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Spin rotation of spin-; particles involved in planar channeling in straight and bent crystals is 
described in a consistent quantum mechanical manner. This is done by solving the Dirac equation 
in the Foldy-Wouthuysen representation, constructing an operator equation of motion for 
the spin, and calculating the average value of the spin precession frequency. For the case of 
channeling in bent crystals agreement is observed between the classical and quantum 
mechanical expressions, provided that the field of the planes is approximated by a harmonic 
potential. The effect of spin rotation in straight crystals is also examined. 63 1995 American 
Institute of Physics. 

1. INTRODUCTION 

This paper is devoted to a quantum mechanical descrip- 
tion of spin rotation of spin-; particles in planar channeling 
in crystals. ~ a r ~ s h e v s k i i ' . ~  was the first to point to the exist- 
ence of spin rotation in particles being channeled in bent 
crystals. The theory of this phenomenon was developed by 
~ ~ u b o s h i t s ~  and Baryshevskii and ~ r u b i c h . ~  The existence 
of spin rotation in particles in straight crystals was predicted 
in Ref. 4. All these studies'-4 used a semiclassical approach 
that employed a classical model of spin; this approach makes 
it possible to distinguish between the Dirac and anomalous 
magnetic moments. Using this method, Good,' ~ o l o m o n , ~  
and ~ ~ b o r ~ '  (see also Ref. 8) arrived at equations of motion- 
for the spin in an inhomogeneous electromagnetic field that 
contained terms depending on the variation of the field. This 
fact distinguishes the equations obtained in Refs. 5-7 from 
the Bargmann-Michel-Telegdi (BMT) equation: also de- 
rived by a semiclassical approach for the case of a homoge- 
neous field. 

A consistent quantum mechanical derivation of the equa- 
tion of motion of the spin was carried out in Refs. 10-12. 
Ternov et al.'O'" obtained an equation of motion for the spin 
in a magnetic field that completely corresponded to the BMT 
equation and contained no terms dependent on the field in- 
homogeneity. There were also no additional terms in a simi- 
lar equation derived by cherkas12 for the more general case 
of the presence of both magnetic and electric fields. This fact 
is very important, because no assumptions about the homo- 
geneity of the field were made in Refs. 10-12. This implies 
that a meaningful calculation of spin rotation in an external 
field must be done consistently, in a quantum mechanical 
manner. The semiclassical and quantum mechanical equa- 
tions of motion for the spin differ because the classical de- 
scription of spin motion does not completely correspond to 
the quantum mechanical (different gyromagnetic ratios for 
the Dirac magnetic moment and relativistic invariance of the 
anomalous magnetic moment in QED in contrast to the clas- 
sical electrodynamics). 

2. THE GENERAL THEORY 

In contrast to Refs. 10-12, to derive the quantum me- 
chanical equation of motion for the spin in a constant (and, 

generally, inhomogeneous) electric field we use not the Dirac 
representation but the Foldy-Wouthuysen (FW) representa- 
tion, in which the polarization operator has the simpler form 
II= p2, (Ref. 11) and there is no need to separate its even 
part. These matrices are of rank 4 and are specified by the 
following formulas: 

where a are the Pauli matrices, and 0 and + 1 stand for the 
respective 2-by-2 matrices. We use the relativistic system of 
units: fi = c = 1. The Dirac equation for nonrelativistic par- 
ticles in an electrostatic field in the FW representation has 
the form 

where p= - iV is the momentum operator, 4 is the scalar 
potential of the crystalline field, E= - V 4, po = el2m and 
p' are the Dirac and anomalous magnetic moments, and m is 
the rest mass. In the weak-field approximation when the in- 
teraction energy I Wi,,l is much smaller than m, Suttorp and 
deGroot13,14 obtained the relativistic Dirac equation in the 
FW representation for arbitrary particle energies, without al- 
lowing for derivatives of field strength. In the absence of a 
magnetic field, the equation obtained in Refs. 13 and 14 has 
the form 

where E '  = d w .  Since in this equation the spinors $' 
$' and $" entering into the bispinor q = (+,) are separated, the 

