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A new model of the critical state is presented in which nonlocal effects associated with the 
nonlocal relation between the magnetic induction and the vortex density are taken into account in 
a unified manner, together with the nonlocal relation between the vortex density and the 
vortex displacement in the pinning potential. Boundary effects (Meissner currents and vortex 
images) are taken into account exactly. In the general case the model comprises a system 
of three equations for three unknown functions of the coordinates-the magnetic induction, the 
vortex density, and the displacement of the vortices. The nonlinear process of the 
penetration of an oscillating magnetic field into a hard superconductor is investigated by means 
of the model. In the local limit the model goes over into the traditional model of the 
critical state. The differences between the new model and the local model of the critical state are 
discussed, together with the possible regions of applicability of the new model. O 1995 
American Institute of Physics. 

1. INTRODUCTION well as the uncertainty in the boundary conditions it is nec- 
essary to take into account the nonlocal relation between the 

To describe a hard in magnetic induction B and the density n of Abrikosov vorti- 
magnetic fields one usually uses the critical-state model (see7 ces. This must be taken into account in bulk supercondu~~or~ 
e-g-, Refs. 1-31. In this model it is assumed that Abrikosov as well, in the case when large gradients of the vortex density 
vortices nucleate on the surface of the sample and move into ( v n l n -  1 , ~ )  arise. A local relation between the magnetic 
the interior of the sample until the force created by the vortex induction and the vortex density is usually assumed: 
gradient is balanced by the pinning force. The constitutive 
equation of the critical state has the form (see, e.g., Ref. 3) B = nQo, (2) 

47T 
curVI,,(B = 7 JAB) 7 (1) 

where H,,(B) is the thermodynamic field (a function of the 
induction B) and J, is the critical current density, determined 
both by the properties of the pinning centers and by the 
elastic properties of the vortex lattice (see, e.g., Refs. 4-6). 
Equation (1) must be supplemented by boundary conditions. 
In the simplest variants of the model it is assumed that, on 
the boundary, H =Ho (Ho is the external field). A more 

" 4  
correct procedure is to take into account the surface barriers 
Hent and Hexit at the entrance and exit of vor t i ce~ .~  For a soft 
superconductor with a plane boundary expressions for Hen, 
and Hexi, were obtained in Ref. 7. 

The distribution of the induction in a hard superconduc- 
tor is not determined uniquely by Eq. (1) and the boundary 
conditions. To solve this equation it is necessary to take the 
previous history into account. This is done as follows: When 
the external field changes, screening currents with current 
density equal to +J, are induced in the region near the sur- 
face. In the region further from the surface the induction 
remains as it was before the change of the field. The position 
of the boundary between these regions is determined from 
the condition that the induction be continuous. The current 
density experiences a discontinuity at this point. 

In the above formulation of the critical-state model a 
number of effects are not taken into account. For example, 
this model is not applicable for the description of supercon- 
ducting samples with sizes on the order of A. In this case, as 

where Qo is the quantum of magnetic flux. In addition, in the 
region near the boundary it is necessary to take into account 
the interaction of the vortices, their images, and the Meissner 
currents. 

In addition, for superconducting samples of finite size an 
important role can be played by nonlocal effects associated 
with "reversible displacement of vortices" (see Refs. 4, 8, 9, 
and 11). The concept of the "reversible displacement of a 
vortex" near a pinning center was introduced in Ref. 8. In 
this case we take account of the fact that a small change of 
the field causes a vortex to be displaced from its equilibrium 
position. Here, the vortex moves reversibly in the pinning 
potential, and the current density is smaller than its critical 
value. When the displacement of the vortex becomes equal to 
the interaction length do ,  the vortex is depinned. According 
to ~abusch?  do is that displacement of a pinned vortex lat- 
tice for which the lattice loses its stability. 

Nonlocal effects associated both with the nonlocal rela- 
tion between B and n and with the reversible motion of 
vortices were considered in Ref. 10. In that paper, however, 
only the linear response of the system to an oscillating field 
of small amplitude, superposed on a large background uni- 
form field rather than on the critical profile, was studied. 

The critical state was considered with allowance for the 
reversible displacement of vortices in Ref. 12, in which, 
however, effects due to the nonlocal relation between the 
induction and the vortex density were not included. 

A critical-state model that treats effects associated with 
the nonlocal relation between B and n but not the reversible 
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displacement of vortices was described briefly in Ref. 13. 
In the present paper we present a unified approach that 

takes into account the nonlocal relation between B and n 
(i.e., the finiteness of the quantity h) and also the nonlocal 
relation between n and the vortex displacement u (i.e., the 
reversible displacement of vortices). We stress immediately 
that, for simplicity, we are not treating effects associated 
with the difference of the thermodynamic field He, from the 
induction B (this is justified in fields H9Hc l ) .  In addition, 
we do not intend to consider nonlocal effects associated with 
the collective character of the pinning of the vortice~;~ (see 
also the review Ref. 6). Including these effects changes the 
value of the critical-current density J, , which in our analysis 
is a phenomenological parameter. 

In Sec. 2 we formulate a general approach that makes it 
possible to obtain the equations of the nonlocal model of the 
critical state. This approach is applied in Sec. 3 to study the 
effects of the nonlocal relation between B and n. We con- 
sider the penetration of magnetic field into a superconducting 
half-space and into a plate of finite thickness. It is shown that 
when the external field varies nonmonotonically there is a 
range of fields in which a change in the field does not lead to 
hysteresis losses; the vortex-density distribution has discon- 
tinuities, and in the case of the superconducting plate there is 
always a vortex-free region in the center. All the effects 
listed vanish as h+O, which corresponds to going over to the 
usual model of the critical state. In Sec. 4 we construct a 
model that takes into account not only the finiteness of A but 
also the reversible displacement of vortices. Here, all the 
effects remain, but the characteristic quantities are renormal- 
ized. The penetration of an oscillating field of small ampli- 
tude superposed on the critical profile is investigated. It is 
found that in this case, in contrast to the case of a constant 
background field, the attenuation of the field has a nonexpo- 
nential character. In the Conclusion we discuss the results 
and the conditions for applicability of the model. 

