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The dynamics of level-band and level-continuum quantum systems in a modulated strong 
quasiresonant external field are discussed. An analytical solution of the corresponding initial- 
value problems has been obtained for the case in which the Rabi parameter of the external 
field greatly exceeds the effective width of the continuum (or band). It is shown that the atom is 
stabilized and population trapping of the level occurs for a level-continuum system in a 
field with weak modulation. O 1995 American Institute of Physics. 

1. INTRODUCTION 

The interaction of level-band and level-continuum quan- 
tum systems with a quasiresonant external field has been 
actively studied in recent years. These physical phenomena 
have numerous applications in quantum optics, quantum 
electrons, and some high-tech areas.Iw3 However, only the 
case of a monochromatic external field has been thoroughly 
discussed, largely due to mathematical difficulties in the 
analysis of such physical systems. In this paper we consider 
the behavior of level-band and level-continuum systems in a 
modulated external field having a spectral composition 
which is arbitrary in a certain sense. We recall that the level- 
band model has been used in quantum optics to describe the 
evolution of an atom in a field which is quasiresonant with 
the transitions between an isolated level and a set of closely 
arranged levels. If the amplitude of the field (in dimension- 
less units) greatly exceeds the distance between the levels in 
the set and we are interested in not very long time intervals, 
it may be assumed that the energies of the levels in the set 
densely fill the corresponding range of values. The level- 
band model can also be used in the physics of semiconduc- 
tors to describe the transition from an acceptor level to an 
impurity band under the action of a quasiresonant field! 
(The quasimomentum was not determined for the states in 
the impurity band, and thus there were no selection rules for 
this parameter.) The assumption that the upper limit of the 
band is infinite gives rise to the level-continuum model, 
which is used in quantum optics to describe resonant ioniza- 
tion processes. The main purpose of the present work was to 
describe the dynamics of level-band and level-continuum 
systems under the action of a modulated strong quasireso- 
nant field in analytical terms. In particular, we shall describe 
the process of decay of a level into a continuum. We note 
that the case of a strong field acting on a level-continuum 
system has not been adequately investigated analytically 
even for a monochromatic external field. 

The Schrodinger equation describing a level-band (level- 
continuum) system in a quasiresonant external field reduces 
to an infinite system of first-order ordinary differential 

It is apparently impossible to solve such prob- 
lems analytically in the general case. However, we can iden- 
tify situations in which the relationship between the physical 
parameters permits the reasonable introduction of a large (or 

small) dimensionless parameter and development of a suit- 
able asymptotic procedure to solve the corresponding initial- 
value problem. Here we consider the following case. Let p be 
the properly introduced Rabi parameter of the external field, 
and let D be the width of the band or the effective width of 
the continuum (the exact definitions are presented below). 
The Rabi parameter specifies how high the trapping region of 
the external field is or, in other words, which states in the 
band (in the continuum) effectively interact with the level 
through the external field. We call the external field strong, if 
pPD holds. We also assume that the carrier frequency of the 
external field LR=E1 - E ,  ( E l  is the lower limit of the con- 
tinuum or the band and E ,  is the energy of the level mea- 
sured in frequency units) significantly exceeds all the other 
frequency parameters of the problem and that the rotating- 
wave approximation can be employed. We then neglect any 
continuum-continuum transitions and the possible presence 
of other discrete levels. In this situation the problem reduces 
to the construction of the solution of a singularly perturbed 
integrodifferential equation, the role of the small parameter 
being played by the ratio Dlp. We construct its solution using 
asymptotic methods. The model of the atom (level- 
continuum system) investigated here, which provides a very 
schematic description of a real atom, retains the property 
which is most important for an ionization process, i.e., it has 
an infinite flat continuum. 

The plan of this paper is as follows. In the next section 
we introduce the fundamental equations. In Sec. 3 we de- 
scribe the dynamics of a level-band system, and in Sec. 4 we 
describe that of a level-continuum system. In the conclusion 
we summarize the results obtained. In particular, we shall 
show how a new physical mechanism, which accounts for 
the stabilization of an atom in a strong field, can be proposed 
in terms of them. 