Hamiltonian H ,  characterizes the FW representation, and a 
complete quantum mechanical descripiion needs only one 
spinor. Equation (2), in contrast to Eq. (I), is relativistic. 
However, in contrast to Eq. (I), in deriving Eq. (2) we did 
not allow for derivatives of E (in our case a term propor- 

690 JETP 80 (4), April 1995 1063-7761 1951040690-04$10.00 O 1995 American Institute of Physics 690 



tional to A+= -VE), so Eq. (2) can be used only when the 
absence of terms with derivatives of E has no effect on the 
results. The field of the planes is characterized by an even 
potential: +(x)= +(-x). In this case the absence in Eq. (2) 
of a small term even in x and proportional to A+ has no 
effect on the results of calculations. We assume that the crys- 
tal is bent in such a way that the bending plane is perpen- 
dicular to the crystallographic planes, and we denote the ra- 
dius of curvature by R.  We direct the x axis perpendicular to 
the system of planes in the direction of the bend and the y 
axis perpendicular to the x axis in the bending plane. The 
motion of a particle in a bent crystal is equivalent to its 
motion in a straight crystal, but the particle has an additional 
potential energy 

where v is the particle velocity. Stationary states satisfy 
H,'P = E'P ( E  = const). While being channeled, the par- 
ticles move at small angles to the crystallographic planes, 
and the total particle energy E approximates the kinetic en- 
ergy: 

& = & I =  d m .  
We use Eq. (2) only for the first spinor, +', and write it 

with allowance for W: 

When only the wave function +' is used, the polariza- 
tion operator of the particle is a ,  and the spin equation of 
motion has the form (here [...,...I- stands for a commuta- 
tor) 

The operator of the spin rotation frequency, w, is determined 
by the expression 

In accordance with Eqs. (4) and (5)  we have 

The quantum mechanical equation of motion (7) of the 
spin completely agrees with the BMT equation and contains 
no terms dependent on field gradients. Thus, as noted in Ref. 
12, the conclusion drawn by the classical theory that the spin 
equation of motion depends on the extent to which the field 
is inhomogeneous is not supported by the quantum theory. 
For a particle in a magnetic field, as noted above, this fol- 
lows from the results obtained in Refs. 10 and 11. If in the 
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classical approach we ignore the inhomogeneity of the field 
(the BMT equation), the classical and quantum spin equa- 
tions of motion coincide. 

The momentum components in the directions parallel to 
the crystallographic planes are constants of motion, and the 
respective operators commute with H h .  Multiplying both 
parts of Eq. (4) by the operator E '  and replacing E '  by E in 
the small terms, for stationary states we transform this equa- 
tion to the equivalent form 

A relativistic equation that, in contrast to Eq. (€9, allows 
for derivatives of the field strength of all orders is given in 
Ref. 15. If we add the potential energy (3) to the equation 
obtained in Ref. 15, the equation becomes 

Separating the variables in Eq. (S), we write the wave 
function in the form 

$' =x(x)Lexp{-ist+ ipyy), p, =const, 

where 5 is the spin function. Since py= J-, the term 
describing spin-orbit coupling can be transformed as fol- 
lows: 

Since c2-  m2-p;= const and p,= 0, by taking into ac- 
count Eq. (9) and introducing the notation 
T = ( c 2  - m2 -p:)/2~, we arrive at the following equation 
for the transverse particle motion: 

Equation (10) is valid for any potential +(x) of the 
planes. It contains no term proportional to A +, which, being 
small and even in x ,  plays no role in further discussions. The 
projection of the particle spin s=  u / 2  on the z axis is quan- 
tized and is equal to 112. For negatively charged particles, 
x = 0 corresponds to planes, and for positively charged par- 
ticles, to the midpoint of the distance between the planes. If 
the crystal is fairly thin, the solutions of the Dirac equation 
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in the FW representation for a particle inside the crystal (Eq. 
(10)) and for a particle outside the crystal must be matched. 

