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The integrable system of equations arising in different models of the coherent interaction of light 
in a two-level medium is considered. In particular, the models describe single-photon 
lasing, Raman scattering of light, four-wave mixing, etc. In two- and four-wave processes it is 
assumed that one of the fields is time-independent. Interaction processes are treated in a 
medium with an effective quadratic nonlinearity, taking into account the third-order nonlinearity 
associated with frequency modulation. The model is studied for the first time using the 
periodic form of the inverse-scattering method. Equations are derived which reduce the derivation 
of the general periodic single-phase solution to calculated integrals. For this solution 
Whitham equations are derived, describing the slow spreading and modulation of a compact 
soliton packet. Special account is taken of pumping of the upper energy level of the transition in 
the medium. The situation is investigated in which the nonlinear two-level active medium 
is in a ring cavity. Multistable behavior of the variables of a periodic wave is described for the 
first time as a function of their initial values and the magnitude of the gain in this system. 
It is shown that qualitatively different lasing regimes develop, depending on the sign of the 
coupling constant characterizing the contribution of the cubic nonlinearity and the resonance 
conditions. O 1995 American Institute of Physics. 

1. INTRODUCTION model first proposed and studied in connection with the ISM 

The evolution of high-power laser pulses in nonlinear 
media is one of the most intriguing and complicated prob- 
lems of theoretical physics. Recently developed mathemati- 
cal techniques enable one to solve the Cauchy problem for a 
number of models describing such phenomena as Raman 
scattering, two-photon absorption, and three- and four-wave 
mixing, which are important for nonlinear optics (see, e.g., 
Ref. 1). At present the inverse scattering method   ISM)^ re- 
mains the analytical tool which permits one to obtain the 
most complete description of the evolution of short pulses in 
a nonlinear medium and to predict new nonlinear optical 
effects. Besides the study of the dynamics of fields in passive 
media, the ISM has been applied to study fields associated 
with the generation of pulses in one-pass lasers: in which a 
propagating sink field extracts energy stored in a previously 
inverted medium. Note, however, that this lasing scheme has 
been implemented experimentally much less often than that 
employed in dye lasers and ion and some solid-state lasers, 
where the upper level of the energy transition is pumped 
continuously (see, e.g., Ref. 4 and work cited therein). 

Burtsev et aleS have shown that the pumping of the upper 
level in a two-level system can be included in the Maxwell- 
Bloch model while retaining the integrability of the inverse 
scattering method. A number of other well-known integrable 
models of nonlinear optical processes occurring under con- 
ditions of resonance with the intrinsic energy transition of 
the medium also admit the use of the ISM when a general- 
ized analog of this pumping is i n ~ l u d e d . ~  In the present work 
it is proposed to describe a laser with continuous pumping of 
the upper level by means of a generalization of the integrable 

in our previous work.7 This model describes the interaction 
of three fields in a quadratic medium, taking into account the 
correction to the frequency of the cubic nonlinearity. In the 
present work this integrable model is generalized for the first 
time to the case in which the energy transition is pumped. It 
is shown that this pumping and the nonlinear modulation of 
the frequency give rise to qualitatively new effects, such as 
multistable dependence of the soliton variables on their ini- 
tial values and on the pump variables. The physical applica- 
tions of the model are described in more detail in the follow- 
ing section. 

The phenomenon of the modulation instability has been 
extensively studied in a number of integrable and noninte- 
grable  model^.^ In particular, it has been shown that the so- 
lution of the nonlinear Schrodinger equation in the form of a 
harmonic with constant amplitude evolves into a nonlinear 
(in general, N-phase) quasiperiodic s o l ~ t i o n . ~  Very similar 
development is observed in the numerical study of the 
growth of instabilities in a two-level laser with a pump.10 
Based on these facts, in media where the transverse relax- 
ation time is sufficiently long one should expect quasiperi- 
odic waves to be generated if the seed field consists of a 
pulse which is sufficiently long and powerful and if the re- 
laxation time is long in comparison with the scale of the 
individual solitons (breathers, etc.) which make up the train 
of nonlinear pulses. We note the recent work in which a 
similar phenomenon was observed in connection with the 
generation of a light field in solid-state pumped  laser^.^ Dun- 
can et al." discussed the experimental prospects for produc- 
ing periodic waves with Raman scattering in a two-level me- 

61 4 JETP 80 (4), April 1 995 1 063-7761 /95/040614-12$10.00 @ 1995 American Institute of Physics 614 



dium for relaxation times much longer than the growth times 
of the nonlinear process. This problem is also of interest 
because, as shown by ~ e n ~ u k , ' ~  the soliton regime of Ra- 
man scattering with strong pump depletion is possible, in 
contrast to the periodic regime, only over short times. In the 
present work it is assumed that the envelope of the generated 
light field has the form of a quasiperiodic nonlinear wave. 
We assume that the process by which the field evolves is 
completely determined by the variation of its parameters, 
i.e., the adiabatic approximation is used. Thus, the first step 
consists of finding the general periodic single-phase solution2 
of the model with periodic boundary conditions. 

In Sec. 3, for the first time, the single-phase solution of 
this model is constructed by means of the periodic version of 
the  ISM.'^ The shape of the envelope of the generated field is 
determined by a polynomial function. In the same section it 
is shown that the applicability of the ISM when pumping of 
the upper level is included implies that the roots of this poly- 
nomial depend on the effective length of the medium. When 
pumping is included exact periodic solutions of the model 
cannot be found, so we employ the quasiclassical approxi- 
mation. It is assumed that the typical scale on which the 
fields change due to the action of the pump and that on 
which the soliton-solition interaction occurs are sufficiently 
different that these processes can be separated approximately 
in the analytical description. The problem is divided into two 
parts: 1) the quasiclassical description of the soliton dynam- 
ics in a compact packet, and 2) the study of the time depen- 
dence of the variables due to the action of the pump. 

