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1. INTRODUCTION 

The accuracy with which one must calculate the dipole 
matrix elements in hydrogenlike systems is determined by 
the progress in experimental techniques in two areas: in mea- 
surements related to the radiative level widths (lifetimes of 
the levels), and in studies of the behavior of energy levels in 
moderate electric fields. 

Precision spectroscopy of the hydrogen atom and other 
hydrogenlike systems is being intensively developed for met- 
rological purposes. Recently Koze et al.' carried out a preci- 
sion experiment to determine the fine-structure constant via 
the Stark effect for the levels of the hydrogen atom with 
principal quantum number n-40 (see also Ref. 2). There are 
plans to measure the Stark splitting of levels with an accu- 
racy of about in moderate electric fields, where the 
linear Stark effect is dominant and the Stark shifts are pro- 
portional to the respective dipole matrix elements. 

A more common avenue of research deals with precision 
measurements of the Rydberg constant. Recent 
e ~ ~ e r i m e n t s ~ - ~  measured two-photon transitions in hydrogen 
to levels with n = 1,2. Data processing requires knowing 
with a high degree of accuracy the Lamb splitting of the 
hydrogen levels with n = 2. Here the most exact value of this 
quantity was obtained by measuring the ratio of the width of 
the 2p1,* level to the splitting of levels with n = 2 (see Ref. 
7), which naturally requires knowing with a high degree of 
accuracy the lifetime of the 2plI2 level, whose width in the 
first approximation is determined by the dipole formula. The 
most exact calculation of the Lamb shift of the hydrogen- 
atom ground state can be dones-lo using the experimental 
value for the splitting at n = 2. We note also that the lifetime 
of the 2plI2 level in the helium ion has been measured with 
a high degree of accuracy." 

This paper is devoted to calculating the radiative correc- 
tions of relative order a ( ~ a ) ~  log (Za) to dipole matrix el- 
ements in hydrogenlike ions. Numerical results are given for 
levels with n = 2. Section 2 discusses the general expression 
for the radiative corrections to the dipole matrix element in 
the logarithmic approximation [in log (Za)]. The lifetimes in 
hydrogenlike systems and the energies of Stark levels are 
examined as possible applications. For example, Sec. 3 is 
devoted to finding the radiative corrections to dipole partial 
widths and in particular, to the width of the 2pIl2 level in the 
hydrogen atom and the helium ion. Section 4 is devoted en- 

tirely to the Stark effect in moderate fields. Special attention 
is paid to the relation between the base wave functions of the 
hydrogen atoms in spherical and parabolic coordinates. 

2. DIPOLE MATRIX ELEMENTS 

Here we consider the radiative corrections to the dipole 
matrix element. To avoid cumbersome expressions we seek 
the corrections to the quantity 

below we will see that the transition to arbitrary s-states 
presents no difficulties. First we note that in the logarithmic 
approximation in the Fried-Yennie gauge,12"3 the radiative 
corrections to an electron line have the softest low-energy 
asymptotics,13-15 and log (Za) is contained only in the cor- 
rection to the wave function of the s-state: 

where Xg) is the single-loop operator of the self-energy of 
an electron in the Coulomb field of the nucleus, summation 
is over all states of the discrete and continuous spectrum, and 
the corrections to the wave functions of a level with 1 # 0 
and to the dipole operator do not incorporate logarithmic 
contributions. 

The matrix element in Eq. (1) can easily be found1) (see, 
e.g., Ref. 16): 

where we have explicitly allowed for the fact that only mo- 
menta of the atomic order are of interest and, hence, in the 
case of a continuous spectrum the characteristic wave num- 
bers k are of order y=Zarn. The wave functions of the 
s-states of the discrete and continuous spectrum are defined 
in such a way that their values at zero, eq,(0), are real: 

and 
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It is convenient to introduce the normalized ratio 9 of 
dipole matrix elements by the following relation: %= 1;dr e r ~ 2 r ]  [$ e r ~ 2 ( l  - i)] = - 3 6. 

Below we will see that, considered a vector, the correc- 
tion to the dipole matrix element is directed along the initial 
matrix element. Hence in what follows we write the relative 
factor as S d l n / d l n .  Note that the arbitrariness in selecting 
the phase of the wave function in the form of an additional 
factor depending on the orbital quantum number 1 and the 
azimuthal quantum number m (see the definitions in Refs. 
17-19 and 20, 21) has no effect on the magnitude of 9qn, 
while the reality of the various expressions for the discrete 
spectrum is ensured by the fact that the phases of the wave 
functions are independent of the principal quantum number. 

