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The possibility is demonstrated of using intense interfering light fields to form a bulk, rectified, 
induced-light-pressure force, thereby making it possible to efficiently act on transport 
phenomena of a small resonant admixture in a buffer gas. This force is capable of inducing 
rotating or fixed spatially periodic structures in a dense gas. The symmetry and other characteristics 
of such a sharp periodic stratification of the gas are extremely sensitive to the spatial 
configuration, phases, and parameters of the fields acting on it. O 1995 American Institute of 
Physics. 

1. INTRODUCTION 

References 1-4 theoretically predicted and Refs. 5 and 6 
experimentally confirmed the effect of rectification of a gra- 
dient resonant-light-pressure force. This effect arises as a re- 
sult of the motion of a resonant atom in a bichromatic field 
with complex amplitude E of the form 

where the fields Eo(r) and E,(r) have standing wave struc- 
ture with characteristic spatial period A- l lk ,  and A. and 
Al+Ao are the detunings from the resonant frequency of the 
atom. The essence of this effect consists in the appearance of 
a component of the radiation force F ,  having the order of 
magnitude of the gradient force in a monochromatic standing 
wave, i.e., dE& (d is the matrix element of the dipole mo- 
ment operator of the atom), but in contrast to the gradient 
force it is sign-constant over large (macroscopic) spatial 
scales (9  l lk )  significantly exceeding the wavelength of the 
light A. The rectified gradient force (RGF) can be signifi- 
cantly greater than the spontaneous light pressure force and 
makes it possible to form deep potential wells and produce 
various forms of rotational motion of the particles. These 
unusual properties of the RGF come at a price, namely a 
bound on the velocity of the atom 

which delineates the region of maximum values of the RGF 
in velocity space independent of the field amplitudes (here y 
is the spontaneous decay rate of the excited state of the 
atom). Outside this region the RGF falls rapidly proportional 
to ( y/kv)2 (Ref. 3). Inequality (2) means that spontaneous 
relaxation processes should take place during the time it 
takes the atom to move a distance of the order of the char- 
acteristic dimensions of a spatial inhomogeneity of the field, 
7- A/". This important aspect of the physical mechanism of 
the formation of the RGF is connected with the need to have 
incoherent mixing of the adiabatic ("dressed") states of the 
atom in the field (i.e., the eigenstates of the Hamiltonian of 
intra-atomic motion in the radiation field).7 For isolated rar- 
efied ensembles of atoms condition (2) turns out to be auto- 

matically fulfilled as the evolution in the resonant field pro- 
ceeds, thanks to the action of the radiative friction force 
(even if at first it is ~iolated) .~ 

However, quite typical and interesting is the situation 
with a small relative fraction (- y lkse  1 )  of copper atoms 
when their thermal velocity s is determined by interaction 
with a thermostat and is large in comparison with their char- 
acteristic velocity yl2k. An example of a physical object of 
such kind frequently encountered in laser gas-kinetics is a 
mixture of a buffer gas with a small resonant admixture. We 
may ask, are any noticeable manifestations of the rectifica- 
tion of the gradient force possible in this case? 

The goal of the present paper is to lay a basis for a 
positive answer to this question. In this paper we develop a 
theory of the rectification of the radiative force under condi- 
tions of strong collisional relaxation of the translational de- 
grees of freedom, when the mean free path (A,) of the reso- 
nant atoms in the buffer gas is significantly smaller than the 
radiation wavelength 

Condition (3) is of fundamental significance and makes 
it possible to overcome the velocity selectivity of the RGF 
expressed by inequality (2) (which is valid for a collisionless 
or weakly collisional gas). Indeed, in this case, the displace- 
ment of an atom by a distance of the order of the inhomoge- 
neity scale of the field k-'-A will take place in the diffu- 
sion regime (but not in the free path regime). If the 
corresponding characteristic diffusion time is larger than (or 
of the order of) the atomic relaxation time y-l, or what is the 
same thing 

(where D-ACs2 is the diffusion coefficient of the resonant 
atoms), then the RGF generated by the bichromatic field will 
reach its maximum values and act on all the resonant par- 
ticles identically without regard for the velocity of their 
Brownian motion. We will show that in this case the RGF 
provides an extremely efficient means of controlling the 
transport phenomena of resonant atoms mixed with the 
buffer gas. The spatial structure of the RGF can be potential 
or vortical or potential-vortical with controllable ratio of 
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weights of the potential and vortical components. In this case 
the most significant result of the action of the RGF is deep 
spatially periodic stratification of the resonant gaseous mix- 
ture and the formation in it of rotating spatially periodic 
structures whose shape depends on the configuration and 
phases of the acting fields. 