In the local critical-state model (1) there is a single phe- 
nomenological parameter-the critical current density J,. 
According to ~abusch? J, is related to the bulk pinning 
force PC at which the vortex lattice becomes unstable. It may 
be said that when J becomes equal to J, (or, equivalently, P 
becomes equal to P C )  in some region of the superconductor 
the vortices break away from the pinning centres and are 
displaced in an irreversible manner. We shall call this region 
critical, and denote it by IRCIi,. But if in some region the 
current density has still not reached its critical value, the 
displacement of the vortex lattice is reversible. We shall call 
this region subcritical, and denote it by R,,,,,. The current 
density in S1,,,,, is smaller than J ,  and depends on the mag- 
nitude of the displacement u of the vortices. The character of 
the division of the volume of the superconductor into a criti- 
cal and a subcritical region depends on the boundary condi- 
tions and on the previous history. 

We shall considcr a hard type-I1 superconductor in the 
form of an arbitrary cylinder in an external field H, parallel 
to its generator. We shall assume Hc14H04Hc2,  where Hcl 
and Hc2 are the first and second critical fields, respectively. 

We shall also consider only those regions of the supercon- 
ductor in which the magnetic field satisfies these inequalities. 
In this case, the average spacing a between the vortices sat- 
isfies the relation (<a<h,  where ( is the coherence length. 

The microscopic field h in the superconductor is deter- 
mined by the London equation 

h + h2curl curl h = s(p-pi) = @8, (3) 
i 

where p is the two-dimensional radius vector in the plane 
perpendicular to the magnetic field, the summation is per- 
formed over all the vortex filaments, N =  C.,s(p-pi) is the 
microscopic density of vortices, and @, is the quantum of 
magnetic flux. Any solution of (3) can be represented in the 
form of a sum h = h,+ h, of the Meissner field and vortex 
field (see, e.g., Ref. 14), which satisfy the equations 

h,+h2curl curl h,=O, (4) 

h, + h2curl curl h, = @$, (5) 

with the boundary conditions h, = H, and h, = 0.  The solu- 
tion of (5)  can be represented in the form 

(6) 

where hl(p,pl) is the field, at the point p, of one vortex 
situated at the point p, . 

In a macroscopic description of the superconductor it is 
necessary to average the microscopic field h over scales d 
much greater than the spacing a between the vortices. If 
d%-h we obtain the macroscopic equation (1) and the local 
relation (2). To construct a nonlocal model we shall perform 
the averaging over scales a +id4 A. 

We shall average Eqs. (4) and (5)  over scales a 4 d  4 h.  
Then the Meissner field remains unchanged (B,= h,), and 
the average vortex field 

satisfies the equation 

B,+ h2curl curl B,=@,n. (8) 

In the case of soft type-I1 superconductors the field 
B,(p) is uniform over distances much greater than A from the 
boundaries, and Eq. (8) gives the local relation (2) between 
the induction and the vortex density. In the case of hard 
superconductors the local relation remains valid only far 
from the boundary and for not very strong pinning, when the 
magnetic induction varies over distances greater than A. It is 
this relation that is used in the traditional model of the criti- 
cal state, but in the case of characteristic sizes comparable to 
h, or in the case of sufficiently strong pinning, it is necessary 
to use the more general relation between B,(p) and n(p) 
given by Eq. (8). 

We now take into account the nonlocal effects associated 
with the reversible displacement of vortices in the subcritical 
region fl,,,,, . In this region, when the external field changes 
the vortices are displaced by a distance u(p), and this 
changes the vortex density n from the old density no,*. Inte- 
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grating over time the continuity equation dnldt = -div(nv), 
where v is the velocity of displacement of the vortices, we 
obtain 

In the right-hand side of this expression we have assumed 
that n=nold ; this corresponds to retaining only terms qua- 
dratic in u in the expression for the energy (see below). 

The critical-state equation (1) is the equation for the bal- 
ance of forces acting on a vortex. In macroscopic form this 
equation can be formulated as the condition for an extremum 
of the Gibbs free energy G (for such an approach, see, e.g., 
Ref. 2). This formulation is convenient for the construction 
of a nonlocal generalization of the critical-state model. We 
stress that as a result we obtain all possible metastable states 
of the system. The choice of a particular state is determined 
not only by the equations that arise but also by the previous 
history of the system. 

We shall determine the specific form of the Gibbs energy 
G as a functional of the vortex density n in the critical region 
Rcri, and of the displacement u in the subcritical region 
R,,,,. We shall confine the analysis to an isotropic super- 
conductor (certain nonlocal anisotropic effects are consid- 
ered in Ref. 15). In this case G can be written as the sum of 
the following terms: the electromagnetic energy Ge,m, the 
work G? of the pinning forces in the critical region, and the 
energy G y  of the vortices in the pinning potential in the 
subcritical region. 

