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We develop a quantum theory of laser light noise in nonlinear waveguides with thermal dielectric- 
function fluctuations. The laser light noise is a manifestation of the interplay of the quantum 
noise, the radiation damping and the thermal noise. Quadrature squeezing of laser light in nonlinear 
waveguides shows up only at a short distance and below a threshold intensity. Increasing 
the incident intensity brings a transition from a squeezed state to a nonclassical state. O 1995 
American Institute of Physics. 

The wave nature of light leads to the dispersion of laser sorption of a photon can be omitted. The Hamiltonian of the 
pulses in fibers, and the particle nature of light gives rise to coupled system reads 
the quantum noise of laser light. Thermal scattering from 
fibers produces the energy loss and thermal noise of laser 1 1 

d r  - B* + - (ED) + - E ~ ~ ( ~ ) E ~  : + H e ,  (1) .=:I [ 
light. The desire to go beyond the intrinsic limits has largely 2 ~ o  2 4 I 
driven the development of optical communications theory. 
Hasegawa and Tappert proposed a theory of optical solitons 
in nonlinear fibers.' The optical solitons occur owing to the 
cancellation of the group velocity dispersion by the Kerr 
nonlinearity and so propagate without distortion. The 
squeezed state of light in nonlinear fibers has been an active 
theoretical subject and has been observed in a propagation 
distance.' The squeezed state has less quantum noise in one 
quadrature than a coherent state, and squeezing arises due to 
self-phase-modulation. The author has established the photo- 
nic superguiding theory in waveguides of a self-defocusing 
n ~ n l i n e a r i t ~ . ~  In the superguiding state Rayleigh and Bril- 
louin scattering are overcome by the virtual Raman scatter- 
ing, so that the photons propagate without thermal scattering. 

The present optical fibers are almost exclusively made 
from materials with a self-focusing nonlinearity. Thermal 
scattering exists inevitably in these fibers. Thermal scattering 
originates from thermal fluctuations in the dielectric function 
of fibers. The scattering loss limits the propagation distance 
of laser light in fibers. The thermal amplitude noise degrades 
the signal. The thermal phase noise tends to erase the coher- 
ence of laser light and therefore is most dangerous. To gen- 
erate squeezed light in nonlinear fibers, first one must know 
how large the noise of thermally scattered laser light is and 
what factors influence squeezing. This paper is devoted to 
the theoretical study of these problems. 

We consider a cylindrical dielectric waveguide, whose 
core is occupied by an isotropic dispersive crystal with a 
Kerr nonlinearity. The z axis coincides with the waveguide 
axis of symmetry. A linearly polarized coherent light field is 
normally incident on the end face z = 0  of the core at the time 
t=O. The high-frequency dielectric constant of the core is 
larger than that of the cladding, so that the incident field 
excites a guided wave field in the waveguide. The object 
under study is a coupled system consisting of a crystal in a 
volume V and the field in the crystal. The central frequency 
of incidence is assumed to be well below the electronic tran- 
sition frequencies but well above the optical phonon frequen- 
cies. With this assumption, the electron and multiphonon ab- 

where : : denotes normal ordering, X(3) is the third-order 
nonlinear susceptibility, and Hc represents the crystal Hamil- 
tonian. The electric displacement D noninstantaneously de- 
pends on the electric field E in the form 

There are fluctuations in the dielectric function &(r,t ,~),  
which are activated thermally or optically. When the incident 
intensity of light is below the threshold of stimulated Bril- 
louin scattering, the crystal deviates slightly from equilib- 
rium and thus the dielectric function has only thermal fluc- 
tuations. Near the equilibrium state of the crystal, the 
dielectric function can be expanded as 

The dielectric function ~ ( t - r )  in the equilibrium state is 
position-independent and invariant under time translation, 
and its Fourier transformation 40) represents the material 
dispersion. Here Se(r,t) is the fluctuation in the dielectric 
function due to thermal variations in the temperature and 
thermal vibrations in the crystal, and the delta function &t 
-7) exhibits the instantaneous relation between the electric 
displacement and the fluctuation. Thermal variations in the 
temperature give rise to elastic Rayleigh scattering, and ther- 
mal vibrations in the crystal lead to spontaneous Brillouin 
and Raman scattering. 

