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The problem of the propagation of scalar waves in an unbounded nonabsorbent randomly 
inhomogeneous medium (RIM) is solved in the ladder approximation. The evaluation of the 
damping coefficient (scattering index) ye of the mean field intensity reduces to the solution 
of an equation similar to the dispersion relation for the mean field. In the long- and shortwave 
limits, which allow the macroscopic (resulting from the nonuniformity of the medium) 
spatial dispersion to be disregarded, expressions are found for ye for an RIM that can be described 
by a normalized binary correlation function cp(r,,r2)=exp(-p), where we have written 
ap=lr,-r2( and a is the spatial scale of the correlations (three-dimensional and one-dimensional 
cases are considered). For a one-dimensional RIM with delta-correlated nonuniformities 
("white noise") a similar calculation is carried out for the cases of: a) a point source; b) 
approximation of the coherence function as a product of two plane monochromatic waves. O 1995 
American Institute of Physics. 

1. INTRODUCTION V ( ~ I  ,rz)=exp(- P I ,  (1.1) 

The persistent interest among in the prob- 
lem of wave propagation in a randomly inhomogeneous me- 
dium (RIM) is due to the essentially inexhaustible variety of 
problems which can be formulated in terms of it. The nature 
of the applications associated with many of them enhances 
this interest and provides an encouragement to overcome the 
substantial difficulties that stand in the way of the desired 
results. It often proves possible to reduce the solution of a 
wave equation for the original (in general tensor) field to the 
solution of the scalar wave equation corresponding to it in 
some 

The treatment of waves in an RIM requires that such 
effects as macroscopic spatial dispersion and attenuation of 
the wave due to scattering on the inhomogeneities, which are 
directly related to the structure, be taken into account. To 
obtain information about the basic dynamical properties of 
an RIM it turns out to be enough to know the lowest mo- 
ments of the field in question. However, the rate of attenua- 
tion of the mean field gives an exaggerated significance to 
the energy damping rate.26'29 This is because the phase fluc- 
tuations of the wave, which do not effect the intensity, con- 
tribute to the attenuation of the mean field. 

In what follows the problem of scalar wave propagation 
in an unbounded nonabsorbent RIM is considered. To calcu- 
late the scattering index a method is developed based on the 
introduction of the dispersion relation for the mean intensity, 
which assumes a form similar to the dispersion relation for 
the mean field in the approximation in which the coherence 

where we write ap=rl-r2 and a is the spatial scale of the 
correlations; b) a one-dimensional RIM with delta-correlated 
inhomogeneities ("white noise"). Use of this method per- 
mits us to calculate more precisely the analytical properties 
of the scattering index evaluated from the attenuation of the 
mean intensity in the known for the simplest 
RIM in the one-dimensional case and to obtain new solutions 
for three-dimensional RIM. 

In Sec. 2 a modification is presented of the familiar re- 
sults and those we obtained previously, convenient for ex- 
pounding the new method (references to sources are given 
where necessary). In Sec. 3 a (very brief) transition is made 
from the general solutions of Sec. 2 to approximations based 
on the use of information about the RIM only in terms of 
binary correlation functions (taking into consideration pair- 
wise interactions between inhomogeneities). We treat the 
cases of 1) the Bourret approximation;16.31 and 2) the ladder 
approximation.32 In Sec. 4 we treat the dispersion relation for 
the mean field and the conditions for the applicability of the 
Bourret approximation. Then, in the approximation where 
the coherence function B is represented as the product of two 
monochromatic waves we obtain a dispersion relation for the 
mean intensity, evaluated in the ladder approximation. In 
Sec. 5 we consider the special cases mentioned above. 

