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Using the Keldysh-Faisal-Reiss approximation, analytical expressions are found for the 
probability of barrier-suppression ionization of atoms and for the energy and angular distributions 
of the outgoing photoelectrons in the field of strong low-frequency laser radiation. The case 
in which the radiation is circularly polarized is considered. The results agree with the previously 
obtained distributions for tunneling of atoms by the field of low-frequency radiation for 
small values of the intensity. O I995 American Institute of Physics. 

1. INTRODUCTION 

Experiments that describe the interaction of atoms with 
intense laser radiation are customarily treated in two re- 
gimes, multiphoton and tunneling. A new mechanism, 
barrier-suppression ionization, was first observed by Augst 
et al.' It is found to be most effective for ionization of noble 
gas atoms by the radiation field of neodymium and titanium- 
sapphire lasers with intensities from 1013 to 1016 w/cm2. 

We refer to fields with such parameters as "above- 
barrier fields," since the perturbed energy of the initial 
atomic state exceeds the maximum of the effective potential 
barrier 

V,dx) = - Zlx - Fx  (1) 

in the direction x in which the electron is r em~ved .~  Thus, 

Here F is the strength of the laser radiation field, Z is the 
charge of the atomic core, FBsr is the characteristic strength 
of the above-barrier field, and En(F) is the perturbed energy 
of the initial atomic state with principal quantum number n. 
By definition, barrier-suppression ionization of an atom oc- 
curs under the condition F2FBs, if the frequency w of the 
field is sufficiently small (see below). 

Thus, barrier-suppression ionization is a classical thresh- 
old effect. For fields with F>FBsI the electron leaves the 
atom after approximately one orbit around the atomic core 
(i.e., after a time of order one Kepler period t ,=2rn3): 

Here w is the probability per unit time for an atom to be 
ionized. We have used atomic units e = me = h = 1 every- 
where (for details see Ref. 3, Sec. 4.4). 

If the field is turned on adiabatically slowly compared 
with typical times for Landau-Zener transitions to neighbor- 
ing states, then in the switching-on process the atom under- 
goes a transition into states with different quantum numbers 
many times. However, the electron energy in this process 
remains practically unchanged. Consequently, the quantity 
E,(F) does not depend on F and is related to FBSI by the 
well-known expression 

(1 a.u.=5.14.109 Wlcm). Hence the energy E n  is related to 
the principal quantum number n by the Rydberg formula (for 
a hydrogen atom) 

E n  = ~ ~ / 2 n ~ [ a . u . ]  (5) 

(1 a.u.=27.2 eV). For complex atoms the appropriate theory 
was worked out in Ref. 4 using the Thomas-Fermi approxi- 
mation. 

In the limit F<FBsI the atom undergoes tunneling ion- 
ization (assuming the frequency of the laser radiation is 
small, i.e., the adiabaticity parameter y satisfies5 

and 0 6 E n ) .  The energy and angular distributions of the 
electrons associated with tunneling ionization by a low- 
frequency radiation field have been treated theoretically by 
Delone and ~ r a i n o v . ~  

The present work is devoted to deriving a theory of the 
energy and angular distributions of outgoing electrons due to 
barrier-suppression ionization of atoms by a strong low- 
frequency laser radiation field. This theory is based on the 
Keldysh-Faisal-Reiss approximation.7 

2. THE KELDYSH-FAISAL-REISS APPROXIMATION 

The Keldysh-Faisal-Reiss approximation differs from 
the exact expression for the amplitude of a transition from 
the initial state n of an atom to the final state f of the con- 
tinuum obtained using the S matrix in using the so-called 
Volkov wave function, i.e., the solution of the Schrijdinger 
equation for electrons in the field of the laser radiation only, 
without the potential of the atomic core, instead of the exact 
wave function of the final state f. This approximation im- 
poses no restriction on the frequency o of the laser radiation. 
The only restriction on the intensity of the radiation is that it 
must exceed some lower limit. The stronger the field F of the 
laser radiation, the smaller is the role of the potential of the 
atomic core in the final state of the continuous spectrum. 
Furthermore, the larger the energy of the outgoing photoelec- 
tron the more accurate is the use of the Volkov wave function 
approximation. 
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Thus, the amplitude Anf for the transition from the initial 
bound state n of the atom to the final state f of the con- 
tinuum is given by an element of the S matrix 

Here q p )  is the unperturbed wave function of the initial 
state of the atom, q\IrJV) is the Volkov wave function of the 
final state of the continuous spectrum, and V(r,t) is the po- 
tential of the interaction between the atom and the external 
electromagnetic field 

here A(r,t) is the vector potential of the field and p is the 
momentum of the outgoing photoelectron. 