In Sec. 4, we introduce the Whitham modulation 
equations14 and solve them for the case of a compact soliton 
packet. These equations are used in Sec. 5 to describe the 
regimes in which a modulated periodic wave propagates. It is 
shown that when a periodic wave is injected into the nonlin- 
ear system a "sparse" train of solitons can be transformed 
into a "highly compact" packet and vice versa. We also treat 
a ring cavity with an active nonlinear medium. It is shown 
that the feedback supplied by the cavity and nonlinear fre- 
quency modulation give rise to multistability of the variables 
of the periodic wave, a special case of which is soliton mul- 
tistability. The latter was studied in Refs. 15-17. The present 
case differs with respect to the physical mechanism of mul- 
tistability and in the inclusion of level pumping. In particular, 
it is shown for the first time that the dependence of the soli- 
ton variables on the magnitude of the pump can be multi- 
stable. 

2. FUNDAMENTAL EQUATIONS AND THE MODELS OF 
COHERENT THREE-WAVE INTERACTION WHICH 
THEY DESCRIBE 

The basic system of equations which we studied takes 
the form 

C ~ ~ F + = ~ [ ~ F + - ( ~ ~ R + ~ ~ F + / ~ + E F ~ R + ] ,  

dxF3=i/2[F+R--F_R+]+ W, 

C3yR+=2i[(1F3R++F+]- E~:wR+,  (1) 

where E= + 1. 

FIG. 1. Schematics of four-wave mixing in a two-level medium (model 1 of 
Sec. 2). The horizontal lines represent energy levels and mismatches. The 
heavy lines correspond to the envelope P, , the carrier frequency is Chi, the 
carrier wave number is k i ,  and the phase velocity is f V, (the upper sign 
corresponds to propagation from left to right and vice versa, as shown by the 
arrows). The light lines correspond respectively to the quantities Si  , w, , I , ,  
and ?Ui . The subscript i = l  (i=2) labels the right (left) pair. Schematic (a) 
also describes two oppositely propagating fields having polarization compo- 
nents P, and Si respectively. 

Equations (1) arise in many nonlinear optics problems. 
We briefly summarize the main nonlinear optical processes 
which can be described by the solutions of Eq. (1). 

1. Four-wave mixing 

The initial electric field takes the form 

where Pi and S, are slowly varying envelopes (see, e.g., 
Refs. 1 and 18), Q, and w, are the carrier frequencies, and q, 
and l j  are the wave vectors, respectively. It is assumed that 
the two pairs of fields propagate in opposite directions, so 
that the two-photon resonance conditions Q T w j  = wo+ v 
hold; here the frequency mismatch satisfies v400,wj , a j  , 
j = 1,2 (Fig. 1). The resonance conditions not only allow the 
nonlinear mixing effect to be enhanced considerably (by or- 
ders of magnitude), but also permit us to drop the terms in 
the equations which describe the cubic self-interaction of the 
fields. This is also what allows the ISM to be employed in 
this model. The process of nonlinear mixing of the fields is 
determined by the two-photon-induced Kerr n ~ n l i n e a r i t ~ . ' ~  
Additional conditions for the applicability of the ISM in the 
case of four time-dependent waves are the following: the 
model is one-dimensional, the phase velocities of the fields 
propagating in a given direction are equal to one another, and 
the wave mismatch is equal to zero. Different combinations 
of the resonant conditions and choices of the directions of 
propagation for the fields give rise to more than ten different 
four-wave mixing schemes. The analysis carried out in Ref. 
20 shows that all integrable versions reduce to three math- 
ematically distinct models. In the majority of experiments on 
the observation of four-wave mixing which are familiar to us 
one of the fields can be taken to be constant to a good 
approximation.18 This condition also substantially reduces 
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the difficulty in synchronizing the field pulses, required for 
the effect to be observable. The constancy of one of the fields 
is ensured, e.g., in the limit Ipll 8 1P21. It is important to 
note that the latter condition allows us to extend the range of 
physical variables in which the ISM can be applied. The 
important requirement that there be no wave mismatch and 
that the waves with envelopes have equal phase veloci- 
ties is thereby removed. Expansion with respect to the ratio 
IP2111 PI I reduced the time-dependent equations for four- 
wave mixing to the system (1). 

For the interaction scheme (a) illustrated in Fig. 1 we 
have the following values of the parameters 
A=q2- 12-ql + l l  , where A is the wave mismatch and V1,2 
and U1,2 are the phase velocities of the fields and S,,,, 
respectively: 

Here No is the atomic density and no is the constant differ- 
ence in the populations of the states associated with the tran- 
sition. We assumed that the scattering tensor K ~ ~ =  a i j ~  is 
real. Similar expressions for Pij can be derived from Eqs. (3) 
by means of the interchanges fllc)f12, w1-w2, ql++q2, 
1,-12. The notation used in Eqs. (1) has the following in- 
terpretation for the scheme of Fig. la: 

In this approximation (R,=const) we have 

u = A ( Y ~ ~ I ~ ~ + & ' ~ R ~ ,  y =jR3/2,  l l = i l ~ i l .  - 
The normalization has been chosen so that the pseudospin F 
satisfies the relation F=(F3 , F  +) 

E ~ F + ~ ~ + F : =  I. (4) 

To save space we omit the corresponding expressions for 
schemes (b) and (c) of Fig. 1 (see Ref. 7). Note that for those 
schemes E= - 1 holds. 

