
Hydrodynamic accretion onto black holes 
V. S. Beskin and Yu. N. Pidoprygora* 

P N. Lebedev Physics Institute, Russian Academy of Sciences, 11 7924 Moscow, Russia 
(Submitted 9 December 1994; resubmitted 29 December 1994) 
Zh. ~ k s ~ .  Teor. Fiz. 107, 1025-1046 (April 1995) 

We consider adiabatic accretion onto a black hole in the hydrodynamic approximation with zero 
viscosity. For a slowly rotating black hole, the desired solution is a perturbation of a 
spherically symmetric flow. We obtain an analytic solution for such a perturbation, and find the 
correction to the accretion rate and the shape of the sonic surface. We take a similar 
approach to the accretion of matter onto a slowly moving black hole. Our fundamental result is 
that neither black hole rotation nor slow motion alters the essential nature of accretion. As 
before, this result can be extended to supersonic velocities in a collisionless flow, with the shape 
of the sonic surface and the accretion rate remaining virtually unchanged. O 1995American 
Institute of Physics. 

1. INTRODUCTION 

The accretion of matter onto black holes remains a clas- 
sic problem of contemporary a s t r ~ ~ h ~ s i c s , " ~  bearing as it 
does on the related problems of active galactic nuclei and 
quasars, the mechanism of jets, and the nature of certain 
galactic x-ray  source^.^'^ 

Historically, the first area to be considered was isentropic 
hydrodynamic flow for a polytropic equation of state 
(Bondi-Hoyle ac~re t ion~ '~) ,  where it was shown that sub- 
sonic flow far from a black hole will inevitably become su- 
personic, and that the requirement of a smooth traversal of 
the sonic surface uniquely specifies the accretion rate as a 
function of two thermodynamic variables, such as the density 
and temperature of the gas at infinity. 

We note immediately that the isentropic approximation 
provides no way to allow for the interaction of matter with 
intrinsic radiation. Moreover, it has been shown that the ra- 
diative luminosity associated with the adiabatic heating of 
accreting matter falls far short of the Eddington limit, which 
also enables one to treat the entropy of the matter as being 
con~tant .~ Systematic discussions of radiative effects in 
spherically symmetric accretion can be found in Refs. 7-9. 

Furthermore, even for adiabatic zero-viscosity flows, so- 
lutions have thus far been obtained only in a number of 
special cases, such as spherically symmetric accretion onto a 
nonrotating (Schwarzschild) black h01e. l '~~~ In the latter case, 
the structure of the flow has in fact been determined (the 
flow is radial), and the existence of integrals of the motion 
(the Bernoulli integral and the entropy) makes it possible to 
determine the flow characteristics completely. 

In the general case, on the other hand, the flow structure 
ought to be derivable from the requirement for equilibrium 
of the streamlines, which reduces to a nonlinear partial dif- 
ferential equation of mixed type-of the form of the Grad- 
Shafronov equation'O'"-that changes from elliptic to hyper- 
bolic at the sonic surface. Except for the degenerate case, in 
which the speed of sound c, equals the speed of light12 (and 
of cqurse the case of spherically symmetric flow), there have 
been n>- analytic solutions of this equation. As a result, all 

analyses thus far have relied either on self-similar  solution^'^ 
or numerical modeling.14-l8 

It would be reasonable to suppose, on the other hand, 
that a small deviation from spherical symmetry, which for 
example might result from rotation of the black hole, should 
not significantly alter the flow structure. One could then look 
for a solution of the Grad-Shafronov equation that merely 
entails a small correction to the spherically symmetric solu- 
tion, and the equation could be linearized in terms of the 
small perturbation parameter, thereby making a systematic 
analysis feasible. In particular, as we shall see, one could 
then easily determine the correction to the accretion rate and 
shape of the sonic surface. 

In Sec. 2 of this paper, we derive the basic equation 
(equation of equilibrium) for the structure of isentropic hy- 
drodynamic accretion of matter with zero angular momen- 
tum onto a rotating (Kerr) black hole. Several exact solutions 
of the equation are analyzed in Sec. 3. We show in Sec. 4 
how the existence of a small parameter enables one to con- 
struct a solution for the accretion of matter onto a slowly 
rotating black hole. In Sec. 5, we develop an approach that 
can be applied to accretion onto a black hole moving slowly 
with respect to the ambient medium. 

One important and fundamental result is that neither ro- 
tation nor slow motion of the black hole substantially alters 
the nature of accretion near a black hole, As before, this 
result can be extended to supersonic velocities in a collision- 
less flow, with the shape of the sonic surface and the accre- 
tion rate remaining virtually unchanged. The solution ob- 
tained for a moving black hole is essentially identical with 
the solution previously obtained through numerical 
m ~ d e l i n ~ . ' ~ , ' ~  

2. BASIC EQUATIONS 

We consider the axisymmetric accretion of matter onto a 
rotating (Kerr) black hole, for which the metric can be con- 
veniently chosen in Boyer-Lindquist coordinates:19 

ds2= - pidt)(dxk+ pkdt),  (1) 

where 
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(w is the Lense-Thirring angular velocity), 

and 

Here, as usual, & and a are the black hole mass and the 
angular momentum per unit mass, i.e., a = Jl&, and we use 
a system of units in which c = G = 1. Note that a = 0  at the 
black hole horizon. 