Here as an example we consider barrier-suppression ion- 
ization of the ground state of the hydrogen atom by a circu- 
larly polarized radiation field. For this we must introduce a 
correction coefficient in Eq. (7), which represents the 
perturbation-theoretic treatment of the Coulomb potential in 
the wave function of the final state f .  Here we proceed in 
analogy with the treatment of the Coulomb potential in Ref. 
8. 

The treatment of the Coulomb interaction between an 
electron and the nucleus using perturbation theory contrib- 
utes a factor 

to the Volkov wave function, where p ( r )  = i d l -  2 F r  is the 
imaginary electron momentum in the above-barrier region. 
The integral in Eq. (9) is easily evaluated in the limit F / p <  1 
and is found to be 2/ (Fr) .  Note that this procedure is justi- 
fied in both the tunneling region F<1 and in the barrier- 
suppression region F- 1,  since as we will see the typical 
values satisfy p-Flw, and hence this condition reduces to a 
requirement that the frequency of the field be small, w<l. 
The factor l l r  changes the wave function of the initial state 
into (l lr)exp(-r) ,  i.e., into the wave function of a particle 
in a potential of zero radius. This procedure is completely 
analogous to that in the derivation of the exact coefficient in 
the expression for the ionization probability of an atom by a 
constant electric field.9 

Hence it follows from (7) that the probability for ioniza- 
tion of the ground state of the hydrogen atom into the solid 
angle d f l  by a circularly polarized field is equal to 

Here N is the number of absorbed photons, JN(x)  is the 
Bessel function, and No is the minimum number of absorbed 
photons, equal to 

(the braces {...) indicate the integer part of a number). The 
interaction between the atom and the radiation field is treated 
in the dipole approximation. In accordance with (11) the 
electron has a kinetic energy measured with respect to the 
boundary of the continuum which is shifted upward by 
F2/(2w2) due to the dynamic Stark effect. 

The intensity parameter z which appears in (11) is de- 
fined as 

and we have written 

where 8 is the angle between the direction of the outgoing 
electron and the direction in which the electromagnetic wave 
propagates. 

Expression (10) determines both the energy and the an- 
gular distributions of the outgoing photoelectrons in the most 
general case, i.e., for arbitrary values of the strength F and 
frequency w of the electromagnetic radiation. 

Corkum et a1.l0 used the asymptotic properties of the 
Bessel function JN(x) in expression (10) to obtain the tun- 
neling limit which is realized for F 6  1 a.u. under condition 
(6): 

where 

and +=rrl2- 041 is the small angle between the direction of 
the outgoing electron and the plane of polarization of the 
circularly polarized radiation, 

Thus, the energy spectrum has a maximum for N-22, 
which corresponds to the kinetic energy E , = F ~ / ~ w ~  of the 
outgoing electron if we take into account the upward shift in 
the boundary of the continuum by the same amount F2/2w2 
due to the dynamic Stark effect. 

Note that the results of Ref. 6 in the part related to cir- 
cularly polarized fields agree with the result (14) of Ref. 10, 
although they are obtained by completely different tech- 
niques. 

Expression (14) determines both the angular and the en- 
ergetic distribution of the electrons in the tunneling regime. 
Integrating over all angles of the outgoing electron trajectory 
and summing over all numbers SN of absorbed photons (this 
summation is also transformed into an integral), we find 
from (14) as is to be expected the familiar expression9 for the 
probability of tunneling ionization by a constant electric field 
with strength F :  
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3. BARRIER-SUPPRESSION IONIZATION OF ATOMS BY A 
LOW-FREQUENCY FIELD 

For above-barrier fields we can use the well-known as- 
ymptotic expansion 

for the Bessel function appearing in the general expression 
(10) for the ionization probability of a hydrogen atom per 
unit time by the field of a circularly polarized wave. Quan- 
tities t% 1 correspond to tunneling ionization and t 5  1 to 
barrier-suppression ionization. Here Ai is the Airy function. 

Substituting (18) in (10) we find 

Here the quantity SN is defined by (16); the angle $ is also 
defined above. 

Equation (19) describes the angular and energy distribu- 
tion of the outgoing electrons in the barrier-suppression re- 
gime for a hydrogen atom. For ionization of other atoms only 
the overall factor in front of the summation over SN in Eq. 
(19) changes, but the behavior of the functional dependence 
on the angle $ and the number of absorbed photons N remain 
the same. Thus, Eq. (19) is quite general for barrier- 
suppression ionization of atoms by a circularly polarized 
electromagnetic field. 

To be sure, in the weak-field case [ t a l  in Eq. (18)] 
expression (19) goes over to the result (14) obtained above, 
corresponding to the tunneling mechanism of ionization. 
This limit is found using the familiar asymptotic expansion 
of the Airy function for large argument. 