The special case of four-wave mixing in this model, 
E= - 1, corresponds to degenerate four-wave mixing 

used in wave-front conjugation.21 

2. Interaction of two polarized waves in a medium with 
cubic nonlinearity 

Two wave packets propagating in opposite directions in 
a medium with characteristic frequency close to the sum or 
difference of the carrier frequencies has been actively studied 
both theoretically and experimentally.21 In Ref. 22 a Hamil- 
tonian is used to describe this process which yields equations 
formally identical with the model of an anisotropic chiral 
field over the group O(3). For the case of uniaxial anisotropy 
this problem is formally equivalent to the model treated 
above under the condition V1 = V2, U1 = U2, = 12, A=O, 
~ = l .  Here the quantities represent the polarization com- 
ponents of one wave and S1,2 those of the other. In the limit 
1Pl181P21 the equations of this model also reduce to Eqs. 
(1). In Ref. 22 it is noted that this model can be used to 
describe the propagation of laser fields in a plasma under the 
condition that the plasma frequency is equal to the difference 
of the carrier frequencies of these waves. For the models 
presented above the requirement that the pair of waves 
propagate in opposite directions is introduced only to sim- 
plify the description. After minor changes all results can be 
used as well for pairs of waves propagating at slightly dif- 
ferent angles; this is used to increase the effective interaction 
length. The approximation used here enables us to include 
the wave mismatch that results without losing the integrabil- 
ity of the model. 

3. Raman scattering and two-photon propagation of fields 
in a two-level medium 

Two-photon processes in a two-level medium have been 
investigated in numerous theoretical and experimental treat- 
ments (see, e.g., Refs. 1 and 19). A number of interesting 
analytical results have been obtained by studying several in- 
tegrable models. The most interesting of these was described 
in Ref. 23, where the change in occupation numbers was 
taken into account under resonance conditions and it was 
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assumed that the phase velocities of the pump field and the 
Stokes field are equal. These two restrictions, which are im- 
portant experimentally, can be removed if we assume that the 
pump is not depleted or the difference in the occupation 
numbers of the two states of the transition is constant. In 
particular, the latter assumption is applicable in experiments 
on cooperative Raman scattering.24 In many experiments on 
induced Raman scattering the constancy of the difference in 
occupation numbers holds to high accuracy (l0-~-10-~; 
Refs. 11 and 25). But at the same time, nonlinear frequency 
modulation effects, which in our model are described by 
terms with constant coupling 11,,, play an important role. In 
Ref. 11 a model of Raman scattering corresponding to Eqs. 
(1) with 5,#0, ~ = 1 ,  11=0 was used for numerical analysis of 
the field conversion process. Good agreement was found 
with experimental observations for pulses of length less than 
the relaxation time of the medium by factors of a few times 
10. Thus, the use of a model of the form (1) to describe 
two-photon processes is not only facilitated by the conditions 
of a majority of the familiar experiments but also greatly 
extends the range of physical parameters and also permits the 
inclusion of continuous pumping of the levels while retain- 
ing the applicability of the ISM. 

When the difference in the occupation numbers of the 
levels associated with the transition is constant, the 
Maxwell-Bloch equations can be written in the form (I), 
where 

here r3  is the difference in the populations of the levels as- 
sociated with the transition, No is the number of atoms, r + is 
the polarizability of the medium, t and z are the temporal and 
spatial variables respectively, S1,2 are the slowly varying en- 
velopes of the fields with carrier frequencies R,,, such that 
C11-&2=w,,+v0, holds, where wo is the transition fre- 
quency and v, is the mismatch. The values of the constants 
b1,2 and KO are given by ~teudel.'~ In this approximation the 
transition to the variables of Eqs. (1) is given by the relations 
v = v o ( ~ f l o ) - l  + 12R3, y =jR3/2,  11= i1~;l. The values 
given above correspond to levels with constant occupation 
numbers. The case in which the pump is not depleted is 

derived by the formal interchange R++-+F+ , R3*F3, 
x+-+2y. Raman scattering (two-photon absorption) corre- 
sponds to the value E= 1(- 1). 

The ordered models of three-wave interactions, which 
have been used, e.g., to study induced Brillouin scattering, 
excitation of exciton transitions, etc.," also reduce to Eqs. 
(1) under appropriate restrictions. An important limitation on 
the applicability of the ISM for these models is the condition 
that the phase velocities of the two fields be equal. If the 
difference in the carrier frequencies of the two "fast" waves 
is comparable with the time scale on which the third "slow" 
field varies, it is necessary to take into account the time 
derivatives of the nonlinear polarizability of the medium in 
deriving the model equations. It is easy to show that retain- 
ing the first time derivative of the product of the envelopes of 
the fast fields leads to a system of equations similar to (1) 
(Ref. 7). 

4. Effective two-level model; model of a Raman laser 

The three-level scheme for the interaction of molecules 
with laser radiation and the Stokes field can also be reduced 
to an effective two-level system when the mismatch is suffi- 
ciently large and depletion of the pump is neglected. This 
procedure has been carried out in recent treatmenhZ6 It can 
be shown that when relaxation is neglected these equations 
are identical with (1) except for notation when pumping of 
the upper level is omitted (W=O). 