First we shall consider the electromagnetic part of the 
Gibbs energy: 

By means of the relations (4) and (5) we can represent this 
expression in the form14 

where the energy is calculated relative to that of the Meissner 
state. To obtain the Gibbs energy expressed in terms of the 
macroscopic variables n and B ,  it is necessary to average 
(11) (see Appendix 1). We obtain 

where B ,  is the average vortex field. The latter expression is 
not exact. As shown in Appendix 1, it is calculated with 
relative accuracy -Hcl/H< 1,  which corresponds in fields 
H%=-Hcl to neglect of the difference between the induction B  
and the field strength H(B). All the calculations below will 
be performed to this accuracy. 

We now consider G?, defined as the work of the pin- 
ning forces upon penetration of vortices into the supercon- 
ductor in the critical region. We shall confine ourselves to the 
simplest case of an isotropic superconductor with PC =const. 
Suppose that when the external field changes by SHo the 
density in Rcri, changes by Sn(p). The associated work SA 
performed by the pinning forces is 

where l(p) is the shortest distance to the boundary. The same 
can be obtained from variation of 

The energy of a vortex in R,,,, depends on the displace- 
ment u of the vortex. We shall confine ourselves to the sim- 
plest approximation (see Refs. 10 and l l ) ,  in which the re- 
storing force satisfies F-u for u<d,,  where d, is the 
interaction length. Finally, we obtain for the Gibbs energy 

This expression corresponds to keeping only terms quadratic 
in u in the energy, and therefore it has been assumed that 
nCnOld. 

Variation of (12)-(14) with allowance for (8) and (9) 
gives the possibility of obtaining the equations of a nonlocal 
model of the critical state. Here, as already mentioned above, 
these equations should be supplemented by an algorithm for 
taking the previous history into account. These questions are 
discussed in the next section for the simplest variant of the 
model, without allowance for the reversible displacements of 
the vortices in the subcritical region. 

3. NONLOCAL MODEL OF THE CRITICAL STATE WITH 
NEGLECT OF THE REVERSIBLE MOTION OF VORTICES 

In this section we shall neglect the reversible displace- 
ment of vortices in the subcritical region, i.e., we shall as- 
sume that in R,,,,, 

n =nOld. (15) 

In this case we can disregard the term G T  , and we there- 
fore obtain for the Gibbs energy 

Varying G with respect to n (see Appendix 2), we obtain, in 
the critical region, 

B = H o - ( 4 ~ / @ O ) P c l .  

In this equation we have PC= [PC[ when the external field 
increases and PC= - lpcl when it decreases. Using the defi- 
nition Jc= (clPCI)/(@,), we finally obtain 

This expression coincides with that obtained in the local 
model of the critical state. We stress, however, that in the 
derivation of (17) the Meissner field was taken into account 
exactly, and therefore is valid near the boundary of the su- 
perconductor, at distances much smaller than A. (Of course, 
this is not so in a surface layer - a . )  
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In the subcritical region fl,,,, the vortex density n does 
not change when the field changes. In the local model this 
also implies constancy of the magnetic induction B .  When 
nonlocal effects are taken into account this is not so. The 
magnetic induction in the subcritical region obeys the equa- 
tion 

B + h2curl curl B = @Onold ( I 8 )  

and matching conditions on the boundary with the critical 
region. We shall examine these conditions. The first is the 
continuity of the magnetic induction. The second can be ob- 
tained from Eq. (8) .  Integrating ( 8 )  over a small region near 
the boundary and letting the size of this region tend to zero, 
we find that the current density J = ( c / 4  5-)curl B should also 
be continuous. Moreover, this is true even if the vortex den- 
sity n experiences a discontinuity at the boundary. (Only in 
the case of a Sfunction singularity of n is it not true.) These 
two conditions also permit us to find the position of the 
boundary of the critical and subcritical region. We stress that 
in the local model the current density has a discontinuity on 
the boundary of the critical and subcritical regions. In the 
nonlocal model this discontinuity appears in the limit A--+O. 

As noted above, the variational approach makes it pos- 
sible to obtain all the metastable states of the system, and to 
find each particular state it is necessary to take the previous 
history of the system into account. We shall consider in more 
detail how the previous history must be taken into account in 
the nonlocal model of the critical state. Suppose that we 
know the distributions of the magnetic induction Bold and 
nold corresponding to some value of the external field H o .  
Let the external field change. Then, in the general case, a 
critical region arises near the surface. In this region the vor- 
tex density n changes from no ld ,  but the current density J is 
a known quantity, equal in magnitude to the critical current 
density J , .  This makes it possible to find the induction in 
this region, using Eq. (17) .  Knowing the induction, we can 
find the new vortex density from ( 8 ) .  In the subcritical region 
the vortex density is a known quantity n = nold , and the cur- 
rent density, which is smaller than the critical density, 
changes. This new current density and, correspondingly, the 
new induction can be determined from Eq. (18)  and the 
matching conditions. 

Thus, a nonlocal model of the critical state has been 
constructed above. We now consider features of this model 
for the simple special case of the penetration of the field into 
a superconducting half-space x>O. Suppose that the external 
field Ho has first increased to Hmax,  and has then begun to 
vary periodically in the range (Hmi,  JI,,,). The problem is 
effectively one-dimensional, and the basic equations (17)  and 
(18)  can be written in the form 

In the critical region we must substitute J =  + J ,  into (19) ,  
and the vortex density n ( x )  here is an unknown function. In 
the subcritical region the vortex density is known 

[n (x )=no ld (x ) ] ,  the distribution of the induction is found 
from (20) ,  and the current density must be determined from 
(19) .  In advance we know only that I J I  S J ,  . 