3. CALCULATION OF PARTICLE SPIN ROTATION IN 
CHANNELING 

The consistent quantum mechanical solution of the prob- 
lem of particle spin rotation in planar channeling done here 
has a number of important features. First, the semiclassical 
spin rotation equation is replaced by the rigorous quantum 
mechanical equation (7) for the polarization operator a. Sec- 
ond, the classical equation of motion is replaced by the quan- 
tum mechanical equation (10) for the stationary states of a 
particle in the field of the planes. Third, instead of the labo- 
rious process of integrating dsldt  over trajectories, we find 
the average of the operator o of the spin precession fre- 
quency in given stationary states, (o) = J $' t d V .  Here 
( w i )  is defined as the average of the spin rotation angle cPi  of 
the particle about the ith axis ( i = x , y , z )  per unit time: 
( w i ) = d a i l d t .  For the case at hand the operators wi have 
the form 

(11) 
The last two terms on the right-hand side of Eq. (10) 

change sign when x  is replaced by - x ,  so that the particle 
trajectory is shifted in relation to the x=  0 plane. For straight 
crystals the direction in which the trajectory is displaced is 
determined by the sign of the projection of the spin on the z 
axis. Since the operator w,  is an odd function of x ,  the dis- 
placement of the trajectory leads to a finite average value of 
this operator. This leads to rotation of the spin of the chan- 
neled particles about the z  axis in both bent and straight 
crystals. 

The possibility of particle spin rotation in channeling in 
a straight crystal was predicted in Ref. 4. There, however, the 
effect was explained by the dependence of the spin equation 
of motion on the inhomogeneity of the intracrystalline field. 
Since such dependence exists only in the semiclassical ap- 
proach and is absent in rigorous quantum theory, the mecha- 
nism of spin rotation in a straight crystal described in Ref. 4  
is incorrect. The real mechanism of this phenomenon lies in 
the fact that ( E p ) , = E g y  is odd. As a result the quasimag- 
netic field ( E ~ ) / E  changes sign under the x-+ - x  transfor- 
mation. This mechanism for spin rotation in a straight crystal 
exists in the classical approach, too. 

Let us now obtain the exact expression for (w , )  in the 
ordinary approximation of the field of planes by the har- 
monic potential +(x)  = a x 2 / 2 .  Such an approximation is 
quite admissible for positively charged particles. Equation 
(10) then assumes the form 

where 

with xo the size of the displacement of the particle's path in 
relation to the channel's center x=O.  It is known that Eq. 
(12) can be solved exactly. Since we have ( X )  = 0, in accor- 
dance with Eqs. (11) and (12) the spin precession frequency 
is the same for all states with the same E and A and is given 
by the expression 

Using the standard notation y = e / m  and 
g = 4 m ( p o + p f ) / e ,  we can write Eq. (14) as 

The theory of particle channeling in bent crystals usually 
gives the relationship between the average spin rotation 
angle and the average momentum ration angle e = y l R :  

If we ignore the second term in Eq. (15), we get 

This formula coincides with the classical formula ob- 
tained by ~ ~ u b o s h i t s . ~  Note that in real crystals multiple 
scattering by nuclei leads to a situation in which different 
particles in the beam are characterized by different spin ro- 
tation angles, and the beam becomes depolarized.16 The main 
properties of the particle distribution over the spin rotation 
angles were studied by ICrivosheev.17 

4. DISCUSSION AND CONCLUSION 

The consistent quantum mechanical description of the 
interaction of spin-: particles with a crystal field makes it 
possible to calculate the angle of spin rotation of particles 
channeled in straight and bent crystals. The quantum me- 
chanical formula (16), which coincides with the classical for- 
mula derived in Ref. 3, is valid only for a harmonic potential. 
In the presence of strong anharmonicity, which is the case, 
e.g., in channeling of electrons, deviations from this formula 
are possible. Calculation of the spin rotation angle for this 
case can be carried out via Eqs. (10) and (11) and is of 
considerable interest. 