From (19) it follows that just as in the case of tunneling 
ionization, the peak of the energy distribution of the outgoing 
photoelectrons is found for an electron kinetic energy 
E,= F ~ / ~ w ~ ,  since the boundary of the continuum is shifted 
upward by the same amount ~ ~ 1 2 ~ ~  due to the dynamic 
Stark effect. The difference between this and the tunneling 
limit is that the maximum is considerably broader in the case 
of barrier-suppression ionization than in that of tunneling 
ionization (for further details see below). 

4. ANGULAR DISTRIBUTION OF ELECTRONS FOR 
BARRIER-SUPPRESSION IONIZATION 

By summing the ionization probability per unit time (19) 
over all numbers N of absorbed photons (actually, by inte- 
grating with respect to SN) we find the angular distribution 
of the outgoing electrons due to ionization by a circularly 
polarized electromagnetic field. The result can be written in 
the form 

Here we have introduced the parameter t in place of the 
angle @ through the definition 

Thus, the dependence of the product Fo dw/d$ on the 
parameter t has a universal behavior, and it can be used in 

FIG. 1. Universal angular distribution for photoelectrons from ionization by 
a circularly polarized field as a function of the dimensionless variable t 
defined by Eq. (21). 

calculations for different values of the field strength F and 
frequency w in the barrier-suppression regime. Note that in 
the case of the hydrogen ground state the quantity FBsI for 
which the energy level is the same as the peak of the effec- 
tive potential barrier in the direction of the outgoing electron 
we have FBs,=0.208 (Ref. 11). 

The universal function (20) is shown in Fig. 1. As one 
would expect, the angular distribution is always centered on 
$=O, i.e., for electrons leaving in the plane of polarization of 
the circularly polarized radiation. The same picture holds as 
well in the tunneling limit (see Refs. 6 and 10). The peak 
shifts toward $#O only when relativistic effects are taken 
into account.12 

If we specify a particular value of the field strength F ,  
then from (20) the ionization probability dw/d& is a func- 
tion only of the ratio &=$/o, i.e., it is a universal function 
for arbitrary frequency w. As an example, in Fig. 2 we plot 
dwldcp versus & for F= 0.3 a.u., i.e., for a value of the field 
greater than the barrier-suppression value. Since in atomic 
units we have w e 1  a.u., it is clear that the angular distribu- 
tion is concentrated in the region of small angles $(for small 
values of the frequency o). Just as in the tunneling limit [cf. 
Eq. (14)], the angular distribution as a function of the field 
strength F becomes more peaked in the plane of polarization 
of the electromagnetic field as F increases. 

FIG. 2. Angular distribution of photoelectrons as a function of 4= +/w for 
field strength F = 0 .3  a.u. 
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FIG. 3. Energy spectrum of the outgoing photoelectrons for ionization by a 
circularly polarized radiation field with amplitude F = 0 . 3  a.u. and fre- 
quency 0=1 .2  eV=0.044 a.u. as a function of the photoelectron kinetic 
energy E ,  . 

To summarize, we can say that the smaller the frequency 
w and the larger the amplitude F ,  the narrower the angular 
distribution becomes with respect to the plane of polarization 
of the radiation. In the tunneling limit the width of the angu- 
lar distribution is equal to w l f i  (Ref. lo), whereas in the 
case of barrier-suppression ionization it is on the order of w 
(as a function of the angle $1. 

5. ELECTRON ENERGY DISTRIBUTION FOR BARRIER- 
SUPPRESSION IONIZATION 

In order to find the energy distribution of the outgoing 
photoelectrons we must identify the term with a specific 
number N of absorbed photons in the general expression (19) 
and integrate it over the solid angle d f l .  As a result we find 

Comparing (22) and (20) we see that the universal functional 
dependence remains unchanged, but the expression for t be- 
comes 

in place of Eq. (21). 
Figure 3 shows the energy spectrum of the outgoing pho- 

toelectrons for ionization by a circularly polarized field with 
amplitude F = 0.3 a.u. and frequency w= 1.2 eV=0.044 a.u. 
It can be seen that the distribution of the outgoing photoelec- 
trons in kinetic energy, 

is centered about the value equal to the oscillation energy 
F2 /2  w2 of an electron in the field of the circularly polarized 
electromagnetic wave (as in the tunneling limit; cf. Refs. 6 
and 10). The stronger the field and the smaller its frequency 
the broader the spectrum of the outgoing photoelectrons. 

In summation we can say that whereas in the tunneling 
limit the energy spectrum has a width of order F ~ / ~ / u ,  for 
barrier-suppression ionization it is of order l/w, i.e., quite 
large in atomic units. 