2. DESCRIPTION OF THE BASIC FORMALISM 

Let us consider a level-band system under the influence 
of a quasiresonant external field of complex spectral compo- 
sition. Let 10) be the wave function of the level, let 1E) be the 
wave function of the states in the band, and let E l  S E S E 2 .  
If E 2 = m  holds, we have a level-continuum system. Then the 
decay of the level into the continuum corresponds to ioniza- 
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tion of the atom by the external field. We represent the wave 
function of the atom in the form of a superposition 

We write out the Schrodinger equation for our system in 
terms of the amplitudes A(t) and B(E,t), neglecting the 
continuum-continuum transitions:'-3 

Here 

R is the optical frequency, f(w) describes the modulation of 
the external field, and the function +(o) describes the initial 
phases of the individual harmonics. The function g(E) is the 
matrix element of the dipole moment operator. It describes 
the interaction of the states in the band and the level with the 
external field. We assume that the relations lw11,1w216fi hold. 
We are interested in the solution of the system of equations 
(1) with the following initial conditions, which correspond to 
the problem of decay of the level into the band (continuum): 

We introduce E, the "mean" value of the energy of the 
states in the band (continuum): 

(in the case of a continuum, we assume that the two integrals 
converge). We define optically slow variables using the re- 
placements 

~ ( ~ , t ) = e x ~ [ - i ~ t ] b ( ~ , t ) ,  

~ ( t ) = e x ~ [ - i ( ~ - ~ ) t ] a ( t ) .  (4) 

We henceforth use the rotating-wave approximation. 
This means that the optical frequency R (the carrier fre- 
quency of the external field, which is close to the value of 
E l  -E,) is significantly greater than the other frequency pa- 
rameters of the problem and that we disregard any multipho- 
ton processes. Then for the variables a( t)  and b(E,t) we 
have the system of equations 

where 

A=E-E,-a,  S=E-E, S ~ = E ~ - E .  

The function 

H(t) = dw f(o)exp[i(+(o) + wt)] I:: 
describes the modulation of the external field. Here and be- 
low an asterisk denotes complex conjugation. From (2) it 
follows that 

We set H(t) = ph(t), where p is the dimensional ampli- 
tude of the external field and h(t) is a dimensionless func- 
tion, which describes the modulation of the external field. In 
Eq. (5) p and g appear only in the form of the product pg. 
Therefore, the dimensional multipliers can be arbitrarily dis- 
tributed between them without altering the dimensions of the 
product. It is convenient to distribute the dimensional multi- 
pliers in pg so that [ g ]  =E-'". Then [b] =E-'/' and 
[HI = E. We set 

(1,2=~1,z/D, R=pID, S=AlD. 

We make the replacements 

h ( ~ / D ) = m ( r ) ,  ~(D<,T/D)=c({,T)D-'I2, 

g ( ~ < ) = ~ ( { ) ~ - 1 / 2 .  

Equation (5) can be written in these terms in the form: 

We seek a solution of this system of equations which satisfies 
the initial conditions 

a(O)= 1,  (8) 

c({,O)=O. (9) 

Integrating the second equation in (7) together with (9) 
and plugging the result into the first equation, we obtain 

a ' = i S a - ~ ~ r n ( r )  m*(x)a(x)Q(~-x)dx,  I,' (10) 

Thus, the solution of our initial-value problem reduces to 
the construction of a solution of the integrodifferential equa- 
tion (10) which satisfies the initial condition (8). We note the 
following fact. There was some arbitrariness in the introduc- 
tion of D,  and we could multiply p by an arbitrary constant 
8 ,  if we simultaneously multiplied g by 6-'. To be specific, 
we assume that in the integral on the right-hand side of (10) 
the multipliers are grouped in the product so that 
maxlm(.r)l= 1 and maxlQ(r)l= 1. Then Eq. (10) is essentially 
independent of the choice of 19, and the remaining arbitrari- 
ness in 6=0(1 )  is arbitrariness in the scale of the time T. 