Because the normalization of (5)  is relative we can use 
the reduced matrix elements of Refs. 20 and 21 for the dis- 
crete spectrum without any additional factors: 

The method by which the integral in (8 )  can be calcu- 
lated for n = n' in the general case is described in detail in 
Ref. 21. 

The origin of this misprint is easily traced. The integral 
in (8 )  for n # n r  was found by  ord don.^' ~ e t h e ' ~  added to 
Gordon's results an expression for the case where n = n ' [Eq .  
(41.5)] with a misprint and with a reference to Sec. 34 de- 
voted to the Stark effect, in which the result for the integral 
under discussion is given with the correct sign. Later (see 
Ref. 18) the reference to the section devoted to the Stark 
effect was dropped, while the expression with the wrong sign 
and the reference to Ref. 17 or 18 were reproduced in Refs. 
19 and 21. In Ref. 21 there is also a misprint in the expres- 
sion for the reduced matrix elements [Eq. (52.3)], where 
( - I ) " ' - '  is printed instead of (-  I)"'-'  (cf. Refs. 17-19 
and 22). The sign of the matrix element is rarely needed and 
the above-noted misprints have no effect on the final result. 

The normalization factor in (5) is 

For discrete states the ratio defined by (5)  has the form 

gJ = 
( -  1)"" ( n 2 -  I ) ~  n+  1 n r 4  

n ' n  4 n2 (zj ( n 2 - n t 2 ) 2  

( n - n ' )  

for n # n ' .  
This differs somewhat from the expression in Ref. 21 but - -  ( : L : : ) ' F ( - ~ ,  1 - n t ,  2, - 4nn' (10) ( n - n ' )  

is convenient for building an analytic continuation and thus 
finding the result of s-states of the continuous spectrum. 

if n # n' and 
Note, for one thing, that the hypergeometric functions in 
Eq. (6)  can be reduced to polynomials for both real and 
arbitrary complex values of n ' . 9 =- -  3 ( n 2 - l ) 3 ( n + l ) n  

For equal values of the principal quantum number we "" 32 n n - 1  
(11) 

have 
if n = n  ', and the correction to the dipole matrix element is 

Note that the result for n = n l  is given in Refs. 17-19 
and 21 with an incorrect sign. The error in sign is due to the 
calculation of the integral of the radial wave functions, 

Note that the continuous-spectrum wave functions are 
3£fiLl = 1;dr r 3 ~ n , l - l ( r ) ~ n ~ l ( r ) ,  (8)  well known (see, e.g., Ref. 20), and the dipole matrix ele- 

ments aqn for the continuous spectrum are obtained by ana- 
to which the authors of Refs. 17-19 and 21 assign, in atomic lytic continuation of (10).  
uuiia, a vaiue uT ( 3 i 2 ) n  d m ,  while actually this integral However, a  simple^ way iu G ~ c i  iLr; a~ialytic continuation 
is negative. For instance, for the particular case of n= 2, is to use the dimensionless variable t =  ylk instead of the 
which we will need in further numerical calculations, we can wave number k. In terms of this variable Eq. (12) assumes 
easily see that the form 
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where 

n + i t  
2-n, l+it,2,+)-(-1 (n+zt) n- i t  

is the analytic continuation of (5) in t (compare this with the 
photoionization amplitudes in Refs. 17,18, and 21 and with 
the explicit expressions in Ref. 22): 

The expression for the correction to an arbitrary dipole 
matrix element is 

To conclude our discussion of dipole matrix elements, 
here is a simple sum rule that enables tracing the relative 
phases of the matrix elements: 

which becomes obvious if one replaces the value of the wave 
function at zero with the quantity S(r)lqs) and multiplies 
from the right by an arbitrary wave function (41. Clearly, 
summation over all states leads to a zero matrix element 
(4IG(r)dlnp). In terms of normalized ratios of dipole ma- 
trix elements ( 9 ,  the sum rule (17) assumes the form 

3. CORRECTIONS TO RADIATIVE LEVEL WIDTHS 

As noted in the Introduction, there are two types of prob- 
lems that require knowing the dipole matrix elements with a 
high degree of accuracy. Matrix elements that are diagonal in 
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the principal quantum number arise in Stark-effect calcula- 
tions, while off-diagonal matrix elements appear in problems 
with emission (decay of bound states) or absorption of a 
photon. 

