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The Rayleigh scattering spectrum of a spin-polarized alkali-metal gas near the D lines is 
investigated. It is shown that in a sufficiently dense gas mixture the spectral scattering intensities 
depend nonlinearly on the polarization of the gas. The polarization can be determined from 
the ratio between the scattering intensities of the right- and left-circularly polarized 
waves. O 1995 American Institute of Physics. 

1. INTRODUCTION 

High-pressure spin-polarized 3 ~ e  has been obtained in 
several laboratories in recent The helium nuclei are 
polarized as a result of spin-exchange collisions with opti- 
cally polarized rubidium atoms with density between 
0.5 X 1015 and 1 x 1015 ~ m - ~ .  One-hundred percent polariza- 
tion of the electron spin of the rubidium atoms is achieved 
under those experimental conditions. In this paper we wish 
to focus attention on the special features of Rayleigh scatter- 
ing in a similar mixture near the D resonance lines of the 
alkali metal. 

Near resonance, the optical polarizability of the mixture 
and the integrated scattering intensity are determined by the 
small impurity of alkali-metal atoms. The presence of a 
buffer gas at high pressure allows hypersonic waves to 
propagate and causes a Brillouin triplet to be observed. If the 
alkali-metal atoms are polarized, the medium has strong op- 
tical anisotropy (gyrotropy). The gyrotropy of the medium is 
proportional to the polarization of the gas. Near each of the 
D lines the polarization of the atom has a large antisymmet- 
ric component, whose magnitude is of the order of the scalar 
polarizability. This makes it possible to observe antisymmet- 
ric scattering, whose spectrum contains direct information on 
the spin relaxation processes in the gas mixture. 

The total and differential cross sections for light scatter- 
ing on an arbitrarily polarized atom were obtained in a recent 
investigation by Agre and ~ a ~ o ~ o r t . ~  In our work we con- 
sidered the Rayleigh scattering spectrum of a partially polar- 
ized gas of alkali-metal atoms in the presence of a buffer gas 
at a high pressure. Gyrotropic anisotropy creates a peculiar 
picture in the Rayleigh scattering spectrum of the polarized 
gas. The structure of the spectrum varies considerably with 
the polarization of the gas. The case of a dense gas (gas 
mixture), in which the spectral scattering intensities are non- 
linearly dependent on the polarization, unlike the case of a 
low-density gas, in which this dependence is always linear, is 
most interesting. The polarization of the gas is related di- 
rectly to the ratio between the scattering intensities of the 
right- and left-circularly polarized waves and can be deter- 
mined from this ratio. 

2. FLUCTUATIONS OF THE DIELECTRIC CONSTANT OF A 
SPIN-POLARIZED GAS 

As we know,5 the Rayleigh scattering spectrum is deter- 
mined by the space-time Fourier expansion of the correlation 
of the dielectric constant tensor 

Here w=w-w, and q=kr - k are the changes in the fre- 
quency and the wave vector associated with the scattering of 
light, Seik is the fluctuation of the dielectric constant tensor, 
and u and ur are the unit vectors of the polarization of the 
incident and scattered waves. 

The correlation (1) can be calculated using the explicit 
form of the density matrix of a spin-polarized gas with spin 
112 (Ref. 6): 

where n(v) is the Maxwell distribution function with respect 
to the velocities, i and &i ( i = x , y  , z )  are Pauli operators, and 
the absolute value of the polarization vector P gives the po- 
larization of the atoms. 

In matrix notation the polarizability tensor near a D line 
has the form 

where 

d2 
" O = 3 h ( ~ ~ - i r / 2 )  

is the scalar polarizability, d is the reduced matrix element of 
the atomic transition, Aw is the detuning from resonance, r 
is the pressure-broadened linewidth, and eikl is the unit anti- 
symmetric tensor. For the D l  line ( 2 ~ , 1 2 - 2 ~ , 1 2 )  we have 
P= 1, and for the 0 2  line we have P= -112. Averaging (3) 
with the density matrix (2), for the dielectric constant cik we 
obtain 

This is essentially the dielectric constant tensor of a gyrotro- 
pic medium, in which the gyration vector (to within a con- 
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FIG. 1. Geometry of the scattering of circularly polarized waves. 

stant factor) is the polarization vector P. Circular dichroism 
and optical rotation appear in such a medium. 