In order to quantize the nonlinear guided-wave field, it is 
necessary to introduce a suitable orthonormal basis in the 
field space. In the Coulomb gauge, we choose the set of local 
plane-wave modes as the bask4  The wave vector k of a local 
plane-wave mode is separated into k=K+Q, where K and Q 
are the components parallel to and transverse to the z axis. 
The axial wave vector K is real everywhere. Q is real in the 
core but imaginary in the cladding. The local plane waves in 
the cladding are evanescent waves and diffraction effects are 
eliminated. The waveguide satisfies the weak-guidance ap- 
proximation, so that the local plane waves in the core are 
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paraxial waves with Q + K .  The axial wave number K is a 
function of the incident frequency o, and K ( o )  represents the 
waveguide dispersion. The group velocity dispersion consists 
of the material dispersion and the waveguide dispersion. In 
the rotating-wave approximation, the nonlinear term in the 
Hamiltonian (1)  is quantized in the chosen basis as 

where k ,  =K? Q, a =  1,2 characterizes two polarization di- 
rections, and eu(k) is the polarization unit vector. The opera- 
tor a l ,  creates a photon with wave vector k and polarization 
a, and % is the frequency of this photon. Let SE(q,t) denotes 
the spatial Fourier transform of SE(r,t). Consequently, the 
interaction term in the Hamiltonian (1)  reduces to 

t 
X [ a K + Q + q , a ~ a ~ + Q , a ~ ~ ( ~ , t )  +H.c-I- (5) 

We require that the nonlinear Hamiltonian (4)  describes the 
quantum optical effect and the interaction Hamiltonian (5) 
reflects the thermal scattering effect. 

Further treatment requires a quantum statistical descrip- 
tion of photons in the core of the waveguide. In Eq. (4), the 
two photons created by the operators a: , have the same 

2 ,  

frequency W K + Q  and the same polarization a. Such photon 
pairs have perfect time coherence. The quantum optical ef- 
fect originates from the quantum time coherence of the pho- 
tons. The operator product ak+ ,,.ak- ,,just reflects the quan- 
tum time coherence of the photons and therefore it needs to 
be handled by the quantum statistical theory. However, the 

t two photons created by the operators and 
t 

a k - - k l , ~ 2  have unequal frequencies and polarizations. Such 
photon pairs are statistically independent and have no tem- 
poral coherence. The operator product ak+ +kr,alak- - k T ,  u2 

represents the incoherent correlation of photons and there- 
fore has classical behavior. The operator product 
ak+ +k t ,u la  k- - kr ,u2 is most naturally replaced by the product 
ak+ + k f  ,al ak- - k f  ,u2 of coherent state variables. In Eq. (4 )  
we introduce the parameter IK+Q by 

IK+Q can be regarded as the complex intensity of the inci- 
dent field at frequency W K + Q  The nonlinear Harniltonian 
(4) is therefore written in the form 

where WK+Q = 9 X ( 3 ) ~ K + Q / 1 6 ~ ~ O ~ 3 / 2 ( ~ K + Q ) .  Under the 
weak-guidance approximation, the two operators U L , ~ , ,  in 
Eq. (7) must be regarded as equivalent. 

In Eq. ( S ) ,  we must differentiate the scattering process 
associated with q=O from that associated with q f  0 .  In the 
q=O scattering process, the number of core photons remains 
unchanged but their phases are changed. The crystal in this 
case is characterized by a c-number Se(t)=Se(q=O, t ) .  In 
the q#O scattering process, a core photon is annihilated by 
the operator U K + Q , ~  and a thermal photon is created by the 

t operator aK+Q+q,u , .  The thermal photon escapes out of the 
core with a certain probability, which accounts for the radia- 
tion damping. The thermal photons represent the amplitude 
noise in the guided wave field, and of course they can be 
described classically. When the operators of thermal photons 
are replaced by the coherent state variables, the radiation 
damping corresponds to the mechanism in which a core pho- 
ton can lose energy by creating a crystal quantum. The crys- 
tal in this case is characterized by a q-number S ~ ( q , t )  
= i ~ ( ~ ) [ b : ( t )  - b - , ( t ) ] ,  where the operator b: creates a 
phonon with wave vector q .  It is necessary to point out that 
the phonon here is an energy quantum in the collective 
propagation of temperature fluctuations and crystal vibra- 
tions. Now the phonons represent the amplitude noise in the 
guided wave field. If we introduce the coupling parameter 
f ~ + ~ , u ( q )  by 

then the interaction Hamiltonian (5) assumes the form 

where ~ K + Q  = W ~ + Q ( ~ T ) ~ / ~ E ( W ~ + Q )  V .  The prime on the 
integral symbol means that the lower limit of q is +O. At this 
point the quantized Hamiltonian of the coupled system is 
obtained as 
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where o ( q )  is the phonon frequency. 
We only need to investigate the noise in a local plane- 

wave mode. The Hamiltonian (10) is the starting point in our 
derivation of the quantum Langevin equations for this mode. 
The mode index (K+Q,cr) on the relevant quantities is 
dropped in the following. For the weak interaction, one can 
make the first Markov approximation:5 f ( q )  = d m ,  
where y is independent of wave vector q  and D ( q )  is the 
density of phononic states. This approximation yields the 
Heisenberg equation of motion for the photon operators 