When the field increases from 0 to H,, the vortices 
penetrate to a depth b into the superconductor. In the interval 
O<x<b  a critical region appears, in which the current den- 
sity is J =  - J ,  . The magnetic induction in this case is 

The region x > b  is subcritical with nold=O. Taking this into 
account, from (20)  we obtain 

x - b  
B ( x )  = C exp[ - 

where C is a certain constant. The conditions for continuity 
of the induction and current density at the point x =  b give 
two equations, and the two unknown constants that are de- 
termined from these equations are b and C. We obtain 

Substituting the function (21)  into Eq. (20) ,  we find the vor- 
tex density n ( x )  in the critical region ( O < x < b ) :  

In the subcritical region x>  b we have n ( x )  =nold=O. But 
the induction in this region is nonzero [see (22) ] .  Neverthe- 
less, it is natural to call b the penetration depth; strictly, it 
signifies the depth of penetration of the vortices, and gives 
the characteristic scale of the penetration of the field. 

We note an important property of the solution obtained: 
At the point b the density vanishes discontinuously. For the 
size of the discontinuity we have 

Physically, the density discontinuity appears at the point b 
because a vortex can only advance into the interior of the 
superconductor if the finite pinning force P C  is overcome. 
The vortex advances under the action of the electromagnetic 
force created by the Meissner field and the field of the other 
vortices. It is found that if the vortex density is smaller than 
(45- lc ) (JcAIQo) ,  and, consequently, the spacing between 
the vortices is sufficiently large, the electromagnetic force 
acting on our outer vortex is smaller than P C .  For the same 
reason, for Hma,<(4 a /c )J ,X it is completely impossible for 
vortices to enter into the superconductor. In this case the 
Meissner-current density 

J =I Hmax - exp- (;I 
rn 45- A 

is smaller than J ,  throughout the superconductor. Only for 
Hma,>(45-/c)J,X do we have J r n > J c ,  near the surface. In 
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this case the force exerted by the Meissner currents on the 
first vortex nucleated at the surface exceeds P C ,  and the vor- 
tex moves into the interior of the superconductor. 

We stress that, because in the derivation of the equations 
of the model we neglected fields -Hc,, everything that has 
been said above is valid, strictly speaking, only if 
(4 %-lc)JcA%Hcl. 

When, having reached H,,,, the external field Ho be- 
gins to decrease, in fields satisfying Hmax- AH< Ho<HmaX 
the vortex density remains constant throughout the supercon- 
ductor. The pinning force acting on a vortex near the bound- 
ary changes from PC to - P C .  The magnetic induction then 
also changes, since the Meissner component h ,  changes. 
Since the vortex field remains unchanged for 
Hmax-AH<Ho<Hmax, it is easy to find the interval AH in 
which the current density at the surface changes from - Jc to 
J, : 

8%- 
AH= - J c A .  

C 
(27) 

It may be said that in this interval of fields no critical region 
arises, and the vortex density remains everywhere as formed 
during the increase of the field: 

l o  for x>b.  

To determine the induction it is necessary to solve Eq. (20) 
with the vortex density n(x) = nol,(x) given by the expres- 
sion (28), with the boundary condition B(0) = Ho . The solu- 
tion is presented in Fig. lb. 

In the range H,,- AH < Ho< H,, the hysteresis losses 
in the superconductor are equal to zero. The quantity AH is 
proportional to J c A  and depends on the geometry of the sys- 
tem. Below, AH is also calculated for a plate. When we go 
over to the local model, A H 4  0. 

When the field decreases further a critical region 
(O<x<xo) arises. As before, the boundary xo of the critical 
and subcritical regions is not known in advance, and is de- 
termined from the matching conditions in the process of the 
solution. The difference from the solution considered previ- 
ously is that, in the subcritical region x>xo,  the vortex den- 
sity nold(x) is not equal to zero, but is given by the expres- 
sion (28). We have (see Fig. lb) 

4%- 
Ho+ - J s  for O<x<xo, 

C 

for xO<x<b,  

4%- 

C 

for 0<x<x0,  

I 0, for x>b,  

where 

On the boundary x =xo between the critical and subcriti- 
cal regions the density experiences a discontinuity 

We note that the appearance of a density discontinuity on the 
boundary between the critical and subcritical regions is a 
general consequence of the proposed model. In fact, Eqs. 
(17) and (18), together with the conditions that the induction 
and current density be continuous on the boundary of the 
critical and subcritical regions, make it possible to determine 
all the unknown quantities [in particular, the vortex density 

n(p) ]  everywhere. Here, no matching conditions for the vor- 
tex density are used in the construction of the solution, and 
this, generally speaking, should lead (and usually does lead) 
to a density discontinuity. The magnitude of the discontinuity 
depends on the geometry of the system, and is also calcu- 
lated below for a plate. When we go over to the local model 
(A+()) the density discontinuities disappear. 

From a physical point of view, the reason for the appear- 
ance of the density discontinuities is as follows. In the ex- 
ample considered, the vortex density nOld(x) in the subcriti- 
cal region x>xo was formed during the penetration of 
vortices from the boundary into the interior of the supercon- 
ductor. As the field decreases however, in the critical region 
O<x<xo the vortices move in the opposite direction, toward 
the boundary of the superconductor. Here, in the one case the 
force acting on the vortex is equal to P C ,  and in the other it 
is equal to -PC. For the electromagnetic force acting on a 
vortex at the point xo to change by 2 P c ,  it is necessary that 
the induction B(xo) change by AH (27). This implies the 
existence of the density discontinuity (32). The simplest way 
to see this is to note that in the case Jc=const, in the critical 
region, the simple relation B(x) = n(x)ao holds. (This is 
connected with the linearity of the critical profile, and is not 
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FIG. 1. Evolution (a-f) of the spatial distributions of the magnetic induction 
B and vortex density n in the half-space x>O for periodic variation of the 
external magnetic field. 

true in the subcritical region.) At the moment of formation of 
the density no,, (28) the corresponding critical profile of the 
field is determined by Eq. (21) with J= -J, . As the external 
field decreases the vortex density at the point x = xo does not 
change at first; nevertheless, the induction at this point de- 
creases, and the current density changes from - J, to J, . 
Here, the relation B(xo)=n(xo)Qo is not valid. When the 
induction decreases by AH, the current density becomes 
equal to J , .  To the left of the point x, a new critical state 
will be formed, for which the relation B(x)=n(x)Qo is 
again valid. From this it follows immediately that the new 
vortex density (to the left of the point xo) differs from the old 
(to the right of the point xo) by An = AHIQo. 