To avoid cumbersome equations, in this section we study 
radiative corrections to the lifetime and width of the 2plI2 
level in a hydrogenlike system. This problem is important for 
hydrogen (for which the ratio of the level width to Lamb 
splitting at n = 2 has been measured7) and helium (for which 
the level lifetime has been measured"). Generalization to the 
partial widths for the decay of other levels presents no diffi- 
culties. Note that logarithmic radiative corrections are related 
to the energy and wave function of s-states, and in the dipole 
approximation only the transitions between s and p levels 
contain contributions of relative order a(Za)'log (Za). 

3.1. Lifetlme of the 2pln level in the hydrogen atom 

In the first approximation, the lifetime of the excited 
level in the hydrogen atom is determined by a formula for 
dipole transitions, and the width of the 2plI2 level is 

where w is the frequency, dl' is the dipole matrix element of 
the 2pl12+ Isll2 transition, Ry is the Rydberg constant of the 
hydrogen atom with an infinitely heavy nucleus, rn, is the 
reduced mass, m is the electron mass, and we have explicitly 
allowed for the fact that Z for hydrogen is equal to unity. The 
dependence of the dipole width on the nuclear mass and 
charge is examined in Sec. 3.2. Below we discuss the rela- 
tivistic and radiative corrections. 

The leading relativistic corrections of order (Za)' were 
found in Ref. 7. Later, in Ref. 23, it was pointed out that the 
radiative corrections to this decay of order a(Za)'  are im- 
portant for analyzing the results of the experiment reported 
in Ref. 7. Clearly, the corrections to (19) can be produced by 
the corrections to the transition energy (frequency) and the 
corrections to the dipole matrix elements and by allowing for 
other decay modes. In Ref. 23 the exact transition frequen- 
cies were taken into account, and the width of the 2plI2 level 
was found to be 

where we have used the standard notation logko(n,l) for the 
Bethe logarithms. 

The relativistic corrections were also found by   rake" 
in a discussion of the lifetime of the 2pIl2 level in the helium 
ion, but the coefficient of ( ~ a ) '  proved to be twice as large. 
In view of the discrepancy between the results of Refs. 7 and 
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23 and those of Ref. 11, we did an independent calculation, 
and the result coincided with that of Refs. 7 and 23.2) 

We calculate the radiative corrections with logarithmic 
accuracy. Clearly, in the Fried-Yennie gauge the corrections 
to (19) related to other decay modes are nonlogarithmic. 
When the width of the 2slI2 level is taken into account, a 
nonlogarithmic contribution of order a ( ~ a ) ~  also appears. 

The contribution to the dipole transition matrix element 
(12) considered in the previous section has the form 

and in the case of the 2p-level the sign of the real part can be 
dropped, i.e., the corresponding quantity proves to be real. 

Direct numerical integration leads to the following re- 
sult: 

where the contribution is separated into three terms: 

with the first related to the level n = 2, the second to the sum 
with n>2, and the third to the continuous spectrum. 

The energy denominator can be written as 

and the total sum splits into two parts, where the first can be 
calculated directly using the sum rule (18), 

and the second, after numerical integration, proves to be 
equal to 

with the separate terms interpreted in the same way as in Eq. 
(24). All three contributions in (27) are smaller than in Eq. 
(24), which means that separating the contribution with a 
simpler energy denominator has made it possible to sum the 
significant part of the excited-state contributions and, hence, 
that the correction (26), obtained via the sum rule (17) using 
the explicit expressions, provides a good preliminary esti- 
mate and indicates the scale and sign of the contribution. 

The overall result for the correction associated with the 
dipole transition matrix element is 

The final expression for the decay width of the 2pl12 
level in the hydrogen atom that allows for the results of Refs. 
7 and 23 [Eq. (21)] and the correction (29) found in the 
present work has the form 

16 1 
- - 37r alog- (Za)  (0.491 58 ...) 

which corresponds to a lifetime of 

1.596 1887(15) lop9 s. (31) 

The logarithmic part of the decay-width radiative correc- 
tions of order a ( ~ a ) ~ l o ~ ( ~ a )  leads to a correction to the 
lifetime of order -5.1. 10-l5 s, with the result that the con- 
stant contribution to the shift is estimated at 1.5. 10-l5 s. 

Allowing for the experimental value7 of the ratio of the 
width of the 2plI2 level to the Lamb splitting of the 2slI2 and 
2plI2 levels, we obtain the following result for the Lamb 
splitting of the levels in the hydrogen atom: 

~ ~ ( 2 s ~ ~ ~ -  -2P112)= 1057.8576(21) MHz, 

which agrees with the results of other precision measure- 
ments (Refs. 24-26) and with theoretical calculations (Refs. 
16 and 27-29)3), when the root-mean-square charge radius is 
taken from Ref. 31. 