Thus, we shall call the fixed quantity R the dimensionless 
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Rabi parameter. The corresponding quantity p is the dimen- 
sional Rabi parameter. We seek a solution of (10) with the 
initial condition (8) under the assumption that 

Here the dynamics of the atom can be divided into two parts, 
viz., "fast" and "slow." In this case the entire band (or the 
entire continuum, in some effective sense) falls within the 
trapping region of the external field, and the behavior of the 
system, as we shall see below, is largely similar to the be- 
havior of a two-level atom (TLA) placed in an external field. 
This condition permits the application of asymptotic methods 
to solve (10) with initial condition (8),  similar to those em- 
ployed in Refs. 5 and 6 to describe the dynamics of a TLA in 
a strong polyharmonic external field. The procedure for con- 
structing the solution of our initial-value problem for Eq. 
(10) depends on whether m(r)  takes the value zero in the 
time interval of interest to us. In the present paper we assume 
that the external field has weak modulation in terms of Refs. 
5 and 6, i.e., 

3. LEVEL-BAND SYSTEM IN A STRONG FIELD 

In the case of a level-band system, both limits of the 
integral in the definition of Q ( y )  in (11) are finite. We as- 
sume 11, 12=0(1) .  The form of Eq. (10) leads to the hypoth- 
esis that the dominant term in the asymptotic form of the 
solution of (10) with the initial condition (8) is a "fast" 
function, i.e., its derivative has a higher asymptotic order 
than the function itself. At the same time, according to ( l l ) ,  
Q ( y )  is a "slow" function, i.e., its derivative has the same 
asymptotic order as the function. We shall also assume below 
that m(7) is a "slow" function, i.e., the modulation spectrum 
of the external field is O(1).  The integral of the product of 
the "fast" and "slow7' functions can be expanded into a se- 
ries in decreasing powers of a large parameter by integrating 
by parts, transferring the derivative from the "fast" cofactor 
to the "slow" one. These arguments make it possible to pro- 
pose an asymptotic procedure for solving (10) with the initial 
condition (8).  More specifically, we set 

where F(r)  is the "fast" function and S(7) is the "slow" 
function. On the right-hand side of (10) we integrate the 
integral containing the "fast" function by parts. Since we 
intend to obtain an expansion up to terms 0 ( 1 ) ,  we make the 
substitution 

Plugging (14) and (15) into ( lo ) ,  we obtain 

s ' ( T ) - ~ ~ s ( T ) + R ~ ~ ~ ( T )  dx m*(x )S (x )Q(r -x )  I,' 
- 1 

{ ~ ' ~ ( r ) - ( i 8 + [ l n  ~ * ( T ) ] ~ ) W ~ ~ ~ ( T )  
m*(7)  

Here and in the following we use the notation 

For a level-band system all the Qk = 0 ( 1 ) ,  and, accord- 
ing to (3)  and (4),  Q,=0.  Distinguishing the "fast" and 
"slow" parts of Eq. (16), we arrive at the system of equa- 
tions 

The fourth-order linear equation (17) has only two rap- 
idly oscillating solutions, whose asymptotic forms can easily 
be written out using the standard WKB approximation:8 

Therefore, w(r)  is a linear combination of two linearly inde- 
pendent solutions w,,,(r). Hence we can specify only two 
initial conditions to solve Eq. (17). We set 

This choice leads to the lowest asymptotic order of the right- 
hand side of Eq. (18). 

As a whole, the procedure for constructing the solution 
of the initial-value problem consisting of (10) and (8) has the 
following form. In the first step we construct rapidly oscil- 
lating solutions of Eq. (17), and we take a linear combination 
which satisfies conditions (20) as the function w(r) .  Then we 
can calculate the right-hand side of Eq. (18) and construct 
the solution of that equation. This permits determination of 
the value of S(0). In the next step of the procedure we write 
out a more accurate equation than (17) for the rapidly oscil- 
lating part of a(r )  and use the value of S(0) and (14) to refine 
the initial conditions (20). This simultaneously leads to a 
more accurate equation for the "slow" part, which includes 
terms outside the integral that do not appear in the analog of 
Eq. (17) for the "fast" part of the solution. In this paper we 
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restrict ourselves to an analysis of the terms up to O(RP1), 
for which it is sufficient to perform the first step of the pro- 
cedure. 