5. Single-photon interaction with a two-level medium, 
including the quadratic Stark effect 

The Maxwell-Bloch equations of this model take the 
form 

Here E is the slowly-varying envelope of the field with 
frequency o=wo+ vo; q, and d are its transition frequency 
and dipole moment; K= K~ - K ~ ,  where K,,, are the polariz- 
abilities of the levels; R is the polarizability of the transition; 
and N is the difference in the level populations. Equations 
(5) are the same as (1) after the substitutions 

The last model with K=O is used most often of those treated 
above to describe coherent effects occurring in a two-level 
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medium (including one with gain); see, e.g., Ref. 1. In par- 
ticular solutions it has been shown that the nonlinear fre- 
quency shift results in substantial modification of the soliton 
shape. Recent workz7 has revealed that the optical Stark ef- 
fect has a major effect on the gain of radiation pulses in 
high-power laser systems. The two-level model of a single- 
pass laser amplifier (neglecting pumping, W=O) has been 
studied using the ISM in Ref. 3, and including the quadratic 
Stark effect in our work.7 Burtsev et al. have shown that the 
apparatus of the ISM can be applied to a model correspond- 
ing to the special case e=1, f;,,=O of the model (I), where 
pumping of the upper level is in~luded.~ The list of nonlinear 
optics models which are integrable by means of the ISM, 
taking into account an analog of the pump, was substantially 
extended by Burtsev and ~ a b i t o v . ~  The model investigated in 
the present work, however, is absent from this list. 

3. CONSTRUCTION OF SINGLE-PHASE SOLUTIONS OF 
THE MODEL 

There exist different versions of the ISM apparatus, 
which enable one to construct periodic (in general, N-phase) 
solutions of systems of equations with periodic boundary 
conditions. More convenient for our purposes is the approach 
presented in Refs. 13, which is what we will use here. 

As already pointed out, the periodic version of the ISM 
apparatus is being applied to the present integrable system 
for the first time. The presence of a "pump" makes the spec- 
tral parameters depend on position. We will assume that this 
dependence is slow in comparison with the nonlinear period 
of the wave, i.e., the separation between solitons which make 
up the train. We will find an exact periodic solution for 
W=O, [,,,# 0. The next stage will consist of treating the 
effect of changes in the spectral parameters of the periodic 
solution due to the pump (WZO, &=O, ll f 0 )  on its shape. 

The Lax representation for the integrable system (1) ne- 
glecting the pump was found in Ref. 7. In the presence of a 
pump it retains its form when the dependence of the spectral 
parameter A on y is taken into account. 

Thus, Eqs. (1) can be represented in the form of a com- 
patibility condition for the following two linear systems of 
equations: 

where @ is a two-component function and we have written 
c2= -e/4, e= t 1, a2= -(L1+l2)/2. The Lax representation 
(6), (7) is valid for W=O, 11,,# 0, where F3 with a bar is the 
same as F3 in (1) without a bar. The condition for the appli- 
cability of the Lax representation for W#O, 11#0, 12=0 (the 
term containing l2 is eliminated by a simple transformation 
of the fields R+  , F + ,  which renormalizes 11) requires that 
the spectral parameters satisfy the condition 

and F ~ = F ~ + ~ E ~ ~ W / ~ .  
Following Ref. 13 we introduce the following quadratic 

characteristic functions: 

where 41,2 and denote different solutions of the system 
(6), (7). These functions satisfy the following system: 

axf= J F T ~ I ( R + ~ + R - ~ ) ,  

1 
dyg=r[(211A + e)F3g- J=F+ f], 

It follows from (10) that the function P(A) = f 2  + gh is 
independent of both variables, i.e., dyP(A)=O, dxP(A)=O. 
The explicit form of the periodic solution is determined by 
the dependence of P on the spectral parameter A. The single- 
phase solution is given by the polynomial 

where Ak are the roots of the polynomial, fixed by the initial 
conditions. It can be shown that the corresponding quadratic 
eigenfunctions satisfying the system (6), (7) can be found in 
the form 

Substituting these expressions in Eqs. (10) we find 

From (10)-(13), using expressions for the zeroth and fourth 
powers of A, we find 

Here the coefficient P4 has been set equal to unity without 
loss of generality. The above relations show that 
p(A,x,y) = - 2 f i o ~ + / ~ +  is a zero of the function g(A), 
i.e., the latter can be represented in the form 
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Substituting this expression in (10) and using (14 and 
f 2 ( ~  = p = P ( p )  we find 

d x g ( h = p ) = 2 i d = ~ + m  

and a similar expression for dyg. Hence 

~ x y = 2 i $ G j ,  4 p = i J M .  

From the last two equations it follows that p depends on a 
single variable 0 [the corresponding solution of the original 
system of equations (1) is called a single-phase solution] 

From (10) and (16) it follows that the functions F3 and IR+I 
depend only on the similarity variable 0. This property per- 
mits one of the relations following from (1) to be integrated: 

where C is a real constant. 
The conditions under which P can be written in the form 

of a finite polynomial, generally speaking, impose a number 
of restrictions on the values of the spectral parameters and 
hence the form of the solution. For an N-phase solution the 
number of such restrictions increases with N. For the single- 
phase solution they can be found directly from the expansion 
(11) and (17). Thus, for the first to third powers of X we find 

Combining the equations in (18) pairwise we find a number 
of relations among the functions. A similar relation follows 
from (17): 

Comparing (18) and (19) we find that the coefficients or 
roots of the polynomial and the constant C should satisfy the 
following relation: 

