and the parameter 0 S e l  < 8 e0 / JZ? char- 
acterizes the energy splitting between these conformations. 
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FIG. 1. Schematic representation of a two- 
component bistable system with inequivalent 
states. 

For = 0 the function @(r)  describes a symmetric double- 
well potential with the minima r =  ? r o  and a barrier of 
height E,. In the general case the potential @(r )  will have 
two asymmetric minima rmin,l and rrni,,, separated by a 
maximum r,,, : 

We choose the reference energy level of the potential e2 SO 

that in the ground state of the monomer r = rrnin,l the energy 
of the monomer satisfies @(rmin,,) = 0, i.e., 

The function 

characterizes the interaction of the sublattices. The interac- 
tion parameter X1 describes the effective change introduced 
in the energy splitting between the two stable conformations 
of a monomer by a deformation of the outer sublattice, and 
the parameter X2 describes the change in the height of the 
energy barrier separating these conformations. For = 0 and 
X1 = 0 the Hamiltonian H constructed above is identical to 
the Hamiltonian proposed in Ref. 15 for describing the soli- 
ton dynamics of symmetric two-component bistable systems. 

For convenience, we introduce the dimensionless dis- 
placements x, = r, l ro  and y, = R, lr, , the dimensionless 
time r= t 6, and the dimensionless energy B= ~ l k r i .  
Then the Hamiltonian of the system (1) assumes the form 

where the functions (2), (3), and (4) are defined as follows: 

%3=C ( ~ n + l - ~ n - l ) F ( x n ) .  
n 

Here a prime denotes differentiation with respect to the di- 
mensionless time r ,  p = Mlm , and K = Klk. 

After substitution of variables, the asymmetric double- 
well potential (5) becomes 

v(x)=go(x2- 1)2+glx+g2,  (8) 

where 

g l = e l  
tential 

2 the dimensionless parameters are go  = €0 lkr, , 
2 lkr,, and g 2 =  ~ ~ 1 k r - i .    or 0GglG8go/@ the PO- 

(8) has two minima t1 and t3 separated by a maxi- 
mum &: 

Here 

where a=arccos(- @ gl/8g,). The parameter g 2  
= -go(,$ - 1)2 - g1 5, is determined from the condition 
V(t1)=0. 

After a change of variables the function (6) characteriz- 
ing the interaction of the sublattices becomes 

where the parameters characterizing the interaction of the 
sublattices are x1 =XI lkr, and x2=X2 lkro.  

We now determine the uniform quasistationary states of 
the system. Let xn=x, x;=O, ~ , + ~ - y , = p ,  and yA=sp. 
The Lagrangian of a system for such a uniform state is pro- 
portional to the function 

The quasistationary uniform state (s f 0)  corresponds to its 
minimum. 

It is easy to show that for each given value of the veloc- 
ity s < s 2 ,  where s2 = 6 is the dimensionless sound speed 
in the outer sublattice of the system (the dimensionless sound 
speed in the inner sublattice s, = I ) ,  the function f(x,p;s) 
has two minima only if 

where 
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The first minimum x = 5, , p = 0 corresponds to the left-hand 
well of the potential V(x) and the second min- 
imum x =  ~ ( s )  = - t1/2+ J ( ~ ( s ) / 2 ) ~ -  y2(s), p=  pme(s) 
= 2F(77(s))lp(si- s2) corresponds to the right-hand well 
of the potential. The stationary uniform state {xn=t l ,  
xi=O, y,+ - y ,= 0, y i=O}, which we term the b state, cor- 
responds to the first minimum and the uniform meta- 
stable (quasistationary) state {xn=Ns) ,  xA=O, 
yn+ - y ,= pme(s), y i=spme(s)), which we shall term the 
me state, corresponds to the second minimum. 

Therefore, the two-component system under consider- 
ation has one stationary b state and an entire one-parameter 
class of quasistationary states me(s). We shall show below 
that among all speeds 0 S s < s2 the value 

for which the function f(x,p;s) has two identical minimal 
values, is a special value. As s+O the quasistationary state 
me(s) changes continuously into the second quasistationary 
state me(0) of the system; in what follows we term this sec- 
ond state the e state. As a result, all quasistationary states 
me(s) are topologically equivalent to the e state and can 
transform only into it by relaxation. 

Under the condition 

the b state will be the energy ground state. The uniform 
stationary states b and e are always separated from one an- 
other by an energy barrier, and for this reason they are topo- 
logically inequivalent. We note that in the state e the outer 
sublattice in the system has a relative displacement 
pe= pme(0)<O, while for the ground state b the relative dis- 
placement is pb = 0. 