2. EQUATIONS FOR THE FIRST AND SECOND MOMENTS OF 
THE FIELD AND THE GREEN'S FUNCTION OPERATOR 

function B is represented as the product of two plane mono- 
Consider the scalar monochromatic field chromatic waves. This enables us to use results obtained in 

E(r,t)=E(r)e-'Ot, rlesrrihed by the inhomogeneous Helm- the Bourret approximation16~31 to calculate the corresponding 
holtz equations quantities in the ladder approximation.32 

The proposed method is applied to solve the problem in LE=-f ,  ( A )  E=E(r ) ,  ~ F Z F ,  (2.1) 
two cases: a) one- and three-dimensional RIM described by a 

2 2 2 - 2  - 
normalized binary correlation function k?=ccko, koco=w,  EE,=E,  E = E ( ~ ) .  (2.2) 
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For the sake of having specific terminology we will call the 
scalar field E the dielectric function of the RIM. Then the 
field E resulting from the source f has the physical meaning 
of the electric field strength, associated with an inductance D 
by the relation D = EE; here co is the speed of light in 
vacuum. The subscript c labels quantities connected with the 
comparison medium (see below). The equation correspond- 
ing to (2.1) for the Green's function operator H takes the 
form 

where H(r, ,r2) is the kernel of the operator H. 
The use of the concept of a comparison medium enables 

us to pass from the differential equation (2.1) to the integral 
equation 

.. A A 

L a c =  - I ,  LcEc= - f ;  i c = ( ~ + k : ) i .  (2.5) 

Together with (2.4) it is useful to consider the equation 

E=(E) +XE, X=RQ,E' 

RF=F-(F)~FU;  $ '=R .  (2.6) 

The angle brackets denote a statistical average (over an en- 
semble of realizations). Here R is an operator which extracts 
the random component from the quantity standing to the 
right of it; it differs from the centering operator,30 which is 
denoted by a double prime. 

In order to determine the restrictions imposed on the 
operator 2 of the perturbation, from (2.6) we derive30,33,34 

Using the relation1) 

(D) = (&E)=i ,(E) 

to introduce the operator 2 ,  for the effective dielectric func- 
tion, from (2.7)-(2.9) we 

In the case of a regular (or statistically independent of 
the random field E) source f the average (2.1) yields by 
virtue of the definition (2.9) 

L E E =  ( f ) ,  i , = ~ j + k f E C * .  (2.11) 

The operator i, in (2.11) is called the Dyson operator.2 
The field of a point source is described in the language 

of Green's functions (operators). In this case in place of 
(2.4), (2.6), (2.7), and (2.11) we write 

where M is the mass operator. Averaging the first of Eqs. 
(2.12) leads to the Dyson equation2 

for the average of the Green's function operator (H). 
The comparison medium used as an auxiliary is macro- 

scopically identical (in overall geometry, boundary condi- 
tions, and field sources) with the RIM in question and differs 
from it only in its material properties (dielectric function, 
density, and so forth) and its internal geometry (the spatial 
distribution of the inhomogeneities). The operator ic satis- 
fies the usual restrictions imposed on the unperturbed opera- 
tor: 1) the solution of the problem (2.5) is known; 2) the 
perturbation operator L ' =L -LC is small in some sense, 
which ensures the convergence of the perturbation series 
(2.8) and (2.10). The parameter E, is otherwise arbitrary. 
Since the exact solutions (2.7), (2.10), and (2.12) do not 
depend on E, , this parameter is chosen from considerations 
of mathematical simplicity of the resulting solutions or the 
rate of convergence of the iteration procedure in those cases 
when it is necessary to truncate the series (2.7), (2.10), and 
(2.12) after just the first two or three terms. We often assume 
E, =(E), as a result of which E'=E" holds. The ladder relation 
simplifies the calculation of the terms of series (2.10). In 
studying the general relationsit turns out to be convenient to 
take i, to be the operator L,. In the case of (2.12) this 
yields 

We introduce the definition of the coherence function B 
of the field E (Ref. 2): 

where * and 8 respectively denote the complex conjugate 
and the direct (tensor) product of fields or operators. Using 
(2.3) we write E * as 

where H+ is the adjoint operator. Using (2.17) we have from 
(2.16) 

Here is the coherence operator, whose kernel 
r(r4,r2;r, ,r3) combines with the functions f *(r4) and f (r3) 
of the external coordinates r, and r3. In addition, Eq. (2.18) 
reflects the statistical independence of the random fields E 

and f .  In the case of a regular field f the statistical average in 
the definition of F in (2.18) can be omitted. 