Here is the damping constant of radiation, b ( t )  is the 
amplitude fluctuation operator defined by 

S 4 t )  produces the phase fluctuations in the guided wave 
field. These three quantities characterize the thermal scatter- 
ing effect of core photons by the crystal. The parameter 
7=2iWI characterizes the quantum optical effect. If there 
were no thermal scattering terms in Eq. ( l l ) ,  Eq. (11) would 
generate an ideal quadrature squeezing of core photons with 
a squeeze parameter given by r = 12i WIt 1 .  Ideal squeezing is 
independent of the incident light intensity. In the presence of 
thermal scattering, the squeezing effect is dependent on the 
incident light intensity. The thermal scattering effect always 
tends to destroy the quantum optical effect, and so there is 
competition between the two effects. Equation (11) can be 
called a quantum Langevin equation only after the statistical 
properties of the random variables b ( t )  and S 4 t )  are given. 
b ( t )  and S 4 t )  are statistically independent. b ( t )  is supposed 
to have the property of quantum white noise, i.e., 
( b t ( t ) b ( t  I)) = NS(t - t ' ) ,  where (...) denotes the ensemble 
average for the crystal. The average ( S e ( t )  S e ( t f ) )  is station- 
ary but not delta-correlated. 

In order to solve Eq. ( l l ) ,  we change to a rotating frame 
with a=e-'"'a,. The photon operators a r ( t )  and ar( t )  in 
the rotating frame possess the Fourier transform variables 
a?( - f l )  and ar(R) .  In frequency space Eq. (11) supports 
the formal solution 

where b ( R )  and Sdfl)  are the Fourier transformations of 
b ( t )  and S 4 t ) ,  respectively. In the last equation, the first 
term represents the amplitude fluctuations in the guided 

wave field, and the second term originates from the phase 
fluctuations in the guided wave field. Squeezing can also be 
interpreted as the reduction of the quantum noise in the field 
amplitude to below the coherent state level. Therefore, the 
first term is connected with the squeezing effect but the sec- 
ond term is not. We need to compute the covariances 
( a r ( f l ) , a r ( f l  ')) and (a!( - f l ) , a r ( R  ' )) from the solution 
(13). In calculating, one has to make the decoupling approxi- 
mation. The decoupling approximation is based on the fol- 
lowing idea: in a spontaneous scattering process, the phase 
of the guided wave field can respond only slowly to a change 
in the dielectric function configuration. The phase fluctua- 
tions in the guided wave field diffuse in an average back- 
ground of the dielectric function. Using the decoupling ap- 
proximation, we can write 

where (SE(f11)Se(f12))=S(f11)@f11 +a2) and S ( f l l )  is the 
spectrum of the random variable S 4 t ) .  When the incident 
intensity of light exceeds the threshold of stimulated Bril- 
louin scattering, the decoupling approximation is invalid. In 
a stimulated scattering process, the phase of the guided wave 
field responds adiabatically to a change in the dielectric func- 
tion configuration. Therefore we can observe phase jumps or 
phase waves in the guided wave field.6 

We adjust the incident intensity of light so that the pa- 
rameter I4=12i WII is less than l j / 2 .  In this case the vari- 
ance of the photon operator a r ( t )  is calculated to be 

The double integrals over f l  and fl' in Eq. (15) are concen- 
trated mainly on the curve f l f l '  = 1 A2/4 in the f l -  - fl' plane. 
The integral over f l l  can therefore be separated from the 
double integrals. This is exactly what the decoupling ap- 
proximation demands. Differentiating Eq. (15) with respect 
to t  yields a rate equation for the variance ( a r ( t ) , a r ( t ) ) .  The 
first term in Eq. (15) gives the variance without phase fluc- 
tuations. Obviously there are no phase fluctuations at the 
initial time t=O. This initial condition requires that 
( a r ( f l ) , a r ( R f ) )  be an even function of f l + f l f .  The above 
analysis also applies to the covariance ( a f ( t ) , a , ( t ) ) .  The 
variance and covariance of the photon operators a: ( t )  and 
a r ( t )  are then 
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where p = 2 g 2 ( [ ~ ~ ( t ) ] 2 ) / 1 d .  In the absence of phase fluctua- 
tions, the variance and covariance are stationary. Now phase 
fluctuations destroy this stationarity. As shown in Eq. (16), 
the variance decreases exponentially with time, whereas the 
covariance increases. The physical mechanism for this is as 
follows. Phase fluctuations diffuse with time. There are in- 
terference effects in the diffusion process. The interference 
effect for the variance is destructive but the interference ef- 
fect for the covariance is constructive. 