It follows from (18)-(20) that there are quantities of 
order unity on the right-hand side of Eq. (18), and thus 
S(T) = o(R-~) .  We call the functions 

generalized Rabi harmonics. We arrive at the conclusion that 
the dominant term in the asymptotic form of the solution of 
our initial-value problem is a linear combination of two gen- 
eralized Rabi harmonics and that the coefficients with which 
they appear in this linear combination are of the order unity. 
We omit their explicit expressions. According to these 
 evaluation^,'^ the "slow" term in 0 (1) gives only a correc- 
tion 0 (R -2). 

As follows from (19), the generalized Rabi harmonics do 
not exhibit decay. For a monochromatic external field [i.e., 
for m(~)=const], this fact follows in the present asymptotic 
case from the results in Ref. 7. From the physical standpoint 
this is attributable to the analogy between a level-band sys- 
tem in a strong field and a TLA in an external field. If the 
Rabi parameter of the field significantly exceeds the width of 
the band and the width of the modulation spectrum of the 
external field, the band is similar to a level "as seen by the 
external field." A formal transition to the TLA model can be 
accomplished by setting Q2=0 in (17). Then we arrive at the 
equation to which the Schrijdinger equation for a TLA re- 
duces following the use of the rotating-wave approximation 
(see, for example, Ref. 5).  The latter system has a constant of 
motion, i.e., the norm of the wave function of the two-level 
atom is maintained (this is an exact analytical, rather than 
asymptotic, result). In the case of a strong field, a level-band 
system behaves similarly in the dominant orders of the as- 
ymptote [up to O(RP1)]; and the level does not decay into 
the band. The population of the level oscillates between val- 
ues which are asymptotically close to 0 and 1. 

Remark 1. The fact that the generalized Rabi harmonics 
do not decay follows from relations (19). The following ar- 
gument is useful here. For Q2=0 Eq. (17) transforms into the 
equation for a TLA, for which neither of the generalized 
Rabi harmonics decays, so the decay in (19) is attributable 
only to terms which depend on Q,. However, it is not diffi- 
cult to show that the corresponding, purely imaginary term 
causes only displacement of the effective frequency of a gen- 
eralized Rabi harmonic. 

Remark 2. The construction of the asymptotes of solu- 
tions of singularly perturbed integrodifferential equations 
was discussed in Ref. 9. As follows from the results in that 
book, in the case of a level-band system, the asymptotic form 
of arbitrary order for the solution of the initial-value problem 
can be constructed by continuing the above procedure. In 
this case it is significant that all the derivatives of Q(y) are 
bounded functions. 

4. LEVEL-CONTINUUM SYSTEM IN A STRONG FIELD 

Let us now discuss how the above approach should be 
modified in the case of a level-continuum system. From the 
formal standpoint level-band and level-continuum systems 
differ for two reasons. First, if we assume that for large ar- 
guments v(5) goes algebraically to zero, the Qk for a level- 
continuum system become infinite after a certain k. Thus, the 
recurrence relation for expanding the integral on the right- 
hand side of (11) into a series runs into obstacles, and the 
methods in Ref. 9 are not directly applicable in the present 
situation. Second, the spectrum of the function Q(T) for a 
level-continuum system is unbounded; therefore, the scheme 
for constructing Eq. (18) must be modified: functions with an 
unbounded spectrum can appear on its right-hand side. We 
note, nevertheless, that if v(5) decreases rapidly as 5+w, 
Q(T) is basically "slow," and thus, as in the case of a level- 
band system, integration by parts can be employed to con- 
struct the asymptotic expansions. We conclude that the be- 
havior of v (5) as 5 - m  must be accurately taken into account 
for a level-continuum system. If we specify this behavior in 
some manner, we can construct the asymptotic form of the 
solution of the initial-value problem consisting of (10) and 
(8) with consideration of the corresponding singularities in 
Eqs. (17) and (18). We shall henceforth assume that 

where n(5) = 0 ( ~ - ~ )  when 5-01 and 8=const>O. On the 
one hand, this modification does not significantly complicate 
the mathematical machinery, and, on the other hand, it makes 
it possible to describe decay in a level-continuum system. In 
this case Q2= -w, and thus the transition from (10) to (16) is 
impossible. However, as is easily shown, 

is finite, and, therefore, we can use the former notation. 
Before preceding to a description of the solution of the 

initial-value problem in this case, let us discuss the physical 
status of our model. The function v(i), one of the functional 
parameters of our model, contains implicit information on 
the effective potential of the atom and is arbitrary over a very 
broad range. 