By virtue of (2.15) the operator f satisfies the Bethe- 
Salpeter equation2'6'32 

where the intensity operator K is defined by the relations 
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which can be reduced by means of (2.12) to the form 

K ( ~ + @ ~ ) = ( G + @ G ) ,  & = R L , ~ ,  (2.20) 

which is invariant with respect to the choice of the parameter 
6, (or LC). Equation (2.19) in the form 

f = f *  + f * K f ,  f*=(H')@(H), (2.21) 

which resembles (2.14), allows us to expand f in a series 

m ,. , . A  

f = ( i 2 - f , ~ ) - ' f , = x  ( f , ~ ) ~ t ,  , 12=I@I. 
0 

(2.22) 

It is easy to see that from (2.13) f ,  satisfies the equation 

&,f ,=j2,  &,=L:@L,, (2.23) 

analogous to (2.5). Applying the operator 2, to both sides 
of (2.21) and using (2.23), we find 

@=j2 ,  &&,-K, (2.24) 

which is similar to (2.13). The equation for the coherence 
function B that corresponds to (2.24) and (2.18) takes the 
form 

Equations (2.11) and (2.25) establish the connection be- 
tween the moments of the field E and the corresponding 
moments of the source f .  For a point source these equations 
go over to (2.13) and (2.24). 

3. THE PAIR-INTERACTION APPROXIMATION 

The absence in the general case of complete statistical 
information about the random field E, as well as the increase 
in difficulties of a computational nature as k increases, 
makes it impossible to sum series like (2.8), (2.10), and 
(2.22). We therefore often limit ourselves to the pair interac- 
tions between inhomogeneities, which is valid when the fluc- 
tuations are sufficiently small. 

In this approximation for the operator A we have from 
(2.8) 

i = j + Q C i r r .  (3.1) 

Substituting (3.1) in (2.10) we find for g, the expression 

. " , - ( E ) ~ + ( E ' ~ Q , E " ) ~ ~ ~ ~ .  (3.2) 

The choice E , = ( E )  simplifies the mass operator considerably, 
From (2.13) and (3.2) it is equal in this case to 

The series expansion of the intensity operator (2.20) begins 
with the term quadratic in E". Consequently, in this approxi- 
mation we have from (3.20) 

where we have taken into account Eqs. (2.4)-(2.6) and the 
self-adjointness of the operator 6 =&I of the dielectric func- 
tion. 

Calculations of the first moments of the field E and the 
Green's enction operator H carried out using the mass op- 
erator MBA in (3.3) are often called the Bourret 
approximation.2,16 The analogous calculations of the second 
moments of E and H using KLA given in (3.4) are referred to 
as the ladder approximation.2,32 

4. DISPERSION RELATIONS 

The passage from the integral equation (2.11) to the cor- 
responding dispersion relation 

results from setting the right-hand side of (2.11) equal to zero 
and substituting the mean field (E) in the form of a plane 
wave 

(E) = Eo exp(ik,r) (4.2) 

The function E,(x,q) is the Fourier transform of the kernel 
E,(r,w) of the operator g,, written in dimensionless vari- 
ables. The parameter a appearing in (4.1) is the spatial scale 
of the correlations, determined by the spatial dependence of 
the binary correlation function 

of the random field ~ ( r ) ,  assumed here and in what follows 
to be statistically h ~ m o ~ e n e o u s . ~  

The parameters (4.3) of the normal plane wave (4.2) are 
found by solving the dispersion relation (4.1). In the approxi- 
mation (3.2) for the function E,(x,q) we have 

Here y is the dimensionless wave vector, and the Fourier 
transform Q,(y,q) of the kernel Q, of (2.4) takes the form 

,, 

The choice of the arbitrary parameter 8, follows from the 
nature of the problem being solved (Refs. 2, 5-7, 16, 19, 22, 
and 28-34). Just as in (3.3) we find the parameter from the 
condition 

which gives rise to a simplification in the expressions for dBA 
of (4.5) and the roots of Eq. (4.1). 