It is very interesting that in the limit of weak saturation 
the rectification effect appears in the fourth (!) order of the 
field amplitude, and not in the sixth as in the collisionless 
situation.' This is due to the influence on the interaction of 
the atom with the radiation field of collisions with phase jerk. 

2. KINETIC EQUATIONS 

Let us consider the interaction of a linearly polarized 
field of the form (1) with resonant two-level atoms which 
constitute a small admixture to the buffer gas, which is trans- 
parent to the radiation. 

According to the basic concept of rectification of a gra- 
dient force'-4 the detuning of the field El (which for brevity 
we will call the high-frequency (HF) field) in the bichromatic 
field (1) is assumed to be large 

and its role reduces to the formation of a spatially inhomo- 
geneous Stark level shift v ~ ( ~ ) ~ / A ~ .  Here 
V,(r)=dE,(r)/h are the local Rabi frequencies, a=O, 1; yl 
is the homogeneous resonance width: 

rc is the frequency of collisions with phase jerk of the 
atomic oscillator, v is the characteristic frequency of elastic 
scattering of the resonant atoms in their collisions with the 
particles of the buffer gas. We will describe the resonant 
particles by equations for the density matrix in the Wigner 
representation with allowance for recoil and co~lisions,~ 
which in the quasiclassical limit (hkems) ,  after averaging 
over the rapid oscillations with frequency A, (this procedure 
is described in detail in Refs. 3 and 8), takes the form 

[:I =i - ( f )+ i+ (q ) .  [g] =i+( f )+ i - (q ) ,  
C C 

where p(r,v,t) is the nondiagonal element of the density ma- 
trix (and has the meaning of the density of the distribution of 

the induced dipole moment in units of d); q(r,v,t) and 
f(r,v,t) are, respectively, the difference and sum of the 
Wigner distributions of the particles in the ground and ex- 
cited states, 

is the effective, spatially inhomogeneous detuning of the 
resonance in the averaged i, = (i2?i1)/2, where 
12,, is the integral of the elastic collisions of the excited and 
unexcited atoms, respectively, with the buffer particles, the 
operator 8.j. takes account of recoil in the spontaneous ernis- 
sion of photons,7 

m is the mass of the resonant atom, and any possible colli- 
sional frequency shift is included in A,. Here and in what 
follows, for brevity we will drop the subscript 0 from Vo. 
Equations (6) assume strong phase jerk of the atomic oscil- 
lator and fulfillability of the condition of the collision ap- 
proximation for the collision integrals, 1 A 1 r,G 1 (Ref. 10) 
(7, is the duration of an individual collision act, the influence 
of the electromagnetic field on which we will thus neglect). 
We also neglect collisions of the resonant atoms with each 
other and also inelastic collisions. Spelling out the physical 
conditions that are of interest to us, we adopt the following 
hierarchy of characteristic frequencies of the problem: 

The first group of inequalities in (8) (in combination 
with the others) means that the average kinetic energy of the 
resonant atoms is significantly greater than the interaction 
energy of the atom with the field - h V, and that the effective 
detuning A is much greater than the velocities of all the 
relaxation processes. The second group of inequalities corre- 
sponds to the basic initial assumption (3) (since v-s/hc) 
and to typical relations between physical quantities in the 
optical spectral range. Finally, the last of conditions (8) en- 
sures that induced light pressure effects will predominate 
over spontaneous light pressure effects ( I  V1 12/1 A, 1 y B  1) 
(Refs. 1-3, 7) and that the regime of not very strong satura- 
tion of absorption will obtain (I VIA I 2 .  I?,/ y< 1 )  (which is 
necessary, as we will see, for maximization of the RGF). 