When the field increases from Hmi, to HmaX the calcula- 
tions are completely analogous. The only expression to 
change is that for nOld(x), which in this case is given by Eq. 
(30). The profiles of the induction and density for this case 
are presented in Figs. Id-f. 

A series of field and vortex-density distributions for pen- 
etration of the field into a plate -d/2<x<d/2 is given in 
Fig. 2. The principal features here are the following. 

The penetration depth bp' during the initial increase of 
the external field is given implicitly by the expression 

We stress that in the nonlocal model the vortex-density and 
field distributions during the initial increase of the external 
field are always similar to those given in Fig. 2a. In this, the 
nonlocal model differs from the local model of the critical 
state, in which the field distributions are qualitatively differ- 
ent in fields Hm,,<Hp and H,,>Hp, where 
Hp= (2.rr/c)Jcd is the penetration field. In Fig. 3 we plot the 
penetration depth bp' as a function of the external field Hmax 
for different values of the quantity Ald. It can be seen that 
for finite values of A/d the penetration depth is always 

FIG. 2. The same as in Fig. 1, but for a plate - d / 2 < x < d / 2 .  

smaller than d/2, i.e., for any external field there exists a 
vortex-free region at the center of the plate. (Of course, this 
conclusion is valid if the size of the vortex-free region is 
greater than the spacing a between the vortices. In suffi- 
ciently strong fields this is not so, and the vortex-free region 
disappears.) Only in the limiting case A/d-0 does a break 
appear in b(H,,), and the penetration depth is described by 
the usual formula 

FIG. 3. Dependence of the penetration depth bpi on the external field H ,  for 
different values of the parameter d l X .  The dashes denote the local limit (34). 
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c H m a x l 4 ~ J c  for Hm,<Hp, 
bpi= 

(d l2  for Hmax>Hp. 

The magnitude of the barrier for the plate is modified in 
comparison with (27): 

The magnitudes of the density discontinuities on the bound- 
ary between the critical and subcritical regions are calculated 
in an analogous way: 

8 ~r J c A  
Anpi(xgi) = - - coth 

c @o 

where xg' is determined implicitly by the expression 

Distinctive features of the surface impedance of a plate 
of thickness d-A in the given model are discussed in Ref. 
13 (see also the Conclusion). 

4. NONLOCAL MODEL OF THE CRITICAL STATE WITH 
ALLOWANCE FOR REVERSIBLE DISPLACEMENT 
OF VORTICES 

In Sec. 3 we disregarded the reversible displacement of 
vortices in the subcritical region. However, as will be seen 
below, in strong magnetic fields the effects associated with 
this displacement are often comparable to the nonlocal ef- 
fects associated with the finiteness of A. In this section we 
present a critical-state model that takes these two factors si- 
multaneously into account. 

The Gibbs free energy in this case has the form 

Variation of G gives 

where 6Gcrit is the variation of G over the critical region, 
which coincides with that considered in Sec. 3. It follows 
from (9) that Sn = -div(nOldSu). Using this relation, we ob- 
tain 

where S signifies integration over the boundary, dl  is a 
length differential perpendicular to the boundary and point- 
ing into the critical region, and eo is the unit vector in the 
direction of B. 

Equating the integrand in the volume integral in (40) to 
zero, and multiplying by eo, we obtain 

From the condition that the current density be continu- 
ous on the boundary of the critical and subcritical regions, it 
follows that here we have u=do (and, correspondingly, Su 
=0), and therefore the surface integral in (40) is equal to 
zero. 

Thus, we can now formulate the system of equations of 
a nonlocal model of the critical state with allowance for re- 
versible displacement of vortices. It consists of three equa- 
tions for the three unknown functions B(p), n(p), and u(p): 

B+ A 2  curl curl B= Qoneo, (42) 

In the critical region the displacement is equal to the maxi- 
mum possible value, u = 2 do.  In this case, only the first two 
equations of this system are used, and the system goes over 
into the one described in Sec. 3. In the subcritical region we 
have 1 u 1 <do,  and self-consistent solution of all three equa- 
tions is necessary. 

As in Sec. 3, to find a particular solution it is necessary 
to take the previous history into account. Now, when the 
external field changes the density varies not only in the criti- 
cal but also in the subcritical region. In the latter region, 
knowledge of the previous history implies knowledge not 
only of the old density no,, but also of the old displacement 
uold, which in the critical region is equal to t do.  