3. ENDOTHERMAL TOPOLOGICAL SOLITON 

The following discrete system of equations of motion 
corresponds to the dimensionless Hamiltonian (7): 

We assume that a structural excitation encompasses a region 
which is quite large compared to a step in the chain. Then 
the continuum approximation xn(r)= .x(z, r)\,=, , 
Y n ( ~ ) = y  (z, r)I,=, is applicable, and the system of discrete 
equations (11) and (12) can be replaced by two coupled par- 
tial differential equations 

where z is the spatial coordinate, and the subscripts r and z 
denote differentiation with respect to the corresponding vari- 
able. 

The dynamics of structural perturbations of a stationary 
profile is of great interest from the standpoint of applications. 
To investigate this class of solutions, we switch to the wave 
variable x(z,T)=x([), y(z,r)=y([), and [=z-ST, where 
s is the propagation speed of the disturbance. Then the sys- 
tem of equations of motion (13) and (14) assumes the form 

Integrating Eq. (16), we obtain the relation 

where C1 is a constant of integration. Substituting the ex- 
pression (17) into Eq. (15), multiplying the latter by xl,  and 
integrating, we arrive at the equation 

where C2 is an integration constant. 
Equation (18) is the law of conservation of energy for a 

nonlinear oscillator 

with the effective potential energy 

For a disturbance which on the right-end of the chain has an 
asymptotic form corresponding to the state b ( x + t l ,  
xl-+O, yl-+O, and f+ +m), the integration constants are 
C1 = C2= 0, and the potential (20) has the form 

where the coefficients are defined by the expressions 

Equation (19) admits nontopological soliton solutions, 
corresponding to a local disturbance of the b 
conformat i~n , l~-~~ as well as topological solitons describing 
an endothermal transition of the chain from the stable state b 
into a quasistationary uniform state me(s) which is topologi- 
cally equivalent to the state e. It is significant here that the 
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FIG. 2. Phase portrait of the nonlinear oscillator (19) with s=sp and 
a(s,) < O .  

TABLE I .  q, p,, E , ,  p,, , Em, ,  s,: and L as functions of the 
interaction parameter X, of the sublatt~ces. 

speed of a topological soliton can have only one value 
a =  - s = S ,  , for which the potential (21) becomes symmetric: b=O, c = 2  

2 - 1  ' 

Q ( x ) = a ( s P ) ( x -  ~ I ) ~ ( X -  d2,  The speed of the topological soliton is 
where cp= ~ ( s , )  = - t1 - b12. 

For a(s,)<O Eq. (19) has a soliton solution with a pre- sp=s2 
scribed behavior at infinity: 

Jx: 
g o ~ ( t : -  1)' 

x ( l ) =  ;(61+cp)f i ( t 1 - c p ) t a n h ( ~ l ) ,  (22) and the condition a(s,)<O of existence of a soliton is 

where R = ( t l  - c p )  d w .  The form of the second com- equivalent to the inequality 

ponent of the soliton solution p ( j ) = d y l d l  is found from x : > ~ g o ( s : -  I ) ( ( : -  1 ) / ~ : ,  
Eq. (17) 

which always holds when s2< 1. The first and second com- 
(23) ponents of the soliton solution have the form 

In the limit ( 4  + we have x ( [ )  + el and p ( l )  + 0 ,  and in 
the limit l+ - w  we have x ( l ) - +  cp, 
p( l )+pme= 2 ~ ( ~ ) l , x ( s i  - s ; )  <o,  i.e., the topological soli- 
ton (22), and (23) describes a transition of the chain from the 
ground state b into the intermediate state me(s,). The width 
of the soliton is L = ( c p -  ( l ) l x ' ( 0 )  = 2lR. 

The phase portrait of the nonlinear oscillator (19) with 
s = s, and a (s,)  < 0 is displayed in Fig. 2. The saddlepoints 
correspond to the uniform states b and me, and the separa- 
trices connecting them correspond to a topological soliton. 

4. DYNAMICS OF AN ENDOTHERMAL TOPOLOGICAL 
SOLITON IN AN INFINITE CHAIN 

A necessary condition for the existence of a topological 
soliton in an asymmetric bistable system is a(sp)<O. We 
note that in a system with the intersublattice interaction pa- 
rameter x1 = 0 this condition is not satisfied, since in this 
case a(s,) = 0 always holds. For this reason, only nontopo- 
logical solitons exist in such a  stern.'^-^^ A topological 
soliton can exist only if X ,  # 0. 