In addition to the above, relations (8) contain within 
themselves the conditions of adiabatic motion of the atom in 
the field, given which the induced dipole moment p for the 
most part follows the motion of the atom.7" For this reason it 
turns out to be convenient in the treatment of the problem to 
transform to the basis of adiabatic states7 (states "dressed" 
by the field) by eliminating p from the system of equations 
(6) by means of the following expansion (for t>  yy ' )  in 
powers of l/A(r) (Ref. 8): 
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Applying this procedure (9) and including terms in the 
expansion (6) up to second order, inclusive, we obtain the 
following system of kinetic equations for the auxiliary dis- 
tribution functions p, = (f -+ qfi)l2: 

where 

Equations (10) generalize the well-known equations of 
bipotential kinetics of atoms in a monochromatic standing- 
wave field (see Ref. 11, p. 117 and also Ref. 7, p. 135). The 
newly introduced functions p,(r,v,t) differ from the popula- 
tions of the "true" adiabatic states by small corrections in 
the adiabaticity parameter - 1 V / A ~  2 k u l ~  G 1. Terms propor- 
tional to G a f G b ,  of like order of magnitude, which take 
account of the second and third groups of inequalities (8), are 
present in the kinetic equation. They depend on the scalar 
product of the vector J (which, as is not hard to verify for 
linearly polarized fields, is proportional to the energy flux 
density of the radiation at the point r) and the velocity v and 
consequently describe kinetic phenomena associated with the 
velocity selectivity of the interaction of the atom with the 
resonant field due to the Doppler effect. We also see from 
Eq. (10) that incoherent mixing of the adiabatic states is 
realized not only thanks to spontaneous relaxation, but also 
to collisions. This circumstance is a reflection of the well- 
known fact that elastic collisions of atoms with particles of 
the buffer gas are inelastic for the combined system 

"at~m+field." '~ Finally we may note that besides the spon- 
taneous light pressure force F, , we also neglect the light- 
induced Lorentz f o r ~ e ~ , ~ , ~  F L -  \ ~ 1 ~ 1 ~ f i k ~ u  : 

3. TRANSPORT EQUATIONS 

By virtue of conditions (8) and (3) and the kinetic equa- 
tions (lo), those terms dominate which are associated with 
the collision integrals [ Sp,/St], . This means that the colli- 
sions are frequent and that at the diffusion stage of the evo- 
lution of the resonant admixture ( t >  v-') the distribution 
functions p,(r,v,t) are near their equilibrium values, i.e., 
they allow (according to the well-known approaches of ki- 
netic theory13) the following representation: 

where n, is the density of atoms in the adiabatic states, Wo 
is the Maxwellian velocity distribution 

T is the temperature of the gas in energy units, and the func- 
tions $,(r,v,t) define the nonequilibrium part of the distri- 
butions and in the approximation of linearizing in velocity 
have the form 

Note that under the above conditions the diffusion ve- 
locities of the particles are always small in comparison with 
their mean thermal velocity, i.e., IJ, 1 e n  + s .  

Integrating Eqs. (10) over velocity and repeating the 
given procedure after multiplying Eqs. (10) by v, we easily 
obtain with the help of expansion (12) a closed system of 
equations for the macroscopic variables n, and J,. We 
write it out in the variables n + + n - = n , J+ +J- = J, (the 
flux density of the resonant atoms) and n +  - n -  = N ,  
J+ - J- = Jd (the flux density of the difference of populations 
of the adiabatic atomic states): 

where (taking Eq. (8) into account: v+ +rcl VIA 1') 
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1 
Y+ h 

and within the framework of approximation (12), (14) we 
have introduced the effective frequencies of the collisions 
with momentum transfer13 

X ( 1 - cos X) sin xdx ,  

u,=(u2+u,)/2 are the half-sum and half-difference of the 
differential cross sections of elastic scattering of resonant 
atoms in the ground "1" and excited "2" states for collisions 
with particles (with mass mp) of the buffer bas with density 
np,  M=mmpl(m +mp), 

S'NV- 2 ~ ~ r ~ 7  

C a = ~ 3 ( r ) p 2 ( r )  Cd= - A3(r>p2(r)  
for T,P v+ . 