Using this model we shall consider a specific problem- 
the penetration of the field into the half-space x>O. The 
formulation of the problem is identical to that considered in 
Sec. 3. Eliminating the vortex density n from Eqs. (42)-(44), 
and writing them in one-dimensional form, we obtain 

During the increase of the field from 0 to Hmax there is 
no subcritical region, and, therefore, in this case, the solution 
coincides with the corresponding solution from Sec. 3. When 
the field is subsequently reduced from H,,, , a range of fields 
H,~~-AH~<H~<H,,, also arises in which only the sub- 
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critical region exists. The magnetic induction here is deter- equal to zero.) Solving this equation and joining it with the 
mined by Eq. (46), in which we must set uOld=dO. (Note that exponentially decaying solution in the region x > b  (see Ap- 
if we were considering the penetration of an oscillating field pendix 2), we obtain (for simplicity it is assumed that 
superposed on a background uniform field, u,,, would be do=const4A) 

47r d o )  - 2 ( ~ t f d o )  - h tdx ) )  1 a x  + o m a x  ( 
do 

for x<b,  
Aefdx) 

B(x)= 

where The expression for the barrier  AH^ is modified in com- 
parison with (27). As in Sec. 3, we obtain 

The expressions obtained solve the problem of the pen- 
etration of a field disturbance into a superconductor super- 
posed on a nonuniform critical profile. A similar problem 
was solved in Ref. 10, except that there the penetration of a 
disturbance superposed on a uniform field was considered. In 
contrast to Ref. 10, in which the disturbance decays expo- 
nentially, in our case the attenuation has a nonexponential 
character. This is due to the nonuniform vortex-density dis- 
tribution. It may be said that in the case of a uniform density 
distribution our results coincide with those of Ref. 10. 

We note that the latter formula contains an effective penetra- 
tion depth hido), which can be much greater than the Lon- 
don depth A. 

When the external field is lowered below H,,,-AH~ a 
critical region arises. Joining the solutions in the critical and 
subcritical regions, we obtain 

for O<x<xo, 

for xo<x<b,  

87r d o -  A ) ]  [ ( ~ ; b ) )  
x - - for x>b,  

do 

where xo is the boundary of the critical and subcritical re- 
gions, which can be determined from the relation 

Here, the density discontinuity on the boundary of the criti- 
cal and subcritical regions is given by the expression 

In Figs. 4a-c we give profiles of the induction B(x) and 
density n(x) as the field is decreased from Hmax to Hmin,  
with allowance for reversible displacements of vortices in the 
subcritical region. It can be seen that, in contrast to the re- 
sults of Sec. 3, the vortex density changes in the subcritical 
region as well, and this leads to a decrease of the density 

discontinuity at the point xo. We stress the following inter- 
esting feature. Allowance for the reversible displacements 
leads to a renormalization of the quantities AH and An. 
Moreover, if in the expression (27) for the barrier this renor- 
malization consists in the replacement of A by Aeff, the den- 
sity discontinuity (32) is multiplied by A/Aeff . It may be said 
that when reversible displacements are taken into account 
AH increases and An decreases. 

We now discuss the question of how the system will 
behave as the field is increased from Hmin to H,,,. All the 
results of this section remain valid in this case too. In all the 
formulas, only the expression for the effective penetration 
depth is modified, because of the decrease of the vortex den- 
sity near the boundary. In place of At f f  we must substitute 
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FIG. 4. The same as in Fig. 1, but with allowance for the reversible dis- 
placements of vortices in the subcritical region. Profiles for the first half- 
period of the variation of the external field are given. 

To conclude this section, we shall discuss the question of 
how this model and the local model of the critical state are 
related. When the formal limit X+O is taken in the formulas 
of this section, we obtain the local model of the critical state 
with allowance for the reversible displacement of vortices. 
The barrier AH then remains, but the density discontinuities 
An vanish. If, in addition, we let d,+O, keeping u<do,  we 
obtain the usual local model of the critical state. 

5. CONCLUSION 

The model of the critical state is a rather crude approxi- 
mation. In particular, it is found not to be valid for the de- 
scription of a whole group of phenomena in systems with 
characteristic sizes commensurate with the London field- 
penetration depth A. In this case, it is necessary to take non- 
local effects into account. 

Nonlocal behavior in the critical-state model is usually 
taken into account in different versions of the theory of col- 
lective pinning5 (see also the review Ref. 6). The main aim 
of this theory is to calculate (starting from microscopic phe- 
nomenological characteristics of the superconductor such as 
the coherence length, London depth, pinning potential, etc.) 
the macroscopic observable characteristics-the critical- 
current density, the depinning temperature, the melting tem- 
perature of the vortex lattice, etc. The finiteness of the Lon- 
don depth h is taken into account, e.g., in the calculation of 
the elastic response of the vortex lattice.15'16 All these ques- 
tions lie outside the scope of this paper. Here we assume that 
we know the bulk critical-current density J, , which is a con- 
stant and does not depend on the magnitude of the magnetic 
field, the vortex density, the distance from the boundary of 
the superconductor, etc. This assumption is rather crude, and 
in a more systematic model it would be necessary to calcu- 
late J, and the distributions of vortex density and induction 
self-consistently with allowance for nonlocal and boundary 
effects. However, this is a considerably more complicated 
problem than that considered here. 

In recent years a detailed analysis of the penetration of 
electromagnetic waves into a type-I1 superconductor has 
been carried out with allowance for nonlocal and boundary 
effects (Meissner currents and vortex images), bulk pinning, 
and ~ r e e ~ . ' ~ , ' ~ " ~  However, the linear response was consid- 
ered. The penetration of an oscillating field superposed on a 
uniform constant field was studied. 

In Refs. 4, 8, 9, and 11, field penetration into a super- 
conductor was investigated in the framework of the local 
Bean model with allowance for reversible displacements of 
vortices near pinning centres. 

In this paper we have investigated the nonlinear response 
and the formation of the critical state with allowance for 
nonlocal effects. We have presented a unified approach that 
takes into account both the nonlocal relation between B and 
n (i.e., the finiteness of the quantity A) and also the nonlocal 
relation between n and the vortex displacement u (i.e., the 
reversible displacement of vortices). 