In the present work we use as a criterion for the appli- 
cability of the approximation (3.1)-(3.3) the inequality22 

g - 2 1 ~ B A ( ~ , q ) l  = D I F ( x , ~ I ~ .  (4.9) 

The dependence of the function M on the wave vector x is a 
manifestation of the spatial dispersion due to the inhomoge- 
neity of the m e d i ~ m , ' ~ , ~ ~ , ~ ~  which can be neglected under the 
condition22 
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with the replacement x+q in the kernel of the mass 
 e era tor.^^'^^^^ 

The roots of the dispersion relation (4.1) are determined 
in the usual way by the dynamical properties of the RIM, 
obtained from the mean field (4.2). As a quantitative measure 
of the wave scattering we introduce the dimensionless scat- 
tering index 

a y ,  = j,, =2x(2) ,  x = x ( 1 ) + i x ( 2 ) ,  (4.11) 

where y, is the attenuation rate of the mean field 
i n t e n ~ i t ~ . ~ ~ ~ ~ ' ~  From the definition2 the mean intensity J is 
related to the coherence function B of (2.16) by 

Hence in the mean-field approximation we have 

Using (4.1)-(4.4), (4.11), and (4.13) we find for J ,  

The dimensionless phase and group velocities 5, and 2 , 
are defined by the relations 

where v ,  and c ,  respectively are the phase and group ve- 
locity of a propagating plane scalar wave in the effective 
medium. 

Calculation of the intensity from the mean field (4.13) 
yields an overestimate y ,  for the damping rate.26'29 This is 
due to the contribution to y ,  of the wave phase fluctuations 
that do not affect J .  To eliminate this effect we go over from 
(2.11) to a treatment of Eq. (2.25), which in the approxima- 
tion (3.4) and in the absence of sources assumes the form 

Just as in the case (4.1)-(4.3), we can choose as the solution 
of Eq. (4.16) the function 

$ = n ( ~ + i y , / 2 ) ,  r - r ,  2 R = r l + r 2 ,  (4.18) 

which yields the expression 

for the mean intensity (4.12), similar to (4.14). 
Substituting (4.17) in (4.16) and converting to dimen- 

sionless variables, we can write 

where we have used the notation of Eqs. (4.1) and (4.4). 
Hence for rl =r2=R we find 

The condition for the existence of a nontrivial solution of Eq. 
(4 .20 ,  

which constitutes a dispersion relation for the mean intensity 
(4.19), is similar to the dispersion relation (4.1) for the mean 
field (4.2). The roots of Eq. (4.23) determine the energetic 
scattering index K, related to (4.11) by the inequality 
?es?* .  

We rewrite (4.23) in the form 

where the phase factor 1+9 in general is a function of the vari- 
ables z and q. When condition (4.10) is satisfied cC, depends 
only on q .  Below we consider the approximation A=O, 
which automatically takes into account (4.10). In this case 
from (4.24) and (4.22) we have 

Using expression (4.5) for SBA and the notation (2.2), (4.4), 
and (4.8), we transform (4.25) into 

It is easy to see that in order to simplify the subsequent 
calculations it is convenient to choose the auxiliary param- 
eter E, from the condition 

In view of (4.27) expression (4.26) for EL, is identical in 
form with EBA given by ( 4 . 9 ,  where E, satisfies (4.8). Hence 
we can use the solution of the dispersion relation (4.1) in the 
Bourret approximation to find the roots of Eq. (4.26). From 
(4.27) it follows that we must make the replacements 

where we have also used the notation of (2.2) and (4.1). 

5. SPECIAL CASES 

As an example we consider RIM described by the func- 
tion q ( p )  from (4.4) in the form 

The use of (5.1) in the Bourret approximation (4.5), (4.6) 
enables us to calculate the parameters (4.11), (4.15) over the 
whole range of wavelengths.30 In the case of the function 
(5.1), whose Fourier transform for three-dimensional RIM is 
equal to 

q ( y ) = 8 . r r ( l + y 2 ) r 2 ,  (5.2) 

the dispersion relation (4.1) has two roots in the upper half of 
the complex plane. In the long-wavelength ( q < l )  and short- 
wavelength ( @ < I )  ranges condition (4.10) is satisfied and 
only the "real" root x , ,  for which xy)&1 holds, is impor- 
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tant. The second ("virtual7') root x- yields a small and rap- 
idly damped contribution to the average Green's function in 
these ranges,2930 and can be used to make the resulting solu- 
tion more a~curate.~' 

In the Bourret approximation for y,=2x?) of Eq. (4.11) 
we have3' 

Making the replacements (4.28) in (5.3) and (5.4) we find in 
the ladder approximation (4.25) for ye 

