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The one-dimensional Schrodinger equation with a time-dependent potential of the form 
cul S(x - v t) + a2@x + v t), which admits an exact analytical solution, is studied. O 1995 American 
Institute of Physics. 

1. Quantum-mechanical systems that admit exact solu- 
tions are of great interest and attract the attention of theore- 
ticians (see, e.g., Ref. 1). Systems with a compact exact so- 
lution in the case of a Hamiltonian that depends nontrivially 
on time are especially rare. They include the well-known 
one-dimensional system with variable frequency? for which 
a solution can be obtained without making any approxima- 
tions (see also Ref. 3). 

Zhdanov and chikhachev4 studied the solution of a sys- 
tem consisting of oppositely propagating Sfunction poten- 
tials, i.e., a Hamiltonian with a potential of the form cu(S(x 
- vt) + S(x + vt)). Solutions were obtained explicitly, also 
without making use of any approximations. 

In Ref. 5 it was shown that the Schrodinger equation can 
be solved exactly with a considerably more general potential 
of the form a, S(x - vt) + a, S(x + v t), i.e., for a system that 
models oppositely propagating potential centers with differ- 
ent depths of the single bound state. The solutions obtained 
in Ref. 5 were used to describe ionization and charge- 
exchange phenomena. The work of ~ a ~ ~ e n ~  is also notewor- 
thy. There the results of Ref. 4 were rederived in part, and it 
was shown in addition that besides the symmetric bound 
state in a system of oppositely propagating Sfunction poten- 
tials there also exists an antisymmetric state. The results of 
Ref. 6 were also used to describe ionization and charge- 
exchange phenomena. 

It is probably hard to find any nontrivial time-dependent 
system admitting an exact solution other than those 
mentioned-the oscillator with a variable frequency and op- 
positely propagating Sfunction potentials. 

The present work is devoted to the study of the solutions 
of the Schrodinger equation with oppositely propagating 
Sfunction potentials. We will find, first, a solution corre- 
sponding to an oscillatory asymptotic form for the equation 
with a, = 3, and secondly, a solution of the Cauchy problem 
in the case cul#cu2 for Sfunction potentials moving apart 
from different points. These topics were not treated in Refs. 
4-6. 

2. Consider the Schrodinger equation in the following 
form: 

wave function of the particle, and the constant a character- 
izes the depth of the single bound state of a Sfunction po- 
tential at rest. 

Throughout we will use a system of units in which e = fi 
= m = l .  

In the case v = O  there is a complete system of eigenfunc- 
tions (see, e.g., Ref. 7): 

where k is the wave number characterizing the state of a 
particle which is not bound. 

In Refs. 4 and 6 solutions of (1) were studied corre- 
sponding to the bound state which goes over to (2) in the 
limit v+O. In this section we show that there exist solutions 
with an oscillatory asymptotic form that go over to (3) in the 
limit v 4 0 .  

Note that the solution (3) of Eq. (1) for v = O  can be 
found using a representation in the form of an incident plane 
wave and an outgoing wave. 

We proceed similarly in the present case of a time- 
dependent problem (v f 0), i.e., we set 

- 1 
Gk=t,bk+ - exp 
6 

For the outgoing wave & we find the following equation: 

Then we write z,= Ix*vtl and, as in Refs. 4 and 6 we set 

Here x and t are the space and time coordinates, 9 is the + ~ ~ ~ ) e ~ ~ " r p , ( z +  ,t)e-iux). (6) 
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Substituting (6) in (5) and using the expression 
cp,(z,t) =exp( - a,z + ia: t /2)  we arrive at the following sys- 
tem of equations: ( ' $ 1  [; q { c r ) ( a - a s )  exp - +.I2) .  exp - ( a , + . i ~ ) ~  I I 

+ C ? ) ( a - a , )  exp 

Equations (7) differ from the analogous system of equa- 
tions studied in Refs. 4  and 6, which describe bound states, 
only in being inhomogeneous. 

We transform (7) as follows: rewrite the summation in- 
dex s + ~ -  1  in the first term of the second equation and the 
second term of the first equation. We find the system 

(i:) [:' 
c j l ) ( a - a , ) e x p  - +cFla exp - ( a , - ,  

z {c:?a exp [ - :' ( ~ , - , + 2 i v ) ~  + ~ ; ~ ) ( a - a , )  1 
a ( i $ t j ]  exp[- q ( k + v ) ' ] .  Xexp - =-- 

Since these relations hold for arbitrary t ,  we must have the 
recurrence relation a,= a , - ,  + 2iv .  Hence we find 
a,= 2ivs +const, where the constant is determined from the 
condition that the right-hand sides of the equations be con- 
sistent. 

We set 

Then we have a,= - i ( l k l + v ) ,  a , =  - i ( l k l - v ) .  Consider 
the case k>O. 

The system (7) can be rewritten in the form 

a 7 [ c i " a + c p ) ( a - a , )  exp a ,  =- - i:' 2 i l  fi 

In order to get convergent series we must restrict our- 
selves to solutions c:')c:~) that vanish for negative s .  We set 
cc_l]=c&"=o. 