For the further mathematical manipulations to be correct, 
it is sufficient that 8 and n (5) =0 (1). We express these re- 
lations in the original terms. If, following (21), we assume 
s2g2(s) = 8,s-' +nl(s)  and n,(s) = ~ ( s - ' )  in the limit 
s+w, these relations can be rewritten in the form 

where 

Here po is the effective Rabi parameter of the external field. 
We note that D l ,  unlike D,  does not depend on the distribu- 
tion of the factors between p and g .  If the first inequality 
holds, satisfaction of the relation adopted above 
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maxlQ(r)l=l can be ensured with the aid of the dimension- 
less multiplier 8. Here we assume that D=0(1) ,  i.e., the 
second inequality is satisfied. Equation (10) was derived in 
the rotating-wave approximation, and its corollaries hold 
when the following two conditions hold: E l  - Eo+ po+D, . 
It follows from our definitions that po is linearly dependent 
on the amplitude of the external field. For E l  -Eo+Dl the 
external field can be selected so that both conditions hold. 
Thus, from the formal standpoint there is a possibility for 
satisfying both these conditions, and in this sense our model 
is consistent. We note that the condition El-E,+D, justi- 
fies the neglect of transitions to the continuum. Here the 
question of whether there is a range of values of the param- 
eters for real atoms where the latter condition holds remains 
open. However, in any case the present problem [the inves- 
tigation of the behavior of a level-continuum system in a 
strong quasiresonant external field in the rotating-wave ap- 
proximation when condition (12) holds] is still one of the 
new problems in quantum optics for which the dynamics of a 
level-continuum system can be systematically described in 
analytical terms. Our approach makes it possible to explicitly 
describe the process of population decay of the level and to 
calculate the ionization rate of the atom. Our methods can 
also be applied to the solution of more complicated problems 
which more accurately describe the ionization process of a 
real atom. 

Instead of (16), in the case of a level-continuum system, 
in the same terms we have 

~ ' ( r ) - i S ~ ( r ) + ~ ~ r n ( r )  dx m*(x)S(x)Q(r-x) I,' 

In this equation we must separate the "fast" and "slow" 
parts. It follows from (21) that 

where 

~ ( y ) =  Imp- '  sin p d p ,  p(0)  = n/2. 

N(y) is a real function, whose derivative is a function that 
can be integrated at zero. We seek its explicit form. Substi- 
tuting (23) into (22), we can isolate the singularity associated 
with the presence of ln(r-x), or, in the final analysis, with 
the asymptotic form (21). 

On the right-hand side of (22) we leave only the term 
proportional to ln(r-x) in the integrand, and we integrate the 
remaining terms by parts (possible owing to the assumptions 
that we have made). Ultimately, we arrive at the relation 

S ' ( r ) - i S ~ ( r ) + ~ ~ m ( r )  dx m*(x)S(x)Q(r-x) I,' 

As before, in the case of a level-continuum system 
W( r )  = al wl(r) + ff2w2(r), and w 1,2(~) are rapidly oscillat- 
ing Rabi harmonics. The dominant terms in the asymptotic 
form of the Rabi harmonics are already known, and we can 
use this information to calculate the integral on the right- 
hand side of (24). We shall also use the following analog of 
Erd61yi7s lemma:" 

where C is Euler's constant. 
There is some difficulty in separating the "fast" terms in 

(24) from the "slow" terms due to the terms outside the 
integral in (24) which were obtained, in particular, with the 
use of (25). These terms include harmonics of arbitrarily 
high frequency, in contrast to the case of a level-band sys- 
tem. These terms are too complicated to give explicitly. Let 
their sum be equal to M(r). We divide this function into two 
parts, viz., a "slow" part PM(T) and a "fast" part. If 

let 

We ultimately arrive at the following equations for the "fast" 
and "slow" functions: 

wIV(r) - [iS+(ln m * ( ~ ) ) ~ ] w " ~ ( r )  + R ~ ~ ~ ( T ) { Q ~ W ~ ~ ( T )  