3.2. Lifetime of the Wln level in the helium ion 

The expression for the radiative width of 2plI2 level in 
an ion with Z # 1 incorporates additional corrections to the 
recoil:32 

where M is the mass of the nucleus. 
The physical meaning of the correction becomes obvious 

if we write the factors that allow for recoil in (20) and (32) in 
the form 

and compare this with the coefficient of the Bethe logarithm 
log ko(nl) in the expression for the Lamb ~ h i f t . ~ ~ , ~ ~  Indeed, 
we can find the probability of photon emission without tak- 
ing into account relativistic effects (i.e., specifying the lead- 
ing order in the parameter Z a )  but allowing for nuclear 
emission (the imaginary part of the single-loop form-factor 
diagram for the nucleus) and the interference of the photon 
emissions by the nucleus and an electron (the imaginary part 
of the diagram representing the corrections for recoil). The 
power to which the reduced mass should be raised can easily 
be reconstructed from dimensionality considerations via the 
dipole formula (19) if we employ the fact that the correct 
nonrelativistic approximation for the wave function of an 
electron in an atom is the product of the free electron spinor 
and the Schrodinger wave function with the reduced mass, 
with the result that the dipole matrix element in (19) emerg- 
ing in the Coulomb gauge because of the convolution of the 
large spinor components with the small ones is proportional 
to a reciprocal power of the electron mass rather than of the 
reduced mass. 
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Knowing the imaginary part, which is proportional to the 
decay probabilities, we can now reconstruct the real part. 
Here the Bethe logarithm emerges as an averaged logarithm 
of the difference in binding energies in units of r n ( ~ a ) ~  with 
a weight function determined by the transition probability. 
Comparing the factor (33) with the corresponding quantity 
for the Lamb shift in Refs. 33 and 34, we immediately see 
that the coefficient of the Bethe logarithm is indeed propor- 
tional to (33). Note that the coefficient of the parametrically 
larger logarithm log(Za) in the Lamb shift does not coincide 
with (33) since actually there are two types of such loga- 
rithms. The first, the energy type, is closely related to the 
Bethe logarithm and leads to a coefficient with the factor 
(33); but, in addition to this, in calculating the interference 
contributions (corrections to recoil proportional to Z; see 
Ref. 33) there appears a logarithm that emerges in integration 
over momenta from the reciprocal Bohr radius to the electron 
mass. 

The dependence on the nuclear charge and mass can also 
be reconstructed from the symmetry that exists between the 
light and heavy particles when one calculates the dipole ma- 
trix element, without calculating diagrams. Indeed, the two- 
particle nonrelativistic wave function is the product of the 
free spinors of the electron and the nucleus and the Schro- 
dinger wave function with the reduced mass. The dipole ma- 
trix element in the Coulomb gauge in (19), which emerges 
only if we allow for small components, is proportional to the 
factor 

where the first minus is related to the negative electron 
charge, and the second to the fact that in the center-of-mass 
system the particles have opposite momenta. By squaring the 
factor (34) and allowing for the proportionality of the tran- 
sition frequency in (20) to the reduced mass we arrive at 
(33). This reasoning is based on the fact that the nuclear spin 
is 1. It is clear, however, that if we ignore hyperfine splitting, 
the corrections in (34) inversely proportional to the nuclear 
mass cannot depend on the magnitude of the spin.4) 

Now let us return to our discussion of the corrections to 
the dipole formula. If we allow for the logarithmic correction 
(30) found above, the expression for the decay width as- 
sumes the form 

9 16 rtZ) = r(Z) 1 + (za12 log -- -a 
1 O [  [ 8 3m 

1 
X log 7 (0.49158 ...) , 

(Zff) i I 
which corresponds to the following value for lifetime of the 
2pIl2 level in the helium ion: 

The slight change in the lifetime in comparison with the 
result T= 0.996 891 X 10- '~s  listed in Ref. 11 is also related 
to the elimination of the misprint in the coefficient of 

( ~ a ) ' ,  whose correct value was found in Refs. 7 and 23 and 
was discussed in the previous section (see also the Appen- 
dix). The radiative correction (30), equal to 

is still beyond the accuracy of the experiment described in 
Ref. 11: 