Expressions for the stationary and quasistationary 
( I d ~ ~ , ~ / d t l e v + I ~ , , ~ l  for t~ v-') the resonant radiation follow 
from Eqs. (17) and (18): 

where 

and iJ+ = v+( l  - v?/v: - v- y /v t ) ,  N = N / ~  is the relative 
difference of populations of the adiabatic states, and 
D = s2/2 iJ+ is the diffusion coefficient. 

From Eqs. (20) we see that the resonant atom flux J, is 
generated by three different effective forces F, F1, and F2. 

The force F is the induced-light-pressure force, whose 
order of magnitude (F-fike) is determined by the charac- 
teristic rate of the induced transitions between the atomic 
states. 

The effective forces F, and F2 are of a qualitatively dif- 
ferent nature, not associated with light pressure phenomena. 
The force F1 is due to the difference in the collision frequen- 
cies (and consequently in the diffusion coefficients) of the 
atoms in different adiabatic states and to the spatial modula- 
tion of the difference in the populations of these states 
[N=N(r)] thanks to the inhomogeneity of the field. The re- 
sult of its action is analogous to the effect of light-induced 
diffusional injection and ejection, which was first considered 

in Refs. 14 and 15 for the case of a monochromatic light 
beam. The force F2 is proportional to the radiation flux den- 
sity J(r) and is also associated with the difference in the 
transport collision frequencies (v-ZO). The second factor 
making up this force is the velocity selectivity of excitation 
of the atom, due in our case of large fields and large detun- 
ings to non- 
adiabatic corrections to the induced dipole moment, which 
are described by expansion (9). In other words, the force F2 
is responsible for the appearance under the conditions under 
consideration of the light-induced drift effect.16 The effective 
force Feg(r), in addition to its direct dependence on the act- 
ing fields and their gradients [through the functions dr ) ,  
p(r), Vdr), and J(r)] also contains a dependence on the state 
of the internal degrees of freedom of the resonant atom 
through the population difference of the adiabatic states 
N=N(r). Such a correlation between the internal and trans- 
lational degrees of freedom in the problem under consider- 
ation is taken into account by the full system of coupled 
equations (15), (16), (19), (20). 

4. RECTIFIED FORCES AND FLUXES 

We will investigate the action on the resonant admixture 
of spatially inhomogeneous fields (of the type standing 
waves), which can be formed by the appropriate superposi- 
tion of plane The intensities of such fields, which 
are proportional to I ~ , ( r ) 1 ~  and I~,(r)1~,  and the radiation 
flux density, which is proportional to J(r), are periodic or 
quasiperiodic functions oscillating over spatial scales of the 
order of the wavelength of the light A - k- '. We will call this 
spatial scale microscopic. The difference in the frequencies 
of the waves forming the resonant field, the small misalign- 
ment of their wave vectors, the boundedness of the trans- 
verse dimensions of real laser beams give rise to the exist- 
ence of a macroscopic spatial scale LPX.  The presence of 
two radically different scales can be formally reflected by 
introducing dimensionless fast (rl) and slow (r,) spatial vari- 
ables 

The coefficients of the system of transport equations 
(15), (16), (19), (20) depend explicitly on both the fast and 
the slow variables. The expansion of these coefficients in 
powers of the field contains nonlinear interference terms 
(proportional, in particular, to products of the form 
I v ,  (r)I2 J(r), I~,(r).)1~ V I V ~  (r)I2, etc.), which generate compo- 
nents of the effective forces and fluxes, which depend only 
on the slow spatial variable, i.e., we have rectified forces and 
fluxes. Finding these terms would allow one, under the con- 
ditions under consideration, to describe the influence of non- 
linear interference effects associated with the light pressure2,3 
on the transport phenomena. 