A model in which the equilibrium displacement of vor- 
tices near pinning centres is neglected and it is assumed that 
the vortex density n(x) changes only when vortices break 
away from pinning centers has been considered in Sec. 3. 
This model was described briefly in Ref. 13. We shall con- 
sider certain distinctive features of this model. 

First, at the matching points the vortex density distribu- 
tion exhibits a discontinuity. The appearance of the disconti- 
nuities signifies that the characteristic scale of the variation 
of the density near the matching points (and near the bound- 
ary) is a ,  and not X as might have been expected. We note 
that an analogous fact was discovered previously for soft 
superconductors in Ref. 14, in which it was shown that the 
spacings between vortices do not change right up to the 
boundary of the superconductor. 

Second, when the external field varies in the interval 
H,,- AH< H< H,,, the density of vortices in the plate 
does not change anywhere. If the amplitude of the oscillating 
field is smaller than AH, the hysteresis losses in the plate are 
equal to zero. 

Third, for any value of H,, there always exists a region 
in the center of the plate where the vortex density satisfies 
n = 0.  This is due to mutual repulsion of the Abrikosov vor- 
tices at the center of the plate. (Of course, the vortex density 
could be nonzero at the center of the plate if, e.g., magnetic 
field was frozen in the plate during the transition to the su- 
perconducting state.) This result diverges qualitatively from 
the predictions of the traditional critical-state model, in 
which a region with n = 0 exists only in a field smaller than 
the penetration field H,= (2.rr/c)JCd. 

Note that the magnitude of the vortex-density disconti- 
nuity, the barrier AH, and the size of the region with n = O  
are proportional to X, and vanish when we take the local 
limit X+O. 

In Sec. 4 we present a nonlocal model of the critical state 
with allowance for the reversible displacement of vortices. 
Here, as in Sec. 3, in the case of periodic variation of the 
field on the surface a range of fields appeared in which the 
hysteresis losses vanish and the vortex density is discontinu- 
ous in the superconductor. However, the magnitudes of this 
interval of fields and of the density discontinuities change, 
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and begin to depend on the previous history of the system. In 
the formulas the London depth A is now replaced by an 
effective penetration depth A,,, which can be much greater 
than A. 

The model presented is valid in fields Hc1==3H,<Hc2. 
Here, we have not taken into account effects associated with 
the difference of the thermodynamic field He, from the in- 
duction B; this is justified in fields H+HCl.  The averaging 
method given in Appendix 1 makes it possible, in principle, 
to treat these effects. Then, with the same accuracy, it is 
necessary to perform a more correct analysis of the surface 
effects. 

We now discuss some possible ranges of applicability of 
the model presented. 

It is obligatory in the description of superconductors 
with characteristic sizes comparable to the penetration depth. 
In particular, in Ref. 13 distinctive features of the surface 
impedance of a plate of a hard superconductor of thickness 
d-A are discussed using the example of a textured ceramic 
high-temperature superconductor with characteristic granule 
thicknesses -10 pm. It is well known that the surface resis- 
tance 98 of a superconducting plate has a maximum when 
the depth of penetration of an oscillating magnetic field is on 
the order of the sample thickness d (see, e.g., Ref. 20). Ac- 
cording to the local model of the critical state, the height of 
this maximum, normalized to the surface reactance 
x,=2.rrwdlc2 of the sample in the normal state, does not 
depend on any physical parameters: 

The result (54) does not depend on the manner in which the 
penetration depth of the oscillating field varies-the imped- 
ance can be investigated as a function of the constant field, 
the temperature, the amplitude of the oscillating field, etc. In 
certain cases, however, Rk, is found to be appreciably 
smaller than 3147~. In Ref. 13 the temperature dependence of 
the dimensionless surface resistance R '  =SIX, is given for 
various values of the amplitude of the oscillating field. All 
the plots contain the maxima under discussion, the height of 
which at low temperatures agrees with the predictions of the 
local model of the critical state. However, as the temperature 
approaches the critical value the height of the maximum de- 
creases. As shown in Ref. 13, this behavior of the impedance 
is related to the increase of the penetration depth A, which 
can be comparable to the characteristic geometric dimen- 
sions of the system. The surface resistance of a plate in an 
oscillating external field H(t)=H,+ h ,  cos wt,  calculated 
by means of the proposed nonlocal model, has a maximum 
whose height Rkax decreases as the parameter Ald increases. 
We note that the fused samples of high-temperature super- 
conductor in this experiment had a laminar structure in 
which the characteristic thickness of the crystallites was 
about 10 pm, which is comparable to A. The role of the 
parameter d in this experiment was played by the thickness 
of the crystallites, and not by the total thickness of the su- 
perconducting sample. Another possible application may be 
to low-temperature microcomposite superconductors with 
superconducting strands of radius -A (Refs. 12, 21). 

In bulk superconductors with scales much larger than the 
penetration depth, it is necessary to use the proposed model 
if the critical-current density is sufficiently large. In addition, 
a nonlocal model is necessary in the study of surface effects, 
when it is necessary to take the Meissner currents into ac- 
count explicitly. 

The model presented is also necessary in the investiga- 
tion of the penetration of an oscillating field of small ampli- 
tude into the bulk of a hard superconductor superposed on a 
large stationary field. In this case, differences from the local 
model appear even in the case of superconductors of large 
size. In the article, it is shown that when the external field 
varies in an interval Hm,-AH< H <  H,,, the vortex den- 
sity in the superconductor does not change anywhere (only 
the Meissner component of the field changes). If the ampli- 
tude of the oscillating field is smaller than AH, the hysteresis 
losses are equal to zero. The quantity AH is directly propor- 
tional to the bulk critical-current density J ,  and the London 
depth A. In the Bean model, AH=O. In experiment we 
should expect a considerable decrease of the hysteresis losses 
(in comparison with the values that are predicted by the local 
model of the critical state) if the amplitude of the oscillating 
field is comparable to AH. 