4. CORRECTIONS TO THE ENERGY LEVELS OF THE 
HYDROGEN ATOM IN AN ELECTRIC FIELD 

The precision experiments described in Refs. 1 and 2 
studied the Stark effect in a weak electric field for the highly 
excited levels of the nonrelativistic hydrogen atom. The cor- 
rections connected with the level shift (the Lamb shift) have 
been thoroughly studied (see, e.g., Ref. 18). Here we are 
interested in the case of an electric field that is weak in the 
sense of a Schrodinger atom but strong in comparison to the 
fine structure and the Lamb shift; below we call such fields 
moderate. When the field strength becomes high compared to 
the Lamb shift, the corrections become quadratic in the small 
parameter. However, there are corrections to the dipole ma- 
trix elements linear in a. These corrections are always small, 
whereas the level shifts in fairly low fields constitutes the 
primary effect. The smallness of the corrections made them 
unimportant prior to the suggestions put forward in Refs. 1 
and 2. 

In moderate fields, where the linear Stark effect domi- 
nates and is much stronger than the fine-structure splitting, 
all corrections are small, i.e., corrections that allow for the 
variations in the wave functions and level shifts due to the 
fine s t r u c t ~ r e , ' ~ , ~ ~ - ~ ~  the relativistic effects of the Dirac 
equation,38 the ordinary transverse photon (hyperfine 
s t r ~ c t u r e ) , ~ ~  the recoil effects, and QED effects. Obviously, 
the corrections to the matrix elements of the Hamiltonian can 
be considered separately, and the level shifts (see, e.g., Ref. 
18), the levels and the corrections to the dipole 
matrix elements correspond to different small parameters5) 
and can also be examined separately. 

The matrix elements of the Hamiltonian in the case of a 
field directed parallel to the z axis are proportional to the 
z-component of the corresponding matrix element of the di- 
pole moment. Since the correction is a scalar, its relative 
magnitude is as usual determined by Eqs. (12) and (16). 

To allow for the logarithmic radiative corrections we 
need only examine the corrections to the Schrodinger matrix 
elements. As noted earlier, such contributions emerge when 
one allows for the radiative effects in the wave function of 
the s-states (Eq. (1)). Corrections of order a ( ~ a ) ~ l o ~ ~ a  ex- 
ist for spherical wave functions in the matrix elements be- 
tween the s- and p-states. When we go over to the parabolic 
wave functions, which diagonalize the Hamiltonian of the 
interaction with a moderate electric field for states with a 
fixed n ,  it is sufficient to find the diagonal matrix elements of 
the perturbation, equal to 
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where n and n2 are the parabolic quantum numbers, 

and in (37) we have explicitly allowed for the fact that the 
azimuthal quantum number m is equal to zero and discarded 
it in our notation. 

The matrix elements corresponding to the transformation 
from spherical wave function to parabolic have been dis- 
cussed in Refs. 36 and 41 (see also Refs. 20 and 42). An 
important problem in finding these elements is that of the 
phases of the wave functions. Below we first examine the 
problem of radiative corrections in the particular case n = 2, 
where it is possible to avoid the question of the explicit 
choice of phases, and then return to the case of arbitrary 
values of n and find the corrections to the dipole matrix 
element (37) in the general case. 

4.1. The Stark effect for levels with n=2 

In this section we discuss the corrections for the case 
with n = 2, in which the dipole matrix element between the s- 
and p-states proves to be the only matrix element that is 
nonzero in a Schrodinger atom. According to Eq. (16), the 
correction to this matrix element is 

where the expressions for the ratios Sqn defined in (5) are 
specified in Eqs. (10) and (14). 

Note that the correction (38) can be represented as a 
common factor in (37). The remaining part is simply the 
dipole matrix element in the parabolic wave functions, to 
which the Stark level shift is proportional to within a real 
factor. As a result the expression for the linear Stark effect is 
multiplied by the factor 

or, numerically, 

This dramatic difference between the numerical coeffi- 
cients (29) and (40) is of a general nature and can be under- 
stood by employing the standard sum rules for oscillator 
strengths. Usually the dipole matrix element diagonal in the 
principal quantum number n is much larger than the off- 
diagonal.l7>l8 In calculating the level width the correction to 
an off-diagonal matrix element (in the case of (29), between 
the states 1s and 2p) incorporates the coefficient diagonal in 

TABLE I. Relative phases in the definitions of the wave functions of the 
hydrogen atom. 