FIG. 4. Ionization probability per unit time due to a strong low-frequency 
field from the ground state of a hydrogen atom: 1) calculated from Eq. (25) 
for barrier-suppression ionization; 2) calculated from Eq. (17) for tunneling 
ionization. The broken vertical line corresponds to the field strength F,,, for 
which the energy level equals the peak of the effective potential barrier, i.e., 
for which above-threshold decay of the atom is possible classically. 

By integrating (22) over all energies of the outgoing 
electrons we find the ionization probability from the ground 
state of a hydrogen atom in the barrier-suppression regime 
(the frequency w drops out and the result is the same as that 
obtained for ionization by a constant electric field with am- 
plitude F):  

(25) 
Here the field strength F is measured in atomic units. In the 
limit F G  1 a.u. expression (25) goes over to the tunneling 
limit (17). 

The dependence of w on F according to (25) is shown in 
Fig. 4. The tunneling dependence (17) extrapolated to the 
region of fields corresponding to barrier-suppression ioniza- 
tion is shown in the same figure (FBsI is indicated by the 
broken line). It is clear that this extrapolation overestimates 
the ionization probability in the above-barrier region. This 
should be kept in mind in connection with the extrapolation 
of the tunneling formulas of Ref. 13 into the barrier- 
suppression region. In Fig. 4 the extrapolated part of the 
tunneling probability (17) is shown by the chain curve. 
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It should also be noted that the probability of barrier- 
suppression ionization per unit time as a function of the field 
strength F is approximately linear, according to Fig. 4. Note 
that this linearity also is found in numerical calculations of 
the ionization probability of Rydberg states of the hydrogen 
atom by a constant electric field in the same region." 

6. CONCLUSION 

Barrier-suppression ionization was first studied experi- 
mentally by Augst et al.,' who used a neodymium laser with 
wavelength 1.053 pm. The strength of the focused radiation 
reached values several times 1016 w/cm2. Depending on the 
location in the focus the ionization is sometimes tunneling 
and sometimes barrier-suppression. Hence for a detailed 
comparison of the experimental results with those predicted 
by theory we should integrate the results of the latter over the 
intensity distribution of the laser radiation in the focus. This 
point was first discussed by Kiyan and ~ra inov . '~  

Furthermore, the theory calculates the ionization prob- 
ability per unit time, whereas in the experiments the ioniza- 
tion saturates in the central part of the focus. For this reason 
we should use the well-known Wigner-Weisskopf formulas 
for the absolute ionization probabilities, which are simply 
related to the time and the ionization probability per unit 
time. Here it is also necessary to consider the time depen- 
dence of the intensity in the interaction of a short laser pulse 
with atoms. 

These complications were successfully overcome previ- 
ously for the case of tunneling ionization15 (see also the ana- 
lytical approach of Ref. 16). They can be extended without 
any modification into the barrier-suppression range. How- 
ever, they do not change the nature of the claims made above 
regarding the dependence of the angular and energy distribu- 
tions of the outgoing photoelectrons for barrier-suppression 
ionization by a low-frequency circularly polarized laser ra- 
diation field. 

These conclusions imply that the extrapolation of tunnel- 
ing formulas into the barrier-suppression regime overesti- 
mates the value of the ionization probability. The angular 
distribution of the photoelectrons is concentrated in the plane 
of polarization of the radiation. The typical width of this 
distribution in the tunneling case is w/ fi, and in the barrier- 
suppression case w. The energy spectrum has a maximum for 
photoelectron energy equal to the oscillation energy F2/2w2 
in a circularly polarized field. The spectral width in the tun- 
neling case is F3I2/u and in the case of barrier-suppression 
ionization is l/w. 

Note that in accordance with the result of Ref. 17 the 
inclusion of the Coulomb potential in the time-dependent 
part of the wave function of the final state via the Keldysh- 
Faisal-Reiss approximation implies that the maximum in the 
photoelectron energy spectrum shifts toward lower energies 
by an amount w 2 / ~ .  For above-barrier fields this shift is of 
order w2. It is small in comparison with the oscillation en- 
ergy F2/2w2. 

The analogous results in the case of linear polarization 
require more work, since in the Keldysh-Faisal-Reiss ap- 
proximation for the ionization probability sums of products 
of Bessel functions (the so-called generalized Bessel 
functions18) occur. Consequently, we first need to develop 
the asymptotic representations of these functions and derive 
formulas analogous to Eq. (18) of the present work for ordi- 
nary Bessel functions. We are currently engaged in this task. 

In conclusion, we express our gratitude to S. P. 
Goreslavskii, N. B. Delone, and H. Reiss for valuable advice 
in connection with the present work. 
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