The authors thank I. F. Voloshin, L. M. Fisher, and V. A. 
Yampol'shii, in coauthorship with whom the work in Ref. 13 
was carried out. We should also like to thank the referee for 
careful study of the paper and useful comments that facili- 
tated improvement of the article. 

APPENDIX 1 

In this Appendix we discuss the transition from the mi- 
croscopic description (by means of the vortex coordinates) to 
the macroscopic description (by means of the density n and 
the induction B of the field). For this it is necessary to aver- 
age the Gibbs energy (11) and the microscopic field (6) over 
scales much larger than the London depth A and much 
smaller than the spacing a between the vortices. We intro- 
duce the s-particle distribution functions Fs(pl,p;?, ...,p,), 
which are the probability of finding the first vortex in the 
volume element dp,, the second in the volume element d m ,  
etc. We shall normalize these distribution functions to the 
total number N of vortices. We note that in this case Fl(p) 
coincides with the vortex density n(p) on those parts where 
Fl(p) is varying slowly: V(Fl)IFl+lIa .  The functions F, 
and FSp1 are related as follows: 

Multiplying the Gibbs energy ( l l ) ,  which depends on the 
vortex coordinates, by the N-particle distribution function 
FN(pl ,..., pN), and using (Al.l), we obtain 
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We represent the two-particle distribution function in the 
form 

F ~ ( P ~ P I ) ' F ~ ( P ) F ~ ( P I ) + F ~ ( P ) ~ ( P ~ ~ ~ ) .  (A1.3) 

The form of the conditional-probability density g(p,pl) 
is determined below. 

We shall consider first the regions where 
V(Fl)IFl < l l a .  Here, F1 = n, and the functional (A1.2) has 
the form 

where 

We have g(p,p1)+0 in the limit Ip-p1l--+~, since the par- 
ticle correlations vanish at infinity. On the other hand, it is 
obvious that by virtue of the mutual repulsion of the vortices 
we have g+-n(p) as Ipl-&l+O. In addition, it can be 
shown that g is nonzero in a region of the order of the spac- 
ing a between the vortices. We adopt the following step ap- 
proximation, which satisfies all the conditions enumerated 
above and the normalization condition $ g(p,pl)d2p= -1: 

I 1 
-n(p) for Ip-pll<------ J.rm0' 

g =  1 (A1.6) 

Using this approximation, from (A1.5) we obtain 

We stress that this expression has been obtained with loga- 
rithmic accuracy, i.e., in the argument of the logarithm coef- 
ficients of the order of unity have not been retained. To this 
accuracy the answer does not depend on the form of the 
function g.  It can be seen that in fields HoBHcl the term 
AG in the latter expression can be neglected. 

The regions where V(Fl)/Fl< l I a  holds are surface re- 
gions and regions of density discontinuity. It can be show 
that in fields HoBHCl the contribution to (A1.2) from these 
regions is of the same order as A G .  

In the case of a uniform vortex-density distribution 
n=const, allowance for (A1.7) in the Gibbs energy (A1.4) 
gives the well known formula for the equilibrium induction 
of a regular lattice: 

The approximate approach proposed here is valid for an ar- 
bitrary distribution of vortices, and gives the possibility of 
taking systematic account, in the model of the critical state, 
of effects associated with the difference of the thermody- 
namic field He, from the induction B. However, consider- 
ation of these questions goes beyond the scope of this article. 

APPENDIX 2 

In this Appendix we derive the critical-state equation 
(17), in which the contributions from the Meissner fields are 
taken into account explicitly. We shall perform the analysis 
for a superconducting cylinder of arbitrary (not necessarily 
circular) cross section in a magnetic field parallel to the gen- 
erator of the cylinder. 

To obtain the critical-state equation we vary G with re- 
spect to n: 

+ ( d 2 p ~ c l ~ n ( p ) .  
ncr i t  

W . 1 )  

Taking into account that SB, = $ d 2 ~ h  Sn, we obtain 

The second integral in this expression is equal to 
-2Ho@o(l-hm(p)lHo) (see Appendix 4 in Ref. 19). To 
calculate the first integral we make use of the symmetry 
h (pl ,p) = h (p,pl) of the Green's function of the London 
equation (3). The result is that the first integral is equal to 
@,B,, and the vortex field is 

Finally, for the total field B = hrn+B, we obtain Eq. 
(17). Note that in the derivation we used the condition 
PC =const. 

APPENDIX 3 

In this Appendix we give the solution of the system (45), 
(46) with uOld=dO and no,d determined by (28). Eliminating 
u from the system under consideration, and representing 
B(x) in the form 

we obtain an equation for P(x): 
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with the boundary condition P(0) = Ho - Hmax . 
This equation, after the substitution 

takes the form 

Its general solution is P(y) = C,Io(y) + C2Ko(y). Note that 
in this equation y + l  always holds (here we have used 
do -aeh ) .  Therefore, the following asymptotic representa- 
tion of the general solution is always valid: 

Matching this solution with the exponentially decaying solu- 
tion P(x> b) = C, exp( - (x - b)lX) and neglecting fields 
-4rJCdOIc, we obtain (47). Note that, to this accuracy, we 
can disregard the change induced in the penetration depth b 
by the reversible displacement of vortices, and assume that b 
is given by (23). 
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