Reference ( )  Y1,( f i7cp) ~ " , ~ Z m ( 6 ~  0 , ~ )  

Bethe l7 1 ( - 1 ) " '  1 
Bethe and Salpeter l 8  1 (- 1)"' 1 
Condon and Shortley l9 1 1 1 
Landau and Lifshitz 20 1 i' 1 
Berestetskii et al. 1 i' 1 
Rojansky 36 - 1 ( -  l ) ( m + l m l ) i 2  1 
Biedenham and b u c k  42 (- l ) " - ' - '  1 ( - l ) n 1 + ( m + l m l ) l 2  

aNote: R , , ( r )  is the radial part of spherical functions, and + n L n 2 m ( [ ,  7 , ~ )  
are parabolic functions. 

n (see Eq. (16)), with the result that numerically the coeffi- 
cient proves to be large. In the Stark effect the opposite situ- 
ation emerges: the correction to the diagonal matrix element 
incorporates only off-diagonal terms, as a result of which 
numerically the coefficient is small. 

4.2. Phases of wave functions and the relation between the 
spherical and parabolic wave functions in the hydrogen 
atom 

The matrix elements of the transformation from the 
spherical wave functions qnlrn(r, 6 ,  cp) to the parabolic wave 
functions CnlnZm((, v,cp) have been examined by park4' (see 
also the discussion of this problem in Ref. 20) from the 
viewpoint of the theory of angular momentum and the sym- 
metry of the hydrogen atom. Both sources assert that the 
expansion coefficients in 

Cn1n2rn(67 77 ,~)  = x(nlmlni  ,n2,m)1Cl,rrn(r,6,cp) (41) 

coincide with the Clebsch-Gordan coefficients 

Here the problem of the phases of the wave functions 
becomes important, and, in particular, the problem of deter- 
mining the spherical harmonics. With the usual 
 definition^'^,^^,^^ these coefficients are chosen real. It is clear, 
however, that with an imaginary factor in Yl0(6, 4 )  adopted 
in Ref. 20 and real radial functions, the matrix element of the 
dipole operator between the s- and p-states is purely imagi- 
nary, too. But in parabolic coordinates all the matrix ele- 
ments are diagonal and, obviously, real. Thus, in the defini- 
tions of Refs. 20 and 21 the matrix of the transformation 
between these two representations cannot be real, and this 
property is independent of the choice of phases for the para- 
bolic wave functions and is related to the presence of the 
well-known factor i1 in the definition of the harmonics. 

In the original paper of park4' all the wave functions and 
the Clebsch-Gordan coefficients are defined in accordance 
to Ref. 19, in which both the spherical harmonics 
~ z ( 6 , c p )  and the parabolic functions are products of real 
quantities and the standard factor exdimcp). This property 
makes the definitions in Ref. 19 more convenient for the 
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problem in question, and the definitions of the phases of the and interchanging the projections on the right-hand side of 
basic functions given in the papers and books cited below are the notation for the coefficient or, in terms of 3 j -symbols, 
listed in Table I . ~ )  amounts to changing the sign of the projections and inter- 

Returning to Eq. (411, we easily see that in the defini- ,-hanging two neighboring columns. 
tions adopted in Ref. 19 and used in Ref. 41 the expression The problem of the choice of wavefunction phases that 
given (41) be The point is that the 'pheri- yields expansion (41) will be considered shortly. Now we 
cal harmonics 

turn to explicit expressions. 

have the property 

( ~ 2 ( 8 , 9 ) ) *  =(-  l)"y:srn(8,9), (44) 

which has no analog for parabolic functions, while the 
Clebsch-Gordan coefficients do not change when the sign of 
m changes: 

This can easily be verified by noting that changing the 
sign of m corresponds to changing the sign of all projections 

The transition coefficients for states with arbitrary quan- 
tum numbers have been obtained explicitly by ~ o j a n s k ~ , ~ ~  
who7) defined functions of radial and parabolic variables in 
the usual manner but instead of standard spherical harmonics 
used zonal, sectorial, and tesseral harmonics, i.e., functions 
in which the imaginary exponential function exp(imq) is re- 
placed by cosmq and sinmq. For the standard parabolic func- 
tions the exponential function can easily be constructed from 
sines and cosines, while the spherical functions are not so 
easily constructed, because one must ensure that the property 
(44) is satisfied, which leads to the phase factor 
(-  l)(m-lm1)'2. Another part of the factor emerges when we 
pass from associated Legendre polynomials to the spherical 
harmonics (43). In Table I the relative phase of the radial part 
of the wave function is given in accordance with the series 
expansion of spherical wave functions that leads to Rojan- 
sky's result in Ref. 36. 