Equation (20) can be regarded as a definition for the 
constant C. In this case the roots of the polynomial P can be 
arbitrary. In the general case the constant C is determined by 
the propagation regime of the "seed" fields. For example, for 
two-photon propagation with field intensities such that F3=0 
holds it is natural to assume that the polarizability of the 
medium vanishes, i.e., C=O. In the case of a multipass sys- 
tem the constant C can be found from the boundary condi- 
tions. The condition (20) imposes a restriction on the roots of 
the polynomial P. Note that the existence of such conditions 
is due to the symmetry of the model. Thus, in the case of the 
chiral field model based on the group O(3) or the model 
describing four-wave mixing of fields in a two-layer me- 
dium, there are two such  condition^.^^ The reduction of these 
models by virtue of the assumption that one of the fields is 
constant decreases the number of conditions of the form (20) 

to a single one and gives rise to (1). This kind of restriction 
does not occur, e.g., when the ISM apparatus described 
above is applied to weakly nonlinear models such as the 
nonlinear Schrodinger equation13 or its variant containing a 
differentiated nonlinearity.29 The spectral problem (6) also 
arises in the case of the modified nonlinear Schrodinger 
equation.29 However, comparison of the relations found 
above with the analogous ones in Ref. 29 shows that besides 
condition (20) the periodic solutions of these models in gen- 
eral are different. 

The expressions given above also enable us to find a 
more general single-phase solution of the Maxwell-Bloch 
equations in a two-level medium for both ~ = 1  and 
j1,2= W=O than that which is familiar from the literat~re.~' 
No explicit expressions for the roots satisfying (20) can be 
found in the general case. We will give an example of a 
polynomial whose roots satisfy relation (20) for arbitrary 
complex a +O, Al,2 and C =0, E= 1: 

The functions F3 ,, IR +I, IF+I  can be expressed in terms 
of C, p(0) by means of the relations (4) and (17) given 
above. Thus, e.g., 

The integral 

can be expressed in terms of Jacobi elliptic functions. We 
give two solutions for which the roots u,, , n=1-4 of the 
polynomial P are imaginary: a, = i A, , Im A, =0, 
Al>A2>X3>A4. For A 1 > x l ~ X 2  we have3' 

where 

For A 2 > x 2 a A 3  we have 

where O is the same as in (23) and we have written 
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4. THE WHITHAM EQUATIONS 

The existence of a representation of Eqs. (1) in the form 
of a compatibility condition for the two linear systems of 
equations (6) and (7) including a nonzero pump W#O im- 
plies that the spectral parameter depends on the position y.  
For a one-soliton solution this dependence means that the 
shape and velocity depend on y and the solution of Eq. (8) is 
completely determined. For the one-phase solution the time 
dependence of the roots of the polynomial P satisfies a com- 
plicated system of nonlinear equations, which can be found 
by studying the evolution of the integrals of the model. 
These equations cannot be solved using the ISM. Conse- 
quently, for W=O we use the quasiclassical approximation 
first employed by Whitham.14 In this approach the integrals 
of motion are averaged over the fast nonlinear oscillations or 
over the period between solitons formed by the periodic 
wave. We study processes that take place on characteristic 
scales of the variables that are much larger than this period, 
i.e., the slow modulation of a large packet of "closely 
spaced" nonlinear pulses. Averaging over the period yields 
the set of Whitham equations for the spectral parameters, the 
roots of the polynomial P. 

In Refs. 32 and 33 the technique developed using the 
ISM is presented, permitting the Whitham equations to be 
found directly in diagonal form. We will use the method of 
Ref. 33, which allows us to reduce a complicated (generally 
speaking) problem to a general procedure. 

Using the Lax representation (6) ,  (7) we can easily find 
the following relation: 

We introduce a new normalization for the functions 
f,g,h:f2+hg=l. Using (15) and (25) we find 

The oscillation period T is determined by the following 
integral: 

where K(k) is the complete elliptic integral of the first kind 
with modulus k: k2=[(A1 - h2)(h3- h4)]/E(k1 - h3)(i2- h4)], 
and the Ak are the roots of the polynomial P arranged so that 
Al>A2>A3>X4. The integral in (27) is carried out around the 
cut between A1 and A2 or between A, and h,. The average 
over the period T is performed using the obvious formulas 

Assuming successively A=&, n =1-4 we find from (26) 
and (27) 

A-A,  

Expression (26) has a singularity for A=A, resulting from the 
derivatives 

In Ref. 33 it is shown that the condition that the coeffi- 
cients of these two derivatives vanish yields the desired 
Whitham equations. In our case these equations take the 
form 

Here 

( A ~ - A ~ ) E ( ~ ) - ( A I - X ~ ) ~ ( ~ )  ) = (hl-A4)(h,-h*)K(k) 

where Vo = -2& = - ~ ~ A ~ , X ~ , X ~ , A ~ .  The expres- 
sion E(k) refers to the complete elliptic integral of the sec- 
ond kind with the same modulus k as in Eq. (27). Recall that 
only three of the A, are independent if the constant C is 
given in advance. 

The diagonal form of Eqs. (30), which results when the 
above approach is employed, gives rise to very important 
simplifications in the solution of these equations (cf. Ref. 
34). It is obvious that the evolution of the roots Ak is deter- 
mined by the initial values of the fields. To be specific let us 
consider the case in which a step function is propagating, 
i.e., the field R+  has the form R+(x,y) =const, x=O, y S O  
and R+(O,y)=O, y >O. Let us choose the solution (23). We 
restrict ourselves primarily to a detailed study of this case, 
since the purpose of the present work is to describe the quali- 
tative behavior of a new effect. Note that these properties are 
preserved when more general solutions are considered, in- 
cluding those with the restriction (20). 