The photon operators aJ  and a ,  represent the non- 
Hermitian amplitudes of the local plane-wave mode. The 
Hermitian amplitudes of the local plane-wave mode must be 
expressed in terms of the quadrature phase operators X and Y 
defined by a , = e i e ' 2 ( ~ +  iY) ,  where 0 is the phase of 7. The 
noise in the local plane-wave mode is therefore described by 
the normally ordered variances of the quadrature phase op- 
erators 

where normal ordering simplifies the formulae. The thermal 
phase noise accumulates with time and /3 is its cumulative 
rate. In the last equation, N characterizes the thermal ampli- 
tude noise and pt measures the thermal phase noise at time t .  
In the absence of the thermal noise, Eq. (17) represents the 
effect on the quantum noise of the radiation damping. Since 
the local plane-wave mode under study is arbitrary, the noise 
in the guided wave field is a manifestation of the interplay of 
the quantum noise and the radiation damping, amplitude 
noise and phase noise due to thermal scattering. The larger 
the noise, the smaller the coherence. Because of the thermal 
phase noise, the noise in the guided wave field increases 
exponentially with time, so that all coherence is erased. From 
many experimental facts,2 we find that ~ < 1  holds below 
room temperature. The thermal amplitude noise can be ne- 
glected in comparison with the quantum noise. P has a cal- 
culable expression 

where the overline denotes the spatial average in the volume 
V. Id is expressed in terms of the absorption coefficient cu of 
the waveguide as I d = a v g ,  where v, is the group velocity of 
the guided wave field. When a=0.2 dB/km and v,=2.1. 10' 
m.s-' lA=0.967.10~ s-'. Given that w = 1 . 2 1 5 . 1 0 ~ ~  s-l, 
E(o)=2.25 and ( S ~ ( r , t ) S ~ ( o , t ) )  = 1.20 . one 
finds P=1.81.105 s-l. If the propagation distance z is 
smaller than 100 m or the transit time t is less than 
4.762. s, P t < l .  The thermal phase noise can be ignored 
in this case. 

When the thermal noise can be omitted, Eq. (17) be- 
comes 

The condition for squeezing is that the normally ordered 
variance in one quadrature phase be less than zero. If there 
were no thermal scattering, perfect squeezing in one quadra- 
ture phase would be achieved with a normally ordered vari- 
ance of - 114. We know that 14 is directly proportional to the 
frequency component of the incident light intensity. There is 
a threshold intensity at which Id= 1412. AS shown in Eq. 
(18), below the threshold intensity squeezing increases with 
the incident light intensity. At the threshold intensity, the 
maximum squeezing in the Y quadrature phase is attained 
with the normally ordered variance of -118 while the X 
quadrature phase is infinitely unsqueezed. Above the thresh- 
old intensity, we find that the normally ordered variance in 
each quadrature phase is positive. In this case the guided 
wave field exhibits no squeezing, but it is in a nonclassical 
photon state due to the nonlinear effect. Increasing the inci- 
dent light intensity brings a transition from a squeezed state 
to a nonclassical photon state. The squeezed state here is not 
a minimum uncertainty state because of the radiation damp- 
ing. As the propagation distance increases, the thermal phase 
noise becomes nonnegligible. The thermal phase noise rap- 
idly destroys these two nonclassical photon states by deleting 
phase information. When the guided wave field loses all 
phase information, one can show that the state of the guided 
wave field is a superposition of number states. The guided 
wave field in this superposition state has manifestly classical 
behavior. 

In conclusion, we have developed a quantum theory of 
laser light noise in nonlinear waveguides with thermal 
dielectric-function fluctuations. A method for quantizing the 
nonlinear guided-wave field is presented, and a quantum sta- 
tistical description of thermally scattered photons is given. 
We have derived the quantum Langevin equations in the 
photon operators, thereby finding a time-dependent analytic 
solution of laser light noise. The laser light noise is a mani- 
festation of the interplay of the quantum noise and the radia- 
tion damping, amplitude noise and phase noise due to ther- 
mal scattering. Quadrature squeezing of laser light in 
nonlinear waveguides shows up only at a short propagation 
distance and below a threshold light intensity. Increasing the 
incident light intensity causes a transition from a squeezed 
state to a nonclassical photon state. Increasing the propaga- 
tion distance induces the guided wave field to enter a state 
having manifestly classical behavior. Since our theory does 
not involve the propagation form of the guided wave field, 
the above conclusions apply to continuous-wave, pulse and 
soliton propagation. 
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