Let the relative difference of the transport collision fre- 
quencies be small 

(in many real situations v-/v+50.2, Ref. 17). 
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Then from conditions (8) and (22) it follows that the 
characteristic diffusion velocity in the transport of atoms 
over the microscopic spatial scale is substantially greater 
than the light-induced drift velocity 

Inequality (23) means that the depth of the potential 
wells formed by the rapidly oscillating components of the 
light-induced forces F,, is small (of the order of the param- 
eters fielTG1 and v-/v+<l) in comparison with the kinetic 
energy of the resonant particles. Therefore they can give rise 
to only an insignificant spatial modulation of the density of 
atoms against the background of its variation over macro- 
scopic scales. This circumstance allows us to separate the 
rapidly oscillating and slow components of the density (flux) 
of atoms and represent the solution of the transport equations 
in the form of the following expansion (in fact, in the small 
parameters f i ~ / T ,  ylA, u-lv+, and AIL): 

where the angular brackets denote averaging over the micro- 
scopic spatial oscillations 

( R ~  is the volume of the integration region over the fast 
variables). 

We will limit ourselves in what follows to the stationary 
regime of interaction of the radiation with the gas and the 
case of not-too-strong saturation 

Thus, substituting expression (24) in Eqs. (15) and (19), 
we obtain first-order equations in the spatial distribution of 
the population difference of the adiabatic states, with allow- 
ance for "fast" (small-scale) diffusion 

J ~ = - D ~ v ~ N ( ~ ) + J ~ ~ ) + . - . ,  I J ~ ' ) I G D ~ ~ V ~ N ( O ) ~ ,  (27) 

Here and below the subscript "1" ("0") on the differential 
operators denotes differentiation with respect to only the fast 
(slow) spatial variables. Similarly, from Eqs. (20), (16), and 
(24) we obtain equations for the main terms of the expansion 
of the density and flux of the resonant atoms 

$0' - eff - 
div, ja=O, J,=----n -Dkvlti('), 

m v+ 

k div, jp)= - Sk div o JR,  (31) 

(Fa",') - 
JR=- n-DSkVo ti, 

mv, 

where the tilde above a function symbol indicates its rapidly 
oscillating part with zero mean, F$) is the effective force to 
the first nonzero order in the perturbation theory sense, and 
(F:$) and F$) are its smooth (rectified) and rapidly oscillat- 
ing components. Restricting ourselves to the first nonvanish- 
ing terms of the expansion of F$) in powers of the field 
amplitude, we obtain the following expressions for kL9 and 
(Fig): 

where Nl is found from Eq. (28) and we use the subscript 
' 'R' ' to denote the rectified forces. It is easy to see [from 
Eq. (33)] that the forces F and F1 are potential, and the force 
F2 (determined by the radiation flux density, which is pro- 
portional to J) is vortical (div1F2=0), wherefore the solution 
of Eq. (30) for the oscillating components of the density and 
flux has the form 

From the condition of solvability of the equation of the 
second approximation (31) we obtain the equation of conti- 
nuity of the flux of atoms 

Equations (40), (28), and (32) form a closed system for 
determining the macrostructure of the density ti and flux JR 

distributions of the resonant atoms, created by the light- 
induced rectified forces (35)-(38). We see from the expres- 
sions that we have obtained that the rectified gradient force 
FR is determined by the spatial correlator of the relative 
population ~ ~ ( r )  of the anomalously adiabatic state7 and the 
intensity gradient of the HF field (N ,v \v , (~ ) (~ ) .  The spatial 
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dependence of ~ , ( r )  is governed by Eq. (28) and through it 
by the field V(r) independent of Vl(r), from which it is ob- 
vious that in the most general case the correlator 
( f i1~I~ , ( r )12)#  0 and consequently FR is also different from 
zero. 

In contrast to the frequencies of the elastic collisions of 
the excited and unexcited atoms (up# 0) expressions (36)- 
(38) allow for possible contributions to the effective rectified 
forces FIR and F2, due to the effects of light-induced diffu- 
sional injection and ejection and light-induced drift. How- 
ever, it may be easily observed from Eqs. (28) and (36) that 
the force F1 is clearly not rectified (FIR+O) independent of 
the structure of the fields in the limit of frequent collisions, 
for which the amplified condition (4) ( D k 2 e  y) is fulfilled 
and the population of the adiabatic state follows the field 
N1 =N1(l v(r)12). 