To simplify the calculations, we consider a two- 
component system for which the interaction parameter satis- 
fies x2= 0.  Then the conditions for the asymmetric bistability 
of (9) and (10) reduce for s=O to the single inequality 

where ~ = 2 ~ ~ ~ ~ ~ / ( 1 - s ~ ) .  
For definiteness we take s2=  0.5, p =  1 ,  K =  0.25, 

g1 = 0.01, and g1  = 0.005. Then t1 = - 1.057454,g2 
=0.005148, and ~,=0.017191.  Table I gives the intramo- 
nomeric coordinate 7 ,  the deformations p, and pme 
of the outer sublattice, the energy levels E , = V ( v )  
+ ( ~ / ~ ) K P : + ~ X I P ~ ( T - ~ I )  and Erne=V(-tl)+ (112) 
p ( ~ ~ + ~ ~ ) ~ ~ ~ - 4 ~ ~ ~ ~ ~ ( ~  of the states e and me, and the 
soliton speed s,  and width L =2/R as functions of the pa- 
rameter x1 describing the interactions of the sublattices. 

The dynamics of a topological soliton in an infinite chain 
can be modeled on a finite chain consisting of N links with 
the left-hand end moving uniformly with speed 
sb = - sppme and a free right-hand end. The corresponding 
equations of motion are 

El. 
and the coefficients of the effective potential (21) have the 
simpler form n=2,3 ,..., N - 1 ,  
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and the initial conditions are 

where x(5) and p(5) are the continuum-approximation soli- 
ton solution (24) and no is the initial position of the soliton 
center. 

In summary, the left-hand end of the chain is in an in- 
termediate (metastable) state me and the right-hand end is in 
the ground state b. The motion to the right with speed s, 
must be accompanied by an increase of the energy of the 
finite chain (dX/dr=s#,,) as a result of the forced mo- 
tion of the left-hand end. 

We consider now the dynamics of a soliton in a finite 
chain consisting of N=500 links. Let x1 =0.01. Then the 
soliton speed is s,= 0.406699. Numerical integration of the 
system of equations of motion (25) showed that a soliton 
moving with constant speed s = 0.4069 along the chain and 
with constant profile (see Fig. 3) is stable. In analyzing the 
motion of the soliton it is convenient to follow the position 
of the soliton center, defined as the point ti on the n-axis 
where the broken line passing successively through the 
points { n , ~ , ) ~ = ~  crosses the n-axis. Table I1 gives the posi- 
tion of the center ti of the soliton and the instantaneous speed 
S as a function of the time 7. One can see from this table that 
the soliton moves virtually uniformly with speed 

FIG. 3. Dynamics of an endothermal topo- 
logical soliton in a chain with a uniformly 
moving left-hand end (no= 50). 

S=0.407=sp. The small fluctuations of the instantaneous 
values of S are evidently associated with the discreteness of 
the chain. 

5. DYNAMICS OF AN ENDOTHERMAL TOPOLOGICAL 
SOLITON IN A FINITE CHAIN 

As mentioned above, uniform motion of a topological 
soliton requires a constant energy input at the left-hand end 
of the chain. As a result of the motion of the soliton, the 
entire chain is in a high-energy ( E , , 9 E e )  dynamical inter- 
mediate state me. The quasistationary state me is stable only 
in an infinite chain, and for this reason in a finite chain a 
relaxation process that transfers the system from this state 
into a topologically equivalent stationary state e should be 
observed. A topological soliton will correspond to an inter- 
mediate asymptotic process of propagation of a structural 
transition, if the relaxation process does not influence signifi- 
cantly the dynamics of the soliton. 

We now consider the soliton dynamics of a chain with 
free ends. For this, the second equation in the system (25) 
must be replaced by the equation 

After this substitution the system (25) will have as a constant 
of motion the total energy of the chain 

TABLE 11. Soliton center ri and instantaneous soliton speed S 
as functions of the time 7. 

We supplement the initial conditions (26) with the conditions 
y1(0)=0, y1(0)= -s,p(l-no). 

The soliton dynamics of a chain with free ends is dis- 
played in Fig. 4. Initially, at r = 0 ,  the left-hand part of the 
chain n < n o =  100 is in the metastable state me. At the same 
time the soliton begins to move, relaxation of the metastable 
state starts in the left-hand end: a wave packet moving with 
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the speed of sound s=s2 appears and converts the chain 
from the state me into the state e. In the process, a successive 
stretching of the outer sublattice occurs. Since the soliton 
speed s = sp< s 2 ,  the relaxation region uniformly overtakes 
the soliton, shortening the region of the metastable state. 