Clearly, the expression obtained in Ref. 36 through ex- 
plicit calculations for the coefficients that link spherical and 
parabolic functions, 

where the sum is over all values of the index z for which the terms have meaning, coincides to within a phase factor with the 
known Racah representation20'43'47 for the Clebsch-Gordan coefficients: 

Comparing the definitions of Ref. 36 with those of Ref. 19, we arrive at the following expression in terms of the definitions 
of Ref. 19 (see also the Appendix): 

Another approach to determining the coefficients is 
based on the symmetry of the hydrogen atom and the con- 
servation of the Runge-Lenz-Pauli vector. The fact of sym- 
metry was first used in the quantum case to find the energy of 
bound and later in discussions of various problems. 
Biedenharn and ~ r u s s a a r d ~ ~  used the components of angular 
momentum and the Runge-Lenz-Pauli vector to first build 
operators that change the quantum numbers 1 and m by unity 
for a fixed value of n. Then, using these operators, they 
constructed the spherical wave functions. The phases, which 

emerge in this approach in a natural way, differ from the 
standard phases of Ref. 19. The operator changing the para- 
bolic quantum number n l  by unity was built by Biedenharn 
and ~ o u c k . ~ ~  This made it possible to carry out the program 
of consistently building the spherical and parabolic bases of 
eigenfunctions of the bound states of the hydrogen atom in 
such a way that the expansion (41) is valid if the coefficients 
are equal to the Clebsch-Gordan coefficients (42), as sug- 
gested by 

The function with the greatest value of the azimuthal 
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quantum number m for a given n was chosen. This state has 
the quantum numbers 1 = m = n - 1 in the spherical base. On 
the other hand, for this value of m the Schrodinger hydrogen 
atom can have only one state, with the result that the respec- 
tive wave function of the parabolic base has quantum num- 
bers nl = n2= 0 and m = n - 1. If to this function we apply 
the operators that change the quantum numbers n l  , I, and m 
by unity, we can build consistent spherical and parabolic 
bases, and the matrix of transformation between the two will 
consist of the Clebsch-Gordan coefficients (42). The phases 
of the phase function that emerge in this approach differ 
from the standard phases and are listed in Table I. Note that 
the operator that changes the values of the orbital quantum 
number 1 incorporates the Runge-Lenz-Pauli vector and 
does not appear in the standard theory of angular momen- 
tum, which allows for the possibility of an arbitrary phase 
dependent on 1. Comparing the definitions, we can also ob- 
tain the transformation coefficients linking the wave func- 
tions in the definitions of Ref. 19. The results coincide with 
(46). 

Table I makes it possible to easily find the coefficients in 
the notation of Refs. 17 and 18, 

(47) 

and of Refs. 20 and 21, 

(nl ,n2,mlnlm)=(-i)[(- l)"-'-nl-l+(m+ lm1)/2 

n-1 n-1  

' 2 

The coefficients corresponding to the definitions of Refs. 
17-19 satisfy the condition 

while for the wave functions of Refs. 20 and 21 we have 

The last relationship makes it possible to find the matrix 
elements of the inverse transformation from parabolic func- 
tions to spherical. 

4.3. Radiative corrections to the Stark effect for levels with 
arbitrary values of n 

The general expression for the correction in the case of 
an arbitrary value of n is given by Eq. (37). It includes the 
correction to the dipole matrix element, whose relative value 
(16) is independent of the definitions of spherical harmonics, 
while the normalization factor corresponding to the dipole 
matrix element d,,, can be found in Refs. 17-19 and 21 
according to the choice of the phases in the harmonics. Note 

that one must correct the misprint in sign (see above). The 
coefficients of the transformation from the spherical func- 
tions to the parabolic have been defined in Eqs. (46)-(48). 
For the particular case of 1 =0,1 we give the values of the 
Clebsch-Gordan coefficients required by these equations: 

and 

These expressions make it possible to find the radiative 
correction to the diagonal matrix element in the parabolic- 
function base (or, what is the same, to the energy of levels in 
a moderate field) for any choice of phases in Refs. 17-21. 
With the definitions of Ref. 19 the matrix elements of the 
transformation between spherical and parabolic functions 
have the form 

5. CONCLUSION 

We have considered the radiative corrections of relative 
order a ( ~ a ) ~  in the logarithmic approximation to the dipole 
matrix elements, which arise in the problems of emission and 
the Stark effect in the hydrogen atom. The exact expression 
for the radiative corrections generally depends on the details 
of the problem. The point is that the dipole matrix element 
usually appears as the low-energy limit of various quantities. 
For instance, in the Coulomb gauge the amplitude of emis- 
sion of a photon with a polarization vector E ,  (cf. the Appen- 
dix) has the form 

where the bra-vector corresponds to Dirac conjugation, and 
in the nonrelativistic limit becomes 