S r ( r ) - iSs ( r )+R2m(r )  m*(x)S(x)Q(r-x)dx I,' 
As in the level-band case, the first equation has only two 

rapidly oscillating, linearly independent solutions, i.e., Rabi 
harmonics. Therefore, we seek a solution of (26) which sat- 
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isfies the two initial conditions (20). Our assumptions regard- 
ing the rate of decay of v(5) as L-m, the choice of the 
operator @, and conditions (20) imply w '(0) = 0(RP2)  and 
w(0) = 0(RP3)  and, accordingly, ~ M ( T )  = o(R-~/') and 
(1 -@)M(T)=o(R-~'~) .  Thus we have S ( T ) =  o(R-~"), 
and the Fourier components of the dominant term in the 
asymptotic form of this function are nonzero only in the 
interval [-R'/~,R'/~].  Therefore, in this case, as before, the 
"slow" term in (14) acts as a small correction. If we restrict 
ourselves to calculating the asymptotic forms of the general- 
ized Rabi harmonics only to terms O(RP'), the discontinuity 
in Eq. (26) can be neglected. Equation (26) differs from (17) 
only in the presence of an imaginary quantity in the coeffi- 
cient in front of W(T) (if the differences in the real part of this 
coefficient are disregarded). Therefore, relations (19), appro- 
priately modified, are valid in this case, too. Using arguments 
similar to those offered in Remark 1 ,  we can conclude that 
decay of the generalized Rabi harmonics can be caused only 
by the terms associated with Q"(r-x), i.e., with 0 in the 
present case. We ultimately find that in the order of the as- 
ymptotes under consideration [up to O(R-')] the decay of 
the generalized Rabi harmonics is described by the relation 

This relation is the main result of the present work. 
Using initial conditions, we can calculate the explicit 

forms of a, and q and construct the solution of the initial- 
value problem. However, as follows from (14), analysis of 
(28) is sufficient to describe the population decay of the 
level. It follows from this relation, in particular, that the Rabi 
harmonic corresponding to y= -1 decays in a strong field 
with weak modulation. The second Rabi harmonic does not 
decay in this order of the asymptotic expression. 

We first point out the formal reasons for the presence of 
the factor 1- y in (28). The term which does not depend on 
y is associated with the presence of the term rl(2R) on the 
right-hand side of (25). The term proportional to y is associ- 
ated with the presence of the imaginary part i7r8/2 of the 
multiplier in front of w(7) on the right-hand side of (24). Let 
us discuss the physical meaning of this result. As already 
mentioned, in the strong field case with our assumptions re- 
garding the parameters, a level-continuum system is largely 
similar to a TLA in an external field. For a TLA in a strong 
external field (here the term "strong field" signifies that the 
Rabi parameter of the field significantly exceeds the width of 
its modulation spectrum) one of the Rabi harmonics has an 
effective frequency which is smaller than the frequency of 
the transition between the levels, and the other harmonic has 
an effective frequency which is greater, regardless of the 
detuning of the carrier frequency from the transition fre- 
quency. As noted above, the generalized Rabi harmonics for 
a TLA in an external field do not decay, this being a conse- 
quence of the constant of motion for this system. 

A similar finding is also observed for a level-continuum 
system under our assumption, i.e., up to terms of order unity 
there is no decay, and the structure of the solution of the 
initial-value problem is similar to the structure of the solu- 

tion for a TLA. However, the presence of the continuum 
makes decay possible. In this case only one Rabi harmonic, 
the one that "enters" the continuum, decays into the con- 
tinuum, which lies entirely above the effective transition fre- 
quency. Thus, a phenomenon of population trapping of the 
level appears in a strong field with weak modulation. Of 
course, the analogy between a level-continuum system and a 
TLA (like any analogy) does not signify complete similarity 
between the dynamics of these system: in a level-continuum 
system the level decays, while in the case of a TLA the 
population of the level oscillates. Nevertheless, this analogy, 
as was shown above, helps us to understand some important 
features of the behavior of the ionization process in our prob- 
lem. 