The fluctuations of the density Sn and of the polarization 
vector SP are statistically independent, since the polarization 
refers to a single particle [see (2)]. Then 

+~2~2eikjelrnr(S~jS~r)wq (5) 

where hik= aO(Sik+ ipeikjP?)), IZ is the mean atomic den- 
sity, and P(O) is the mean polarization vector of the gas. Both 
terms in (5) are proportional to IZ, since in an ideal gas 
(SnSn)m ii and (SP,SP~)~S,~(IZ)-'. 

To calculate the correlation functions it is sufficient to 
know the single-moment correlators and the equations de- 
scribing the dynamics of the fluctuating quantities, which are 
n and P in our case. The spin of the alkali metals is known to 
relax fairly slowly under the conditions described a b ~ v e . " ~ ' ~  
We can therefore set P=O. Density fluctuations can be de- 
scribed using the ordinary hydrodynamic equations without 
taking into account the spin degrees of freedom. 

3. SCAlTERING ON DENSITY FLUCTUATIONS 

If the polarization unit vector of the incident wave is u, 
the intensity of the scattered wave with polarization u', 
which is specified by the first term in (5), equals 

where 

Since the medium of interest to us has circular birefringence, 
it is convenient to work with circularly polarized waves. Fig- 
ure 1 illustrates the scattering geometry. The unit vector 
e,(e,) is parallel to the wave vector k of the incident wave. 
The wave vectors of the incident (k) and scattered (k') 
waves form the scattering plane, and 8 is the scattering angle. 
The unit vector el is normal to the scattering plane and par- 
allel to the vector k'k. The unit vectors e, and e; were cho- 
sen so that (el ,e2) ,k and (el ,el) , k' form right-handed sets 
of three vectors. We define the unit vectors of the right and 
left circular polarization in the following manner: 

The expressions for the amplitudes have the form 

1 
B R R = 2  ( l+cos  +ielPo sin 8 , I 

1 
BRL=2  (1-cos 8)+ - 

2 
-ielPo sin 0 , I 

1 P [(k+k1)P0 
B L L z Z  ( l+cos  Q ) - -  - ip.  P? sin 8 , 1 

1 
BLR=Z (1-cos 8)- 

2 
+ielPo sin 0 . I 

Let us discuss in greater detail two special cases, Po 11 k and 
Po I k. 

In the former case 

When the spins are completely polarized along the z axis, for 
the D 1 line (P= 1) we have (Po = 1) BLL = BLR =0, and the 
left-polarized wave, as would be expected, does not interact 
with atoms and, of course, is not scattered. 

As is seen from (8), at small scattering angles (6k0)  the 
intensity of the depolarized part of the scattering 
(R+L,L+R) decreases as 84. The main contribution to the 
scattering is made in this case by its polarized part 
(R+R,L+L). 

In the case of Po I k, it is convenient to work with linear 
polarization and to assume that Po is parallel to el.  The ex- 
pressions for the amplitudes B have the simple form 

BHH=cos 8+ iPPo  sin 8, BHv=O, (9) 

where the subscripts V and H indicate (according to the con- 
vention that has evolved) vertical and horizontal polarization 
of the waves relative to the scattering plane. 

We note that all the scattering amplitudes B are propor- 
tional to PPo,  the incomplete limiting polarization of the gas 
for IPI<l. 

4. SCAlTERING ON POLARIZATION FLUCTUATIONS 

The intensity of a wave scattered on polarization fluctua- 
tions can be described in the form 

where A, = (ul)*eikjuk, i.e., A=[ul*u]. Calculating the 
single-moment correlation (SPjSPr)o using the density ma- 
trix (2), we obtain 
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As a result, the intensity of the scattering on polarization 
fluctuations is written in the form 

The vector quantities A for the four cases considered in the 
preceding section have the form 

k+ k t  A --- j - -  
RR- :[ k el sin 8 , I 

k- k' A ---  i- 
- [ k 

+el  sin 8 , I 
Next, as in Sec. 3, we consider two special cases: Po 11 k and 
P O I  k. In the former case 

If there is 100% polarization (Po= +l ) ,  for the D l  line we 
have 1fL=IfR=0,  i.e., the left-polarized wave is not scat- 
tered at all (compare the analogous formulas in Sec. 3). For 
Po= - 1 the right-polarized wave is not scattered. For Po 11 k 
these assertions are perfectly obvious without calculations. 