In the Stark effect the energy of levels in a field F di- 
rected along the z axis is determined in the rediagonalization 
of the Hamiltonian H;,,(n,m) as 

Below is the full expression for the radiative corrections 
of order a ( ~ a ) ~  to the matrix element, which occurs in 
emission problems: 
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+e(flh?(Ef , ~ i ) l i ) ,  

where A F ( E ~  ,E,) is the single-loop vertex operator for 
emission of a real photon in the Coulomb field, and the cor- 
rections to the wave functions have the form 

The term with the derivative appears in perturbation 
theory 50 if the perturbation is energy-dependent. The correc- 
tion to the dipole matrix element emerging in the Stark effect 
has a similar form, with vertex contribution differing both in 
the Lorentz index and in the kinematic conditions 
(Ef'Ei). 

The calculations with logarithmic accuracy were based 
on the delta-like nature (in the Fried-Yennie gauge) of the 
coefficient of the logarithms and hence on the absence of 
logarithmic contributions with an energy derivative with a 
single-loop vertex and of corrections to the wave function of 
states with 1 # 1. The results can be generalized in an obvious 
manner to any perturbing potential that can be considered 
delta-like. For instance, by using this approach one can eas- 
ily allow for single-loop vacuum polarization, the distribu- 
tion of charge in a nucleus, etc. When the results are applied 
to Rydberg states (i.e., states with large values of the princi- 
pal quantum number), in addition to explicit expressions for 
dipole transitions [Eq. (6)] the quasiclassical formulas of 
Ref. 51 may prove useful. 

Among the possible applications considered above we 
have discussed the partial level widths and the Stark effect. 
The general expressions found in Sec. 2 also allow finding 
the line strengths in the presence of an electric field as well 
as in its absence. 
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APPENDIX: THE RELATIONS BETWEEN SPHERICAL AND 
PARABOLIC FUNCTIONS 

We follow Rojansky's paper 36 and use atomic units and 
the definitions of Ref. 19 or, what is the same, Ref. 20 with 
the factor if in the definition of spherical harmonics. Here we 
consider only positive values of m ;  the result for negative m 
can be obtained from the final formulas. The explicit repre- 
sentation of the spherical and parabolic wave functions of 
bound states in the hydrogen atom in the form of polynomi- 
als of the variables 

yields the following re~ult :~)  

where the sums are over all values of the indices for which mation (41) can be found by comparing the expansions (Al) 
the terms have meaning. The double sum in Eq. (Al) has and (A2) and taking into account the unique nature of the 
only one term of the form ( p ~ ) ~ j I - "  at k =  1 or, in terms of term (~P) 'P-"  in the expansion (Al). As a result we have 
(Al), k l  = 0 and k2=  I .  Thus, the coefficient for the transfor- (46). This expression reproduces the original one in Ref. 36 
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(if i is substituted for p and p for n,) but differs in the sign 
factor ( - l )*+' ,  which appears because of the different 
definitions of the wave functions in Ref. 19. 

The result for negative values of m can be obtained by 
complex conjugation of the obtained expression9) with al- 
lowance for (44) and (45). 

ca ere the relativistic system of units, h = c = 1,  is employed. 
ca he coefficient of log(918) also agrees with the calculation of the matrix 

element (lsl12) in Ref. 11 in discussion of the experimental 
method. The author is grateful to G. W. F. Drake for a discussion of this 
problem. 

" ~ c c o r d i n ~  to a recent report;' the results of Ref. 28 are partially incorrect. 
The possible change in the entire theoretical expression will not exceed the 
error associated with the contributions yet to be calculated. 

4 ' ~ h e  author is grateful to K. Pachucki for a discussion of this problem. 
"In the case of the Lamb shift the expansion parameter is the ratio of this 

shift to the Stark splitting, but in moderate fields the first-order correction 
to the splitting of levels in the linear Stark effect is zero. 

"we discuss the notation adopted in Refs. 36 and 42 later when we discuss 
the results in the paper and the book. 

7 ' ~ h e  wave functions used by ~ o j a n s k ~ ' ~  are defined according to Refs. 
44-46, so that the generalized Laguerre polynomials "345 coincide with 
those adopted in Refs. 17-20, while the associated Legendre polynomials 
are introduced only for positive upper indices "346. 

" ~ o t e  that in Ref. 36 expansions of spherical wave functions contain triple 
sums. 

" ~ o t e  that in defining the parabolic functions in Ref. 19 the quantity Iml 
enters all the expressions except the exponential function eim'. 
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