It can be shown that the analogous assertion regarding 
FIR holds, and in the general case in which we do not use the 
expansion over powers of the field amplitude. 

The role of all three components of the effective field in 
transport phenomena, thus, can depend substantially on the 
concrete physical conditions and, in particular, as we will see 
in the following section, on the spatial structure of the field. 

5. TRANSPORT PHENOMENA 

Let us consider how manifestations of the rectified 
forces depend on concrete configurations of the fields acting 
on the gas. 

Rectified forces in one dimensional standing waves 

Let the fields have the following form: 

Vl (r)  = V1 cos[(k + 6k)x + 41, 6k-e k. (41) 

Then from Eqs. (35)-(38) and (28) we easily find 

where 

Disappearance of the force FZR is obviously connected 
with the absence of radiation flux in the field configuration 
(41): J=0, and disappearance of the force FIR,  with the fact 
that the variable ~ , = 4 r , l ~ ( r ) 1 ~ / ( 4 D k ~ +  y ) ~ t  "tracks" the 
field intensity V(r) (in the given case independently (!) of the 
relation between the parameters Dk2 and y). 

The depth of modulation of the potential relief induced 
by the rectified force (with spatial period .rrlSk) is propor- 
tional to the large parameter (the ratio of the macroscopic to 
the microscopic scale kl6kB 1)  and is maximum upon ful- 
fillment of condition (4). 

Note that thanks to the presence of collisions with phase 
jerk (r,#O) the rectified gradient force arises in the fourth 
order of the expansion in powers of the field amplitude (but 

not in the sixth as in the case of a collisionless gas1). There- 
fore, for one and the same field amplitude and Dk2< y the 
depth of the potential well (42) is large in comparison with 
the depth of the macroscopic potential wells in the collision- 
less situation with the large parameter ( y l  v ~ ~ ~ / A $ ~ ) -  '. 
The similar effect of the influence of collisions with phase 
jerk on the radiation force was, in essence, taken into account 
and discussed already in Ref. (18), where allowance was 
made for the situation with y,> y/2. 

Periodic stratification of a resonant gas 

The solution of the averaged transport equations (32) 
and (40) in the case of as field of the form (41) has the form 
of the Boltzmann distribution 

fi=noexp[-UR(r)/T], JR=O, (43) 

where UR is given by formula (42). The resonant admixture 
is thus grouped into sharp, well-defined layers periodically 
arranged along the x axis if the condition Uo>T of capture 
of particles into the potential wells is fulfilled. In this case 
the characteristic width of a layer xo > l/Jksk and, conse- 
quently, is significantly greater than the wavelength of the 
light, but substantially smaller than the macroscopic period 
L = .rrlSk: hGxoGL. Simultaneously, according to Eq. (39), 
there exists a small-scale modulation of the density with pe- 
riod of the order of the wavelength of the light 

A remarkable circumstance is embodied in the fact that for 

the microscopic oscillations are governed primarily by the 
light-induced diffusional injection and ejection effect rather 
than by the light pressure. The relation just written down is 
most probable for the case of neutral resonant atoms in typi- 
cal physical situations. Figure 1 illustrates the character of 
the distribution of the resonant atoms in a macroscopic layer. 

Rectified forces in fields with two-dimensional 
configuration 

Let a bichromatic field (1) be formed by the appropriate 
superposition of traveling light waves intersecting the xy 
plane and polarized in the direction of the z axis 

3 3 

~ ( r ) =  voC e i 3 ,  v l ( r )=  vlC eidj, (45) 
j =  1 j=1 

where 

4 ,=kn j r+4 ,  + ; = ( k + ~ k ) n j r + & ~ ,  j=1,2,3,  
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FIG. 1. Spatial dependence of the density of resonant atoms in an individual 
macroscopic layer. 

and Sk<k, the angle between the unit wave vectors nj is 
equal to 2~13 ,  and the system of unit wave vectors n; is 
"rigidly" rotated about the z axis relative to the vectors nj by 
the small angle ao+l: 

A distinguishing feature of such a symmetric spatial con- 
figuration of fields is the fact that the radiation flux (equiva- 
lently, the momentum density of the field) averaged over the 
rapid spatial oscillations is zero:3 