For Po I k and Po 11 e, we have 

5. SPECTRUM OF THE SCAlTERED LIGHT 

The spectrum of the light scattered on density fluctua- 
tions is given by the correlation (SnSn),, rn f"(w), and the 
spectrum of the light scattered on polarization fluctuations is 
given by the correlation (SPSP),, rn fP(w). In a low- 
density paramagnetic gas without a buffer gas both compo- 
nents have a Doppler contour, i.e., there is no way to distin- 
guish between them spectrally. 

The other limiting case of high buffer-gas pressures is of 
great interest. Under the condition q l = l k t - k l l ~ l ,  where 1 
is the mean free path, the hydrodynamic approach is appli- 
cable. In this case the spectrum of the scattering on the den- 
sity fluctuations is the well-known triplet. The width of the 
central Rayleigh component y,, is determined by the thermal 

conductivity of the mixture and the diffusion of the paramag- 
netic atoms, and the widths of the Brillouin components are 
determined by the damping of the sound.* 

Polarization fluctuations are local and do not propagate 
in a Boltzmann gas. Therefore, the spectral function fP(w) in 
a high-pressure mixture is a Lorentzian profile at an undis- 
placed frequency 

whose width is determined by the diffusion of the paramag- 
netic atoms and the relaxation of the spin momentum 

rSD. 
Here D is the diffusion coefficient of the heavy para- 

magnetic gas in the light buffer. The depolarization (spin 
destruction) constant rsD depends on the composition and 
pressure of the gas mixture.' Thus, the central component is 
a sum of two Lorentzian contours with different widths. Let 
us examine the ratio between the line intensities in the triplet 
for the two special cases near the D 1 line (P= 1). 

For Po 1 1  k the total spectral intensities can be written in 
the form 

The values of ILL and ILR are obtained from (17a) and (17b) 
by changing the sign in front of Po .  

It is seen from (17b) that at small scattering angles, scat- 
tering on polarization fluctuations dominates the depolarized 
scattering. 

For Po I k and Po 11 el only polarization fluctuations ap- 
pear in the depolarized scattering. In this case 

6. DISCUSSION OF RESULTS 

The picture of the Rayleigh scattering in a paramagnetic 
Boltzmann gas with optically induced polarization Po is the 
sum of the scattering on density fluctuations I,,(@) and the 
scattering on spin-polarization fluctuations Ip(m), 
I(w)=In(o)+Ip(w), where I,(w) and Ip(w) are given by 
Eqs. (6) and (10). As follows from these equations, the 
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frequency-integrated scattering intensities of the circularly 
polarized waves are linearly dependent on the polarization of 
the gas Po ,  and their ratio at small scattering angles equals 

Thus, it is convenient to determine the polarization of 
the gas Po from this ratio at small scattering angles. 

Let us now examine the dependence of the spectral com- 
position of the scattered light on the polarization of the gas 
P o .  When the polarization vector Po is perpendicular to the 
scattering plane ( P O I  k, k'), the spectrum is described by 
Eqs. (9) and (15). It follows from these equations that 

1) at small scattering angles (&0) the scattering spec- 
trum does not depend at all on the polarization of the gas, 
i.e., I,,,(:)= fn(w), I ~ ~ ( ~ ) = I ~ , , ( w ) = ~ ~ ( w ) ,  and 
I,,(~)=cos efn(w)+fn(w); 

2) in the case of scattering at a right angle 8=90°, only 
ZHH(~)=pi fn (w)  + (1  - p i )  fP(w) depends on the polariza- 
tion, and this dependence is nonlinear. 

In the limiting case Po+l ,  the polarization fluctuations 
"freeze," and only the density fluctuations which are isotro- 
pic in angle remain: IHH(w){PO+ 1)+ fn(w). 

Let us consider the second case, in which PO 11 k [see 
Eqs. (8) and (14)]. As is seen from these equations, the spec- 
tral scattering intensities ZRR(w), IRL(w), ILR(w), and ILL(w) 
include both linear and quadratic functions of the polariza- 
tion Po. In the case of small scattering angles &0, the func- 
tions defining the dependence of the scattering spectrum on 
the polarization of the gas become very simple: 

~ ~ ~ ( w ) = ( l - p o ) ~ f n ( w ) + ( l - ~ : ) f ~ ( w ) ,  

ILL(w)=(l + ~ o ) ~ f n ( w ) + ( l  -pg)fP(w), (20) 

I R L = I L R = O .  