Equation (13) implies that the particle path is displaced 
in relation to the channel center not only in bent crystals but 
in straight crystals as well. However, in the latter case this 
displacement is very small. For e + m  the absolute value of 
the displacement, Ixol, is approximately I p f / e l .  For both 
positrons and protons, I p  ' / e l  - 10-l4 cm. 

Analysis of Eq. (15) shows that the effect of spin rota- 
tion for particles channeled in straight crystals ( R - + a )  is 
extremely weak. For instance, for yS-1 the distance over 
which the spin rotates through an angle of 2 1 ~  rad is 
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For both positrons and protons this distance amounts to 
about lo3 m. At present observing such a weak effect is im- 
possible. 

The author would like to express his gratitude to A. 0. 
Gmbich, V. V. Tikhomirov, and S. L. Cherkas for their re- 
marks and a discussion of the results. 

'V. G. Baryshevskii, Pis'ma Zh. Tekh. Fiz. 5, 182 (1979) [Sov. Phys. Tech. 
Phys. Lett. 5, 73 (1979)l. 

'v. G. Baryshevskii, in Proceedings of the 15th Winter Workshop of the 
Leningrad Nuclear Physics Institute (Leningrad, 1979), Leningrad Nucl. 
Phys. Inst., Leningrad (1980), p. 199 [in Russian]. 

3 ~ .  L. Lyuboshits, Yad. Fiz. 31, 986 (1980) [Sov. J. Nucl. Phys. 31, 509 
(1980)l. 

4 ~ .  G. Baryshevskii and A. 0. Grubich, Yad. Fiz. 37, 1093 (1983) [Sov. J. 
Nucl. Phys. 37, 648 (1983)l. 

'R. H. Good, Phys. Rev. 125, 2112 (1962). 
6 ~ .  I. Solomon, Nuovo Cimento 26, 1320 (1962). 

7 ~ .  Nyborg, Nuovo Cimento 31, 1209 (1964). 
'1. M. Ternov and V. A. Bordovitsyn, Usp. Fiz. Nauk 132,345 (1980) [Sov. 
Phys. Usp. 23, 679 (1980)l. 

9 ~ .  Bargmann, L. Michel, and V. L. Telegdi, Phys. Rev. Lett. 2,435 (1959). 
"I. M. Ternov, V. R. Khalilov, and 0. S. Pavlova, Izv. Vyssh. Uchebn. 

Zaved. Fiz. No. 12, 89 (1978). 
"I. M. Ternov, V. R. Khalilov, and V. N. Rodionov, Interaction of Charged 

Particles with an External Electromagnetic Field, Moscow Univ. Press, 
Moscow (1982) p. 40 [in Russian]. 

"s. L. Cherkas, Izv. Akad. Nauk Belamsi, Ser. Fiz.-Mat. Nauk, No. 2, 7 
(1994). 

1 3 ~ .  G. Suttorp and S. R. deGroot, Nuovo Cimento A 65, 245 (1970). 
14S. R. deGroot and L. G. Suttorp, Foundations ofElectrodynamics, North- 

Holland, Amsterdam (1969). 
'' A. Ya. Silenko, in Abstracts of Reports Presented at the 24th International 

Conference on Interaction of Charged Particles with Crystals, Moscow 
Univ. Press, Moscow (1994), p. 32 [in Russian]. 

I6v. G. Baryshevsky (Baryshevskia, Nucl. Instrum. Methods B 44, 266 
(1990). 

1 7 0 .  E. Krivosheev, in Proc. RREPS-93 (Tomsk, 1993), Nucl. Phys. Inst., 
Tomsk (1993), p. 277. 

Translated by Eugene Yankovsky 

693 JETP 80 (4), April 1995 A. Ya. Silenko 693 