Figure 5  displays the time dependence of the position of 
the soliton center i .  As long as the relaxation region has not 
overtaken the front of the soliton disturbance, i.e., 
T< 70  =no  /(s2 - s,), the soliton moves uniformly with con- 
stant speed s = s,, and transforms the chain into the meta- 
stable state me, which is then transferred in the relaxation 
region into the state e (see Fig. 4) .  In the process, only a 
uniform shortening of the section of the chain which is in the 
state me occurs. At T= TO the relaxation region overtakes the 
soliton front, so that the length of the metastable region ap- 
proaches zero. As a result, the two-component endothermal 
soliton is destroyed. Therefore, in a chain with free ends an 
endothermal topological soliton has a finite lifetime T O ,  

which is determined by the length of the region of the meta- 
stable state. The metastable region is essentially the energy 
reservoir that is required to maintain the motion of an endot- 
hermal soliton. 

We now consider in greater detail the dynamics of a 
soliton in a finite chain whose right-hand end is free. Let 
no=85; then r0=910. Over this period of time the soliton 
must reach the 456-th link of the chain. Numerical modeling 
of the dynamics showed that for N>452 the soliton does not 
reach the right-hand end of the chain. After the soliton stops, 
an exothermal kink forms, and this kink converts the chain 

FIG. 5. Center n of a soliton moving in a chain with free ends (N=500, 
n0=85)  as a function of time T. The total energy of the chain is 
.X= 3.6172. 

FIG. 4. Dynamics of an endothermal topologi- 
cal soliton in a chain with free ends 
(no=  100). 

from the state e into the ground state b. For N<452 the 
soliton reaches the end and is reflected from it, and in the 
process the soliton is converted into an exothermal kink. (We 
note that reflection can be avoided if viscous friction, giving 
rise to absorption of the excess energy of the soliton, is in- 
troduced at the right-hand end of the chain. In this case the 
entire chain would remain in the state e after the passage of 
the soliton.) For N=452  the soliton reaches the end but is 
not reflected from it. As a result, the entire chain is in the 
second uniform state e.  Therefore, the soliton energy 
E,=3.6172 suffices to transform a chain consisting of 
N =  452 links from the ground state b into the second stable 
uniform state e.  

Our numerical modeling of soliton dynamics shows that 
for an endothermal transition of a chain consisting of N links 
from the ground state b into the state e, it is sufficient to 
excite an endothermal topological soliton and transform the 
first no - 1  = N ( l -  s, Is2) - 1  links into the metastable state 
me. For this, for example, it is sufficient to excite a soliton 
directly at the left-hand end and then over a time 
7-1 = n o  Isp,  to uniformly shift the left-hand end of the chain 
to the right with the speed sb= -sppe, i.e., to initiate a 
sudden early-time intramonomeric conformational transition 
of the first link of the chain and a prolonged dynamical shock 
at the left-hand end of the chain. This soliton mechanism of 
endothermal conformational rearrangement of the chain re- 
quires energy input only at the end of the chain. 

We now compare the energy of the soliton mechanism of 
structural rearrangement to that of the nonsoliton mecha- 
nism. As was shown above, the rearrangement of a chain 
consisting of N=452  links by the soliton mechanism re- 
quires energy E = 3.6172. The nonsoliton mechanism, 
which in the present case consists of the simultaneous con- 
version of all monomers of the chain from the state b into the 
state e, requires the energy E2= N V ( [ , )  = 6.989. Hence one 
can see that the soliton mechanism is energetically approxi- 
mately twice as favorable as the nonsoliton mechanism. 
Moreover, the nonsoliton mechanism requires that energy be 
supplied to all links of the chain simultaneoulsy, while the 
soliton mechanism requires only local energy input (for ex- 
ample, at the terminal monomers). This circumstance makes 
it possible to explain by means of the soliton mechanism 
some long-range effects in DNA macromolecules.21-2" 

A third scenario of endothermal conformational rear- 
rangement of a chain is also possible. If the right-hand end of 
the chain is clamped, then motion of the left-hand end can 
convert the chain into a stressed state. When each mono- 
meric link is compressed by po= -g1/2x,, the asymmetric 
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bistable system under study becomes symmetric. It will have 
two stable uniform states x,  = + 1 with the same energy. 
Conformational rearrangement of such a symmetric bistable 
system can be realized even by the motion of a one- 
component topological soliton. Conversion of the chain 
into a stressed state requires energy E,,,,, 
= N ( ~ ~ + ~ ~ ~ , + K ~ ~ / ~ ) ,  and the excitation of a stationary 
soliton requires energy E,,,= 4 &/3. Then the conforma- 
tional rearrangement according to this scenario requires en- 
ergy E >E3=  E ,,,,,, +E,, , .  For a chain consisting of 
N = 452 links we have E3 = 3.657>E1,  i.e., rearrangement 
of the chain via a transition to a stressed state requires more 
energy than rearrangement by the soliton mechanism. More- 
over, to convert the chain into a stressed state energy must be 
supplied to all links of the chain. 