Equations (20) describe the redistribution of the scattered 
light in the spectrum as the polarization of the gas atoms 
varies. In an unpolarized gas (Po=O) the scattering is the 
sum of two equal components IRR =ILL =fn(w) + fP(w). In 
nominal units (when we set Jfn(w)dw=l and 
$fP(w)dw=l) the total intensity is equal to 4. In the limit- 
ing case of a completely polarized gas (Po=l)  ZRR=O, and 
ILL(w) = 4 f "(w), i.e., the integrated scattering intensity re- 
mained unchanged (equal to 4 in scaled units); however, the 
polarization fluctuations vanished and the density fluctua- 
tions increased in the scattering spectrum. Thus, polarization 
of the gas results, on the one hand, in "freezing" of the 
polarization fluctuations and, on the other hand, in alteration 
of the effective polarizability of the left-polarized (or right- 
polarized) atoms aeH= ao(l  ? Po) for the density fluctuations. 
We note that the quadratic dependence of the scattering spec- 
tra (20) on the polarization Po vanishes in the case of a 
low-density gas, in which the profiles of fn(w) and fP(w) 
coincide and are purely Doppler. This case corresponds to 
the condition ql*l, where 1 is the mean free path of the 
paramagnetic gas. 

Let us now evaluate the order of magnitude of the widths 
of fn(w) and fP(w), which reflect the relaxation processes of 
the density and spin-polarization fluctuations in the paramag- 

netic gas. In the dense-gas limit ( q l e l ) ,  the spectrum of the 
scattering on the density fluctuations fn(w) has the form of a 
well resolved triplet, and the scattering on the polarization 
fluctuations fP(w) produces a Lorentzian at an undisplaced 
frequency [see Eq. (16)l. 

The scalar triplet for scattering on density fluctuations is 
well known and consists of three Lorentzians in the case of a 
pure gas: a central Rayleigh component, whose width yn is 
determined by the thermal conductivity of the gas, and two 
Brillouin sound components [w= ?qu,, u:= (cplc,)(Tlm)], 
whose widths are determined by the damping of the sound. 
In the case of a mixture of gases, there is a second Lorentz- 
ian at an undisplaced frequency, whose width is determined 
by the diffusion coefficient of the scattering particle in the 
gas mixture.' 

Note that a sufficiently dense gas has a range of frequen- 
cies (w> yn) in which fP(w)=O and fn(w) = f n ( ?  qu,) # 0.  
Then Eqs. (20) give an intensity ratio which is nonlinear with 
respect to Po 

while at an undisplaced frequency (w=O), where 
fn(w) = fP(w) holds, we have 

Thus, the dependence of the scattering spectrum on the 
polarization of the gas can differ considerably in different 
regions of the spectrum. 

It is seen from the above equations that the polarization 
of the atoms and the spin relaxation constants can be deter- 
mined from the intensities of the scattering and its spectrum 
when the observation geometry and the composition of the 
working mixture have been suitably selected. The working 
mixture which is usually used in optical-polarization experi- 
ments consists of a Rb vapor with density from 0.5X 1015 to 
1 x 1 0 ~ ~  cmP3 and He at pressures from 3 to 10 atm,') i.e., 
NHe= 1 X lo2' to 3 X lo2' ~ m - ~ .  Using the data in Ref. 8 and 
taking the gas-kinetic radius of rubidium to be rRb=3rH,, for 
the mean free path of the rubidium atoms in a mixture with 
helium we obtain the estimates 

Also, q =  2k sin 8/2-k8--10~8 cm-'. As 8 is varied from 
90" to 8=0.1°, the diffusive part of the width of the undis- 
placed line varies from -10' s-' to lo2 s-'. With consider- 
ation of the data in Refs. 1, 2, and 7, at the parameters of the 
gas mixture indicated above the characteristic spin destruc- 
tion constant is rs,=103 s-'. Here the Rb+Rb and Rb+He 
collisions make approximately identical contributions. Other 
inert gases cause considerably faster destruction of spin po- 
larization. 

Thus, the observation of depolarized scattering permits 
determination of the spin relaxation constant. We note that 
polarization of the atoms is not required for this; therefore, 
the concentration of alkali-metal atoms can be increased sig- 
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nificantly, and the different mechanisms of spin relaxation 
can be distinguished. 
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''AS well as -100 torr nitrogen, which is of negligible importance. 
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