Consider the behavior of the solution near the leading 
edge of the step. Numerical results show that when powerful 
steplike pulses propagate a packet of pulses develops in the 
neighborhood of this front, whose shape approaches a soliton 
asymptotically (see, e.g., Refs. 2 and 34). This limit corre- 
sponds to X2+A3, k,+l. Assuming A2,3=5+&/2, we 
find 

From Eq. (30) we find 

The self-similar solution of (30) such that Xi depends on the 
single variable x/y follows from the representation of the 
Whitham equations in the form 
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FIG. 2. Dependence of AL=A(L){,-c on &=A(0)51-~: 1)  
g = ~ { : ~ = l O ;  2) e=-1, g=10; 3) e = l ,  g=-10; 4) €=-I,  g=-10,  
respectively. 

From (32) and (33) it follows that 

where Q = ~ ( A ~ - ~ ) ( ~ - X , ) ( A ~ - A ~ ) - ~ .  In the logarithmic ap- 
proximation the solution to (34) takes the form 

The separation Lo between the peaks of the solitons in- 
creases logarithmically slowly: 

The second limiting case k l 4 O  corresponds to quasihar- 
monic oscillations at the trailing edge of the wave packet. 
Note that similar solutions of the Whitham equations occur 
in other  model^.^^'^^ The details of the model are specified by 
the restrictions on the set of roots of the polynomial P. 

5. MULTlSTABlLlTY OF A PERIODIC WAVE 

Let m ,  ,mob= W-' be the characteristic scales on which 
the packet envelope varies due to the interaction of the soli- 
tons in the packet according to the Whitham equations, 
m , 4 m O b  and m w S m o b  the reciprocal of the amplification 
length, respectively. In the first case the gain occurs adiabati- 
cally slowly in comparison with the intersoliton interaction. 
The solution of Eq. (8) 

FIG. 3. Dependence of AT (the spectral data of a transmitted wave) on 
G=LW (the gain); {,=I, T,=0.1. The solid trace corresponds to e=1 and 
the broken trace to e= - 1. The insert depicts a schematic of the ring cavity 
with the nonlinear medium (NM). Here A, = 5 is the parameter of the 
field U, injected into the cavity and U ,  = CJ+(L,X) is the transmitted 
field. 

describes the dependence X(L) of the spectral data at the exit 
from the sample, y =L,  on the initial values, which are de- 
scribed in turn by the solutions of the Whitham equations. 
This dependence for a fixed variable x is shown in Fig. 2. 
Depending on the signs of the constants qualitatively differ- 
ent lasing regimes are realized. The curves in Fig. 2 show 
that as the periodic field injected into the nonlinear medium 
evolves an abrupt change in the relation between the field 
parameters can develop, as a result of which the shape of the 
envelope of the generated field can change. Thus, if the roots 
h2,3(0) are located close to a rapid rise in the curve I then the 
quasisoliton regime of the initial wave (23) can change into a 
quasiharmonic regime on leaving the sample. For the solu- 
tion (24) the opposite transition can occur: a packet of quasi- 
harmonic pulses can be transformed into a train of solitons. 

Since nonlinear multiwave processes are usually studied 
in multipass systems it is of interest to investigate the effect 
of the feedback caused by the cavity. The standard design of 
a ring cavity is shown in the insert of Fig. 3. The transmis- 
sion coefficient of the upper mirrors is T ,  and that of the 
lower ones is unity. It is assumed that we can neglect the 
term with 5, in the original system (1). The boundary condi- 
tions imposed by the cavity relate the values U I = R +  of the 
field at the entry to the cavity to the values UT at the exit and 
take the form (see, e.g., Ref. 8) 

where 8, and X ,  are the cavity mismatch and the time for a 
field pulse to traverse the cavity. Here x and y play the role 
of the temporal and spatial variables respectively. Equations 
(8), (30), and (37) cannot be solved simultaneously in closed 
form. We will assume that the slow variation of the param- 

621 JETP 80 (4), April 1995 A. A. Zabolotskii 621 



eters A with respect to y is completely determined by the 
dependence (8). In the approximation in which the field vari- 
ables change slowly over a single pass through the cavity we 
find 

In deriving (38) we have used the approximations 
R+,,(L,x) -R+,,(O,x)=LdyR+,,(~ =L,x), R+,,(L,x) 
-R+ ,,- ,(L,x)--X,d,R+,,(y =L ,x), where the subscript n 
refers to the nth pass through the cavity and 4, is the cavity 
mismatch. Here U,,,  are the field injected into the cavity and 
the transmitted field respectively. We further assume that a 
whole number of solitons falls within the length of the non- 
linear medium. To find the conditions on the wave param- 
eters we reduce (38) to a relation for the integrals of motion 
and average over a wave period. In the present work we 
restrict ourselves to the quasisoliton regime. We take 

--A -ih A - -A - '  - 4- , '- 3-1d, Imh=Imd=O, h>d.  For the 
solution ,u=ix, h>d>x>O, E= -1, h 4 d  we find 

An analogous expression holds for ,u=ix, h > X> d > 0, 
~ = l ,  d+O. In the derivation of (39) it was assumed that the 
speed of propagation of the pulses in the nonlinear medium 
is much less than the velocity outside it. 

A plot of the multistable dependence of the transmitted 
wave parameter as a function of the wave parameter injected 
into the cavity is shown in Fig. 4. The branches having nega- 
tive slopes correspond to unstable states. 

The behavior of the periodic solution described above in 
a multistable system can be shown to persist in a more gen- 
eral solution of the model. Note that for the solution (24) 
there is another set of interchanges of regimes in a multi- 
stable medium. Thus, for similar values A,,, a situation can 
arise in which switching occurs from the regime of quasihar- 
monic oscillations to the quasisoliton regime of periodic 
wave propagation. 