For one-dimensional RIM described by the function 
(5.1) instead of (5.2) we have 

cp(y)=2(1 +y2)-1. (5.2a) 

Analogous calculations in the Bourret approximation yield36 

G 2  q < l ,  (5.3a) 

After renormalizing the parameter E, in (5.3a) and (5.4a) by 
means of (4.28) we find in the ladder approximation 

For RIM with delta-correlated inhomogeneities ("white 
noise"), when the function cp(p) takes the form 

instead of (5.1), the use of Eq. (4.16) and its Fourier trans- 
form (4.20) is complicated by the presence of singularities 
proportional to (5.7). To overcome these difficulties we must 
go over to an equation which is intermediate between (2.21) 
and (4.16), where because of the integration this singularity 
no longer appears. 

Using the operator j@i * on both sides of Eq. (2.21) and 
using the relations (2.3) and (2.18) between E and f and Eq. 
(2.13), we can write for the coherence function B (Ref. 2) 

For a region free of sources Cf=O) we then have 

where we have used dimensionless variables and taken into 
consideration the relations (3.4), (4.4), and (5.7). 

Substituting the function B in the form (4.17) in (5.8) 
and going over from B to J given by (4.19) for p, =p,, we 
find 

Here we have used the notation (4.21) and (4.8), and L ,(z,q) 
is evaluated using Eq. (4.1) in the Bourret approximation 
(4.5). 

It is easy to see that (H*(O)) has a finite value only in the 
simplest case of a one-dimensional medium, when we have 

where e3 is the unit vector parallel to the third Cartesian axis. 
Using (5.7), (5.10), and (4.8) with the Bourret approximation 
(4.57, (4.6) we find 

Since EBA is independent of the wave vector, an RIM de- 
scribed by the function (5.7) has no macroscopic spatial dis- 
persion (resulting from the inhomogeneity of the medium). 
As a result, the average Green's function calculated using 
(5.11) can be represented in the form 

From (5.9) we find using (5.11) and (5.12) and the no- 
tation (4.22), (4.25) that the wave number 2 is equal to 

These values of x in (5.12) and (5.11) and of z in (5.13) 
enable us to find y, and ye .  Calculation using Eq. (4.11) 
yields 

in the Bourret approximation (3.2), (3.3) and 

ye= & q 4 0  (5.15) 

in the ladder approximation (3.4) respectively. In both cases, 
by virtue of (4.9) the inequality qD<1 holds, which together 
with the restriction q < l  of Eq. (5.4), which ensures that y, 
is small, gives rise to the inequalities 

Let us now consider the case of a point source in RIM 
described by function (5.7). Returning to Eq. (2.21), we have 
in the ladder approximation 

j (R)=j . (R)+q4D j*(R-Rl)j(Rl)dR1 , J 
j ( R ) = ( I ~ ( p ) l ~ ) ,  I P ~ ,  E,=(E). 

(5.17) 

Hfre H(p) and (H(p)) are the kernels of the operators H and 
(H) respectively, written in dimensionless variables. Going 
over to k space we find from (5.17) 
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In the case of a one-dimensional medium the definitions 
(5.17) and (4.11) imply 

which for the Fourier transform j, (K) yields 

After substituting (5.20) in (5.18) we have 

By virtue of (5.14) the energetic scattering index ye of (5.21) 
takes the form 

and satisfies the inequalities (5.16). The expression for ?I,, 
like (5.21), was found previously by ~ rekhovsk ikh .~~  

In conclusion we note a way in which the solutions 
(5.15) and (5.22) differ. In calculating variables which are 
linear in the field (the Bourret approximation) we describe 
the field (E) of (4.2) and the average Green's function (H) 
of (5.12) by means of the same parameter y,. But in the 
ladder approximation the quantities (4.19) and (5.17), which 
are quadratic in the field, are studied. The relation between 
these is not as simple as in the first case. 

' h e  definition of i, holds when the random field E has sufficiently general 
properties. However, when E and f are statistically related, the explicit 
form of 6 ,  depends on the behavior of the random field f .  In the present 
work we neglect the statistical action of f  on e. Then the dependence of the 
field E on f is manifested only by virtue of Eq. (2.1), and e and f are 
completely decoupled. 
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