Equations (28) and (35) lead to the following expression 
for the rectified force in a field of the form (45) 

8 r c  
2 

F - 
R-3Dk2+ 21 ( ~ c + r o t  A), 

where 

Thus, the rectified force has a periodic potential-vortical 
structure (with spatial period -llk),  and the ratio of the 
vortical to the potential component is regulated by the pa- 
rameter d a .  For aSq, (rotation of the vectors n; relative to 
the vectors nj is absent or small) the force field is mainly 
potential (IVUI+/rot Al), and for aGa0 it is mainly vortical. 
It may be readily observed that the spatial symmetry of the 

force field is analogous to that of its generating electromag- 
netic field since the angle between any two of the unit vec- 
tors n,,, n23, and n3, is equal to 243.') 

Let us also consider the components of the effective rec- 
tified force in the case v- #O. From Eqs. (28), (36), and (37) 
we at once have 

The first of these relations is a consequence of the depen- 
dence N, = Nl(l v(r)12), (which is valid for a field of the type 
(45) for any relation between y and Dk2) and the second is a 
consequence of Eq. (46). This demonstrates the possibility of 
eliminating the light-induced drift effect by the appropriate 
choice of the symmetry of the field configuration. However, 
to the fourth order in the field amplitude this effect gives a 
nonvanishing interference contribution to the rectified flux of 
resonant atoms since ~ $ 2  +o: 

24 
(4) - - 

F 2 ~  - 6 (VU,+rot A,), ~ 3 %  v +  
(49) 

where 

Thus we see by comparing expressions (49) and (47) that in 
the interesting case of large detunings [see Eq. (8)], the force 
~ $ 2  is only a small correction to the rectified gradient force 
( ( F $ ~ I F , ~  4 1) if the inequality 

is satisfied. 

Two-dimensional stratification and rotation of the resonant 
admixture 

To start with, let a o = O  and inequality (50) be satisfied. 
Then from the solution of the averaged equations of transport 
(32) and (40) we find that in a field of the form (45) the 
resonant atoms are grouped in the xy plane near the minima 
of the rectified force potential according to the Boltzmann 
distribution (43), in which, taking Eq. (47) into account, it is 
necessary to set 

For Uo> T there arises in the gas a two-dimensional periodic 
lattice (with period 4 r l k a = L )  of well-separated swarms of 
atoms, having the form of cylinders with their axes parallel 
to the z axis and with characteristic radius xo: 

A qualitatively new situation arises for q ,#O  since there 
appears a nonzero rectified vortical flux of resonant atoms 
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FIG. 2. Typical picture of the periodic stratification of a gas in the xy plane 
into rotating swarms for a field of the type (45). The thin solid lines are 
isocontours of the rectified force potential U, ; the arrows indicate the di- 
rection of rotation of the swarms. The regions of maximum density are filled 
in. 

where A is given by formula (47) and i ( r )  is the Boltzmann 
distribution (43) with potential 

In the derivation of this solution we made use of the fact that 
the isocontours of the rectified force potential (47) are simul- 
taneously the vector lines of its vortical component: 
rot A, . VUR = 0. Thus, for Uo> T there takes place a two- 
dimensional stratification of the gas into rotating (!) cylin- 
ders (see Fig. 2). The characteristic angular velocity of their 
rotation a is given for a-a. by 

Let us derive estimates of the radiation intensity and the 
gas parameters required for light-induced stratification of a 
gas into a rotating structure. Let k = 5 . lo4  cm-', m = 100 
a.e.u., mp=4 a.e.u., T= 100 K, ks-6. lo8  s-l, y=5.107 
s-', and a-10-l5 cm2. Then the choice of buffer gas pres- 
sure p - 5 .  l o 3  Torr ensures fulfillment of the main condi- 
tions (3) and (4) (v-3.10~ s-', kAc-0.2, Dk2- y) and if 
we set the detunings A,-2.10" Hz and A,-5.10'~ Hz, and 
the field intensities 1,- 100 ~ / c m - ~  and I, > 5  kw/cmP2, 
then for r,-10'~ Hz we have: 6klk- Uo>lOO K, 
xo- 0.1 cm ~ - 1 0 ~ a ~  s-', and the period of the macroscopic 
spatial lattice L -0.5 cm. Condition (50) for the prevalence 