The system of equations of motion (25) was integrated 
numerically by the standard fourth-order Runge-Kutta 
method with a constant integration step. The accuracy of the 
numerical integration was checked by checking the con- 
stancy of the total energy integral (27).  For example, with a 
step A r= 0.1 energy was conserved to five significant fig- 
ures. 

6. CONCLUSIONS 

In the present paper we have given the first proof that a 
stable topological soliton can exist in a bistable two- 
component asymmetric system and can convert the system 
from the uniform ground state b into a metastable state me. 
The speed of such a soliton has a unique value equal to 
s = s,<s2 and is determined by the parameters of the sys- 
tem. Comparison of the present soliton mechanism of endot- 
hermal structural rearrangement with other mechanisms 
shows that it is energetically favorable. It should also be 
noted that this mechanism can be initiated by supplying en- 
ergy locally to the chain. 

Financial support of this work was provided by the Rus- 
sian Fund for Fundamental Research (Grant No. 3-93- 
18086). 

*state Institute of Physicotechnical Problems, 119034 Moscow, Russia 

' W. Saenger, Principles of Nucleic Acid Structure, Springer-Verlag, N. Y., 
1981. 

'v. I. Ivanov, Mol. biol. 17, 616 (1983). 
L. A. Blyumenfel'd, Problems of Biological Physics [in Russian], Nauka, 
Moscow, 1977. 

4 ~ .  I. Gol'danskii, Yu. F. Krupyanskii, and E. N. Frolov, Mol. biol. 17,532 
(1983). 

5 ~ .  Onsager, Science 156, 541 (1967); 166, 1359 (1969). 
6 ~ .  F. Nagle and H. J. Morowitz, Proc. Nat. Acad. Sci. (USA) 75, 298 
(1978). 

'5. F. Nagle, M. Mille, and H. J. Morowitz, J. Chem. Phys. 72, 3959 (1980). 
'5. F. Nagle and S. Tristam-Nagl, J. Membrane Biol. 74, 1 (1983). 
9 ~ .  Kaiser, G. Wegner, and E. W. Fisher, Isr. J. Chem. 10, 157 (1972). 

'OR. J. Leyer, G. Wegner, and W. Wettling, Ber. Bunsenges. Phys. Chem. 82, 
697 (1978). 

"w. Schermann, G. Wegner, J. 0 .  Williams, and J. M. Thomas, J. Polym. 
Sci., Polym. Phys. Ed. 13, 753 (1975). 

"M. Dudley, J. M. Shenvood, D. J. Ando, and D. Bloor, Polydiacetylenes, 
Martinus Nijhoff, Dordrecht, Holland, 1985. 

1 3 ~ .  A. Krumhansl and J. R. Schrieffer, Phys. Rev. B 11, 3535 (1975). 
1 4 ~ .  D. Bruce and R. A. Cowley, Structural Phase Transitions, Taylor and 

Francis, London, 1981. 
1 5 ~ .  V. Zolotaryuk, K. H. Spatschek, and E. W. Laedke, Phys. Lett. A 101, 

517 (1984). 
1 6 ~ .  I. Manevitsch and V. V. Smirnov, Phys. Lett. A 165, 365 (1992). 
"T. Yu. Astakhova, G. A. Vinogradov, L. I. Manevich, and V. V. Smirnov, 

Vysokomolek. soed. A 34, 114 (1992). 
"s. N. Volkov, Phys. Lett. A 136, 41 (1989). 
19s. N. Volkov and A. V. Savin, Ukr. Fiz. Zh. 37, 498 (1992). 
''A. V. Savin and S. N. Volkov, Matem. modelirovanie 4, 36 (1992). 
21S. N. Volkov, J. Theor. Biol. 143, 485 (1990). 
"s. N. Volkov, Biopolimery i kletka 6, 21 (1990). 
2 3 ~ .  N. Volkov, Molekulyarnaya biologiya 26, 835 (1992). 

Translated by M. E. Alferieff 

71 2 JETP 80 (4), April 1995 L. I. Manevich and A. V. Savin 712 