Only two equations of the system (9) are inhomoge- 
neous: 

Hence we find 

For s#O, 1  it follows from Eqs. (9) that 

Using (10) we find 

By virtue of the condition c?]=c&')=o the coefficients 
c:') with even s  and all ~ 5 ~ )  with odd s  vanish. For c:') 
with odd s  and cS2) with even s  we can find without diffi- 
culty from (10) that 

Thus, expression (4)  together with (6)  and the coefficients 
given by (11) provide the required solution. 

For negative k  (k<O) we must exchange c$~)++c:~) .  
It is of interest to note that in Eq. (6) ,  which when added 

to the plane wave represents the solution of ( I ) ,  terms inevi- 
tably appear corresponding to waves converging toward the 
moving Sfunction centers. The characteristic momentum 
p,= Ikl - v ( 2 s  - 1 )  for large s  is negative. 

In the limit v+O, however, the solution only corre- 
sponds to a single diverging wave. This solution goes over to 
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(3) in the limit v+O, which can be seen most easily by 
setting a,= - ilkl. This leads to expressions for c:'), cS2) 
such that the series (6) is easily summed. 

We note further that it is of interest to clarify the ques- 
tion about the completeness of the system of functions found 
in this section, along with the functions corresponding to the 
bound state (see Ref. 6). 

In the case v =0, as is shown in Ref. 7, the system of 
functions (2) and (3) is complete. 

3. In this section we consider an equation more general 
than (1): 

As we have noted, this equation models a system of two 
oppositely propagating single-level Sfunction potential ten- 

ters whose depths may differ. 
To specify the Cauchy problem we must provide a value 

of '4' at the initial time: 

*(x,t)lt=t,>o-cp(X). (13) 

The problem consisting of Eqs. (12) and (13) is a gen- 
eralization of that solved in Ref. 4. Here, however, we have 
a#a2 and to#O, i.e., the Sfunctions are moving apart but 
not from the origin, and finally in the present case cp(x) need 
not be symmetric: q(x) + q(-x). 

It is very convenient to look for a solution in the form: 

where 

ixs 
+ rp(-s) expjz)]. 

X{G21(s,y )x,(s) + G 2 2 ( ~ 7 ~  )x~(s) ) .  (17) 

Here 

ivts ivts 

ivts 
x2(s)= P(S) exp(=j + v(-s )  e x p j - z ) .  

In addition to the variables of integration y ,s  the dependent 
functions G, can also depend on t and to, and of course on 
the parameters a , ,  02, v . 

It can easily be shown next that 

- S(x - vt) 
- ( yo) J;ds[exP[-] 
JGqFiJ exp iv2  - 

Thus, by substituting Eqs. (14)-(17) in (12), equating the 
coefficients of q x  ? v t) , and using the arbitrariness of the 
functions x1,,(s) we arrive at the following equations for 
Gik : 

. dGll  2iv2tto s + i y  
- a1Gl1+a1  exp - 1  -- +2ivt  - 

dy t-to 

where the following boundary conditions should be applied: 
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The system of equations (18) and (19) splits into two 
independent systems of equations. The solution can be found 
explicitly after some simple manipulations and written using 
Bessel functions: 

where 

The boundary conditions (19) yield the following ex- 
pressions for the constants A 

f f 1 + ~ 2  
- (v t+s )  --- 

2 .  

Similarly we find 

I 
G22=5p[A3J1-v(~)+A4Jv-l(z) l ,  

Glz=,$"i [A3J-v(z)-A4Jv(z)l, 

Thus, Eqs. (14)-(17) together with (20)-(23) completely 
solve the problem at hand. 

This solution holds for t 2 t 0 2 0 .  If these conditions are 
violated, then the quantity v = vtlt - to can become nega- 
tive, as a result of which 5 increases exponentially as a func- 
tion of y and the factor e ~ ~ [ i ( s + i ~ ) ~ / 2 ( t - t ~ ) ]  becomes inad- 
equate to ensure the convergence of the integration Jm ... dy, 
because the Bessel functions of complex argument can grow 
too rapidly. Nevertheless, this solution can be used even in 
the case of converging Sfunction potentials (to<O). For this 
it suffices to set v ' = - v >0,  i.e., to take the "separation" 
velocity negative. In this case we have v = - v 'tlt - t o 2 0  
for O>t>t,. That is, these relations will hold for S O .  To 
evaluate *(x, t) 1 ,,, we must calculate *(x,t) 1 ,=, and then 
use the relations obtained above in this section, which sim- 
plify drastically for to=O. 

To study ionization and charge-exchange processes in a 
number of cases we should set to=O or to= -m, which re- 
sults in the considerable simplifications used in Ref. 5. 

We note finally that in the simplest case a ,=a2,  to=O 
and cp(x)=cp(-x) the Bessel function can be expressed in 
terms of elementary functions, as a result of which after a 
number of transformations we find an equation which is 
identical with that obtained previously in Ref. 4. 
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