of effects associated with the rectified force is satisfied with 
sufficient latitude since f i ~ ~ - 4 . 1 0 - ~  eV and yl~o-10-3. 
Lowering the temperature of the gas to 10 K, and decreasing 
the contrast parameter of the atomic lattice (imax-imin)limin 
from 10 to 0.5 leads to a decrease of the required intensity of 
the HF field to quite moderate values 1, - 200 w/cm2. Note 
that the light-induced macroscopic rotation of the resonant 
admixture can even cause rotation of the buffer gas if the 
time of action of the radiation is long enough: 
t-T= v-'npmpliim. We have not considered this effect 
here, rather setting t 4  7 for npS=i. 

If condition (50) is fulfilled, as we have seen, large-scale 
transport of atoms (corresponding to a macroscopic spatial 
scale L S= h) is governed by the effects of induced light pres- 
sure. At the same time, the microstructure of the density and 
flux distributions of the resonant atoms can be associated for 
v- #O primarily with the light-induced diffusional injection 
and ejection and light-induced drift effects. 

Indeed, for 

v- /V+B~~IV,I~/A,T,  c ~ = o , i  

we obtain from Eq. (39) for a field of the form (45) the 
following expressions for the rapidly oscillating components 
of the density and flux of the resonant atoms: 

If the gas is hot enough, the difference of the collision 
frequencies v-fO and is not too small, and the detuning A. 
is not too large, then condition (50) is violated and a strati- 
fication and rotation of the gas analogous to the one de- 
scribed can occur at the "micro" level as well as at the 
"macro level," due to effects of the type "light-induced 
drift" and "light-induced diffusional injection and ejection," 
i.e., due to the forces l?@ and F' .2) 

Note in connection with this that the problem of inter- 
ference phenomena in the light-induced drift effect analo- 
gous to those associated with light is, in our opin- 
ion, very interesting in its own right and deserve separate 
study. 

6. CONCLUSION 

Thus, collisional relaxation is capable of suppressing the 
damaging effect of velocity selectivity of the rectified gradi- 
ent force.3 This makes it possible, with the help of interfering 
bichromatic fields, a bulk force of significant magnitude (of 
the order of the induced-light-pressure force) varying only 
slightly over one wavelength and acting on a resonant ad- 
mixture contained in a buffer gas. 

Collisions with phase jerk lead to the appearance of a 
rectified radiation force in the fourth order of the expansion 
over powers of the field amplitude (but not in the sixth, as in 
the case of an atom unperturbed by collisions1). 

A bulk, rectified, induced-light-pressure force is capable 
of acting very efficiently on transport phenomena of a reso- 
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nant admixture in a buffer gas. Even in the case of different 
transport collision frequencies of the excited and unexcited 
atoms in the situation of strong fields and large detunings it 
can continue to dominate over effects of the type "light- 
induced diffusional injection and ejection" and "light- 
induced drift" with regard to the transport of particles over 
macroscopic spatial scales. It is well known15316 that the op- 
posite situation is commonly realized in the case of sponta- 
neous light pressure in a monochromatic field. The spatial 
structure of the rectified force depends substantially on the 
configuration of the interfering fields. In the field of a bich- 
romatic one-dimensional standing wave, the rectified force 
induces rotating, spatially periodic structures in the gas. The 
magnitude, rotational velocity, and configuration of these 
structures can be controlled by varying the geometric char- 
acteristics (e.g., the angle a. in the case of fields of the type 
(45) and the phase of the acting fields. These effects can be 
used for spatial localization and separation of small admix- 
tures contained in a gas or plasma, and the creation of light- 
controlled regular spatial lattices of resonant atoms. 

 he system of vectors {n,,} is rotated relative to the vectors {n,} by the 

angle 6= arcsin(a, I Jm). 
2 ) ~ n  such a situation solutions of the averaged equations of the form (52) are 

defined by the potentials given in Eqs. (49). 
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