Equation (39) also describes a new effect, multistable 
dependence of the parameters of a periodic wave and, in 
particular, of the soliton amplitude on the gain coefficient 
G = WL (Fig. 3). It is well known that in ion lasers the quan- 
tity W is determined by the current and can vary over a wide 
range.4 This allows effective control of the pulse-generation 
process in a bistable system. For E= -1 the lower branch 
goes to infinity. This gives rise to the regime of "hard" ex- 
citation. 

When W increases, at some point the spectral parameter 
undergoes bifurcation. Assume that initially this parameter 
corresponds to a harmonic wave. Using the formalism of the 
monodromy matrix we can show that this bifurcation is re- 
sponsible for a transition from a harmonic wave to a nonlin- 
ear wave described by an elliptic function of the first kind. 
This approach is of interest for analytical investigation of 

lasing when perturbation theory is inapplicable, e.g., pro- 
cesses by which N-phase nonlinear waves transform into (N 
+ 1)-phase waves. 

6. DISCUSSION OF THE RESULTS OBTAINED 

In the present work we have found for the first time 
quasiperiodic solutions of the model in question for W=O. A 
quasiperiodic wave arises naturally in many nonlinear optical 
multipass systems if the relaxation times are sufficiently 
long. Certain instabilities that occur in lasers evolve into 
quasiperiodic waves.'' As shown in the present work, the 
dependence of the solution parameters on the amplification 
length and the nonlinear frequency modulation can lead to 
new effects, in particular soliton multistability. 

Use of the inverse scattering method to study evolution 
models enables us to obtain new qualitative and quantitative 
information about the evolution of the fields. At the same 
time, its applicability is related to a number of restrictions on 
the physical parameters of the medium. In the present model 
a periodic solution is found for systems without pumping, 
W=O. At this stage we have been unable to generalize the 
periodic form of the ISM to the case WZO. However, in the 
soliton case the ISM can be generalized without difficulty to 
the nonzero-pump case by using the formalism of Ref. 7. 
Then, as in the present case, the spectral data (i.e., the soliton 
dimensions and velocity) in a ring cavity develop multistable 
dependence on the initial data. To describe this effect pre- 
cisely we can use the solution in the "soliton limit" con- 
structed above, including the dependence on the parameters 
and position. The conditions under which multistability of 
the parameters Ak is observed numerically take the form 

Several different kinds of multistability arise, depending on 
the sign of E, W, and 5,. For model 5 the magnitude of 5, is 
small in comparison with the other constants and critical 
field powers must be achieved in order to observe multista- 
bility of the field amplitude. Thus, for a C02 laser the power 
should be of order 2-4 T W I C ~ '  (cf. Ref. 27). For the two- 
photon interaction 111(=1 holds, and to observe amplitude 
multistability in cesium vapor under the conditions of Ref. 
21 the fields should have a power of order 1-5 MW/C~' .  For 
model 1 the quantity c1 depends on the carrier frequencies of 
the fields and can be chosen without difficulty to be much 
greater than unity, ((ll=lO-lOO. This corresponds to reduc- 
ing the critical values of the field strength by a factor of 
10'-10~. The first of conditions (40) for small values of 5, 
can be satisfied in multipass systems. 

Consider the solution (23) with the condition C = 
- a, which implies that in the absence of a field R + = O  
the system is in the ground state, i.e., the population satisfies 
F3=-1. In this case the maximum of the field intensity is 
maxp + l 2 = 4 [ J m  - A:]. By choosing a sufficiently 
small value A4 we obtain small subthreshold values of the 
field strength. At the same time A1 must be large and satisfy 
(40). The multivalued behavior of A, corresponds to multi- 
stable behavior of the characteristics of a periodic wave such 
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FIG. 4. Dependence of A,=A(L) on A, = &A(o), T,=0.1, 5,=1 in the 
ring cavity (see insert of Fig. 3): 1 )  g=  WL =0,2)  € = - I ,  g=10; 3) €=-I, 
g=-10 ;  4 )  c = l ,  g=10; 5)  €=l, g=-10 .  

as the depth of modulation and the period of the nonlinear 
oscillations, as well as the nonlinear phase of the field. 

We present an explicit special case of the periodic solu- 
tion (24) of Eqs. (I), determined by "supercritical" values 
Xk, k=1-4 but corresponding to a small power of the field. 
Assume yl=Xl=-A,, y2=X2=-A,, y1>y2#x3>0, 
v3=ix3, Im x3=0. Using the formulas given above we find 

Here dn( yl 8,k3), cn(y, 8,k3), sn(yl 8,k3) are Jacobi elliptic 
functions and E(amy18,k3) is an elliptic integral of the sec- 
ond kind.31 The soliton limit k3+l corresponds to vanish- 
ingly small amplitudes of the field, while the quantities y,,, 
can be large enough to satisfy conditions (40) for soliton 
multistability. Thus, to obtain an optical trigger when peri- 
odic waves are used it is not necessary to have large values 
of the power, which actually shorten the lifetime for the op- 
tical device and require the application of complicated tech- 
nology. 

The imaginary part of the spectrum corresponds to soli- 
ton or periodic solutions, while a continuous real spectrum is 
associated with processes such as superradiance or Raman 
scattering.7 In the case of Raman scattering the switching of 
the propagation regime of the Stokes field under pump- 
depletion conditions may be the reason for the appearance of 
soliton-like pulses of the Stokes field. 

Numerical solution of the Whitham equations (30) for 
the case in which all the parameters Ak as functions of y are 
determined by Eq. (8) shows that for cS2<O, W>O there is 
an attractor Xk+1/c2. The solution approaches an algebraic 
soliton. Assume that W>O holds and hk(y = 0) are real. It 
can be shown that after a finite "time" y the spectral param- 

eters acquire an imaginary correction. This process may be 
associated with the production of a soliton from the continu- 
ous spectrum. 