The results which we have obtained enable us to de- 
scribe the dynamics of a level-continuum system as a whole. 
The solution of our initial-value problem in the dominant 
term of the asymptote is a linear combination of two gener- 
alized Rabi harmonics, the "slow" term giving a correction 
o ( R - ~ ' ~ ) .  On the time scale of order unity the system un- 
dergoes oscillations similar to the Rabi oscillations of a TLA 
in an external field. Here the population of the level oscil- 
lates between values which are asymptotically close to 0 and 
1. On the time scale O(R) one generalized Rabi harmonic 
decays, and thus the solution has the form of the sum of one 
Rabi harmonic (which corresponds to y=+ l )  and a small 
correction. The population of the level tends to a value close 
to 114. 

5. CONCLUSIONS 

We have examined the dynamics of level-band and 
level-continuum systems in an external field under fairly 
broad assumptions regarding its modulation. The dynamics 
of such systems in a monochromatic field is usually investi- 
gated using the Laplace transformation. In the case of a 
modulated external field, this approach is inapplicable, since 
there is no separation of the variables in the problem; there- 
fore, we have employed other analytical tools. We note that a 
similar technique can be developed to describe the dynamics 
of a band-band system (for example, if a transition between 
impurity bands in a semiconductor is being studied). 

We have discussed the case of a strong field, in which 
the Rabi parameter of the external field greatly exceeds the 
effective width of the band (continuum) and the width of the 
modulation spectrum of the external field, using the rotating- 
wave approximation. It has been shown in a level-band sys- 
tem that decay of the level does not occur and that its popu- 
lation oscillates between values close to 0 and 1. The 
solution of the initial-value problem in the predominant term 
of the asymptote is a sum of two generalized Rabi harmon- 
ics, the slow term making only a small correction. In a level- 
continuum system the behavior of the solution of our initial- 
value problem is more complicated. Of the two generalized 
Rabi harmonics which together form the dominant term in 
the asymptotic form of the solution of the initial-value prob- 
lem, only the harmonic which "enters" the continuum de- 
cays. The population of the level initially oscillates between 
0 and 1 and then stabilizes near a value of 114. The decay 
rate of the harmonic is O(R-') and decreases as R increases, 
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i.e., as the intensity of the external field increases. Thus, 
there is a phenomenon of stabilization of an atom in a strong 
external field. This stabilization mechanism, which is associ- 
ated with the analogy between a level-continuum system and 
a TLA in a strong external field differs from the mechanisms 
discussed in Refs. 11-15. 

We describe once again the basic assumptions regarding 
the parameters of the system, which lead to this effect. First, 
we assumed that the carrier frequency of the external field R 
significantly exceeds the effective width of the continuum Dl 
and that the width of the modulation spectrum wo is of the 
same order as D l ,  i.e., that R P D , ,  wo. This permits the use 
of the rotating-wave approximation and the neglect of mul- 
tiphoton processes. For a Rabi parameter p  of the external 
field such that R S p  S D ,  (R = p/D S 1) ,  the system be- 
comes similar to a TLA in a strong external field. Then the 
greater the Rabi parameter, the "closer" the level-continuum 
system to a TLA. A TLA does not decay in an external field, 
and the norm of its wave function is maintained (this is also 
true after application of the rotating-wave approximation). 
This property is also inherited by the level-continuum sys- 
tem, i.e., the ionization rate of the atom decreases as the Rabi 
parameter increases. 

In this paper we have discussed the situation in which 
the asymptotic form of v (0 at 5-00 was assigned by relation 
(21). Our technique can also be used to examine the case 
v(5) = 0(5-'-") when c+m and a >O. Calculations simi- 
lar to those performed above lead to the conclusion that in 
this case the ionization rate of the atom (the decay rate of the 
Rabi harmonic) is o(R-~").  Thus, by measuring the ioniza- 
tion rate of an atom in a strong field, we can obtain informa- 
tion on the behavior of the matrix element of the dipole 
moment operator of the atom. 

We note one more consequence of our results. As was 
noted above, the study of the dynamics of a level-continuum 
system in a strong field led to the conclusion that the popu- 
lation of the level stabilizes near a value of 114 on a time 
scale O(R). Then population trapping of the level occurs, 
associated with the unique coherence between the strong ex- 
ternal field and the induced oscillations of the level- 
continuum system. For more effective ionization, the exter- 
nal field should be turned off to destroy this coherence and 
then turned back on. Afterwards the population of the level 
can be lowered to a value near 1/16, etc. Thus, in a strong 
external field the ionization of an atom is more effective 
when a series of pulses is employed than when a field of 
constant amplitude is used. 

Above we discussed a strong external field which satis- 
fies (13), i.e., we assumed that the modulation of the external 
field is weak. If the modulation of the external field is deep, 
so that m(r) has a large number of zeros in the time interval 

of interest to us, the problem of describing the dynamics of 
level-band and level-continuum systems becomes signifi- 
cantly more complicated. If, for example, m(7) is a periodic 
function and has zeros in each period, the external field is 
strong in part of the period and may be considered weak in 
an asymptotically small part of the period. In this case decay 
of the level can probably be observed even for a level-band 
system. It follows from qualitative arguments that no popu- 
lation trapping of the level occurs in this case. 

The analogy with a TLA can possibly be useful in ex- 
amining the limit pSR, D .  In this case a phenomenon which 
has attracted considerable attention in recent years, viz., 
barrier-suppression i ~ n i z a t i o n , ~ " ~  is observed. It is known 
that stabilization of the atom is observed under these condi- 
tions, too. When the dynamics of a level-continuum system 
is studied in this case, multiphoton processes should, of 
course, be taken into account, and the rotating-wave approxi- 
mation is unsuitable. However, in this case, too, the level- 
continuum system is similar to a TLA "as seen by the exter- 
nal field." The equations derived in this case are similar to 
those presented above. Here it becomes necessary to con- 
sider a deeply modulated field. For example, in the case of a 
monochromatic external field we have h( t )  =cosflt. 

We thank the reviewer for his valuable comments. 

'V. M. Akulin and N. V. Karlov, Intense Resonant Interactions in Quantum 
Electronics, Springer-Verlag, Berlin, 1992. 

'M. V. Fedorov, The Electron in a Strong Light Field [in Russian], Nauka, 
Moscow, 1991. 

3 ~ .  L. Knight, M. A. Lauder, and B. J. Dalton, Phys. Rep. 190, 1 (1990). 
4 ~ .  L. Bonch-Bmevich and S. G. Kalashnikov, The Physics of Semiconduc- 

tors [in Russian], Nayka, Moscow, 1977. 
5 ~ .  Ya. Kazakov, Zh. Eksp. Teor. Fiz. 99,705 (1991) [Sov. Phys. JETP 72, 
391 (1991)l. 

6~ 0. Aleksandrov and A. Ya. Kazakov, Zh. ~ k s p .  Teor. Fiz. 101, 431 
(1992) [Sov. Phys. JETP 74, 224 (1992)l. 

'A. A. Makarov, V. E. Platonenko, and V. V. Tyakht, Zh. Eksp. Teor. Fiz. 
75, 2075 (1978) [Sov. Phys. JETP 48, 1044 (1978). 
M. V. Fedoryuk, Asymptotic Analysis. Linear Ordinary Differential Equa- 
tions, Springer-Verlag, Berlin, 1993. 
S. A. Lomov, Introduction to the General Theory of Singular Perturba- 
tions, American Mathematical Society, Providence, 1992, Chap. 4. 

'OM. V. Fedoryuk, Asymptotic Expressions, Integrals and Series [in Rus- 
sian], Nauka, Moscow, 1987. 

"Q. Su, J. H. Eberly, and J. Javanainen, Phys. Rev. Lett. 64, 862 (1990). 
"N. B. Delone and V. P. Krainov, Usp. Fiz. Nauk 161, 141 (1991) [Sov. 

Phys. Usp. 34, 1047 (1991)l. 
13R. V. Jensen and B. Sundaram, Phys. Rev. A 47, 778 (1993). 
1 4 ~ .  Benvenuto, G. Casati, and D. Shepelyansky, Phys. Rev. A 47, 786 

(1993). 
"E. A. Volkova and A. M. Popov, Zh. ~ k s p .  Teor. Fiz. 105, 592 (1994) 

[JETP 78, 315 (1994)l. 
1 6 ~ .  H. Eberly, J. Javanainen, and K. Rzazewski, Phys. Rep. 204, 331 

(1991). 

Translated by P. Shelnitz 

592 JETP 80 (4), April 1995 A. Ya. Kazakov 592 