The conditions for the applicability of the ISM require 
taking into account "friction" or "pumping" for E= + 1 re- 
spectively with specified coefficients in the last of Eqs. (1). 
For an ion laser, e.g., the quantity W is given by the magni- 
tude of the current and can be varied over a broad range., 
This allows us to "adjust" the parameters of the system to 
"precise" values. The size of the losses or of the pump can 
be adjusted to the precise variation of the cavity properties. 
In addition, preliminary numerical calculations reveal that 
the typical multistable dynamics should persist even when 
the variables undergo substantial (of order unity) deviations 
from their exact values. For the Raman-scattering or two- 
photon interaction models including nonzero pumping WZO 
may correspond to two situations. First, models of a two- 
photon laser with pumping of a two-level dipole-forbidden 
transition with nondepletion of the pump (or of one of the 
fields); second, models of the two-photon interaction with a 
transition having a constant difference between the popula- 
tions and a constant external pumping of the intensity of one 
of the fields. The latter situation can be realized in a multi- 
pass system. 

We will not dwell on the physical applications of the 
other models described in Sec. 2 with WZO, since this can be 
done in analogy with those presented above. 

The above results correspond to the quasisteady case. 
Here the quasistationary behavior of the periodic solution is 
to be understood as an adiabatically slow variation of the 
basic properties of the wave in the process of evolution un- 
der the influence of the soliton-soliton interaction and the 
perturbations. Often the main contribution to the perturba- 
tions comes from relaxation and diffraction effects. The in- 
fluence of diffraction may be reduced by the choice of the 
geometry of the nonlinear media. In order to estimate the 
contribution made by relaxation to the medium we use the 
conditions of the experiment performed by Duncan et al." to 
observe Raman scattering. In this work a cell of length 1 m 
containing hydrogen at room temperature and a pressure of 
2-100 atm was used as the nonlinear medium. The laser 
beam used as a pump had a diameter of 60 cm and an energy 
of 10-20 mJ. The wavelengths of the fields were 532 nm and 
683 nm. The transverse relaxation time was T2=2.3 ns, i.e., 
much greater than the length of the injected pulses (20-40 
ps). Under these conditions the slow deformation of the char- 
acteristics of the periodic wave due to the finite relaxation 
time may not result in loss of its quasistationary behavior in 
the adiabatic approximation. However, in view of the fact 
that this question has not been studied in detail here, we will 
assume that the condition for quasisteady behavior is 
To<.T2, where To is the wave period. Such a relation be- 
tween the characteristic time of the field and the relaxation 
time may holds even for a two-level solid-state laser with 
flashlamp pumping of the upper level.4 

In addition to relaxation losses a ring cavity exhibits 
losses at the mirrors. These losses may be rendered negli- 
gible for all the fields taking part in the interaction by choos- 
ing the reflection coefficient of the mirrors close to unity, 
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R =0.900-0.997. The period To undergoes an increase due to 
interaction between the solitons in the curse of the evolution. 
Let us estimate the cavity parameters for which we can ob- 
serve multistability of a periodic wave in the quasisteady 
regime. Using Eqs. (34) and (36) we find the condition that 
the change in the shape of the wave over the time during 
which the multistable behavior develops be small: 

where Lo and L are the distance between peaks of the soli- 
tons and the length of the nonlinear medium respectively. 
This last condition may holds under the experimental condi- 
tions of Ref. 11. Note that the formulation of the problem on 
observing the evolution of a packet of solitons differs from 
that employed in Ref. 11. To investigate the soliton regime 
we must inject pulses of the pump and Stokes fields which 
are similar in energy.20 Models of four-wave mixing use the 
induced Kerr nonlinearity resulting from two-photon interac- 
tion of the fields with the two-level tran~ition.'"~~ Hence the 
estimates given above can also be used for models of the 
four-wave interaction. The combination of the soliton-soliton 
interaction and the relaxation can cause time-independent 
structures to develop. 

This kind of stabilization is described in work on the 
propagation of individual (nonsoliton) pulses in a ring cavity 
with a saturated absorber,15 a fiber lightguide with a particu- 
lar type of nonlinearity,16 and soliton multistability in a ring 
cavity.17 

The single-phase solution constructed here can be used 
(as an exact solution) to study some systems of equations 
which are similar to (1) but are not integrable. These may 
include the Maxwell-Bloch equations treated in Ref. 36 
which showed that a frequency shift proportional to the dif- 
ference in level populations results in considerable modifica- 
tion of the soliton shape. This shift, which is due to the 
dipole-dipole interaction in a dense gas is proportional by 
virtue of (17) to the field strength for the single-phase self- 
similar solution. The single-phase solution of (1) with C2#O, 
tl=W=O, ~ = l  is the solution of the model treated in Ref. 
36, for which the ISM methodology is inappropriate. 

The theory of integrable evolution models together with 
numerical calculation reveals that the asymptotic behavior of 
the waves is often determined by the dynamics of soliton or 
periodic waves. Hence spatially coherent structure can exist 
even for chaotic temporal behavior.37 Multistable behavior of 
a periodic wave can bring about switching of the spatial 
structures, in some situations changing the regimes to cha- 
otic. These processes can be studied using the technique de- 
veloped above. When we take into account t 2 # O  in the evo- 
lution of the field in a ring cavity the spectral parameters 
become dependent on x or on the number of traversals of the 
cavity (in the approximation used here). It can be shown that 
as the field evolves a transition from a one-band solution to a 
two-band solution, etc., occurs. 
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