We choose a coordinate system identified with a set of 
so-called reference observers19 located at a constant distance 
from the black hole r =  const, 8= const, but revolving at the 
Lense-Thirring angular velocity dx'ldt = o= - PV.  The 
spatial metric of the reference observers is the same as the 
metric gik  in Eq. (4). To determine the structure of the flow, 
it is then convenient to introduce the stream function 
@ ( r ,  O ) ,  with 

1 
a n u  =- [ V @  Xe,]. 

p 2n-m 

Here n  is the density of the medium in the comoving coor- 
dinate system, up is the poloidal component of the four- 
velocity ui (measured by the reference observers), and e, is 
the toroidal unit vector. Level curves of @ ( r , 8 )  = const 
directly determine the streamlines of matter, and since 
d @  = anudS, @ ( r ,  8 )  is the flux of matter through the sur- 
face bounded by r  = const, 8= const, 0  < cp< 2 n-. In particu- 
lar, the total flux through a sphere of radius r  is @(r,n-) .  
Given Eq. (6), the equation of continuity V ( a n u ) = O  is then 
automatically satisfied. Hereafter, V  denotes the covariant 
derivative in the metric gik of (4). 

A general axisymmetric, isentropic, nonviscous hydro- 
dynamic flow can be characterized by three integrals of the 
motion, which are constant on the streamlines 
@ ( r ,  8 )  = const. l1 The first two follow directly from energy- 
momentum conservation (T:: = 0 )  for i = 0  and i = cp. These 
are the Bernoulli integral 

and the z component of the angular momentum, 

Furthermore, for an isentropic flow, the enropy 
s  = s ( @ )  will also be constant. Here ,u= ( P +  .sp)ln is the 
specific enthalpy ( P  is the pressure and .sp is the internal 
energy) and y2= 1 + u:+ u i  . In the present paper, however, 
we restrict the discussion to flows with zero angular momen- 
tum, 

L ( @ ) = O ,  (7) 

so that u,=O. We then have 

We emphasize that u,=O means that the toroidal veloc- 
ity of matter with respect to distant observers corresponds 
directly to revolution at the Lense-Thirring angular velocity 
o of (3). Accordingly, the Bernoulli integral can then be 
rewritten in the form 

so that 

We see that the square of the four-velocity u; diverges as 
aP2  near the black hole horizon. Finally, we assume in this 
paper that the integrals of the motion E ( @ )  and s ( @ )  are 
constant throughout all space, and equal their respective val- 
ues at infinity. Since a ( m ) =  1, we have 

For its part, the stream function @ ( r ,  8 )  in the current 
approximation d E / d @  = 0 ,  d s / d @  = 0 ,  L = 0  satisfies the 
equation of equilibrium, 

where 

and 

c, is the speed of sound. Equation (12) follows directly from 
the general hydrodynamic equation considered in Ref. 11, 
which in turn comes from the energy-momentum conserva- 
tion law @ ; k ~ : : / ( ~ @ ) 2 = 0 .  It is a quasilinear equation of 
mixed type-elliptic in the subsonic region D > 0  and hyper- 
bolic in the supersonic region D<O. Equation (12) must 
naturally be supplemented by the equation of state 

We stress here that the equilibrium equation (12) in fact 
contains only the stream function @ ( r ,  8 ) .  All other thermo- 
dynamic quantities, such as the speed of sound c ,  and the 
specific enthalpy ,u must be expressible in terms of the inte- 
grals of the motion E  and s [Eq. (ll)], as well as in terms of 
the stream function @. Indeed, making use of (6) and the 
explicit expression (9) for the Bernoulli integral E ,  we can 
rewrite Eq. (8), y2 = 1 + u; , in the form" 

where 
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It is clear from the definition (17) that M2 is a purely 
thermodynamic function, so that like the specific enthalpy 
p it can be expressed in terms of two thermodynamic vari- 
ables, such as the speed of sound c, and the entropy s :  

Specifically, at constant entropy," 

Ultimately, Eq. (16) makes it possible to express all thermo- 
dynamic quantities (albeit not explicitly) in terms of the de- 
rivative ( v @ ) ~ ,  as well as in terms of the two integrals of 
the motion E and s  (11). 

Following tradition, we now consider the polytropic 
equation of state 

p=knr ,  (20) 

with k= k(s) = const and 1 < r S 5 / 3  the polytropic index. 
As is well known,lt2 

m,, is the mass of a single particle, and 

We will also need an expression for the derivative 
dc;/dp: 

As a result, Eqs. (19) and (24) enable us to derive explicit 
expressions for the thermodynamic quantities M2 and p as 
functions of the speed of sound c , ~ .  For an arbitrary case 
with c;<r  - 1, we have 

where the subscript "a" again corresponds to the value of 
the quantity in question at infinity. 

Here we note that, as follows directly from the definition 
(17) (further detail can be found in Ref. l l ) ,  the gradient 
VkM2 can be written in the form 

where 

and D is given by Eq. (13). The prerequisite for viM2 to be 
regular at the sonic point D = 0, 

leads immediately to an additional relationship that governs 
the accretion rate. In the case we consider here, with 
E = const and s = const, the equilibrium equation (12) can be 
rewritten more compactly, 

but this still does not explicitly define the second-order op- 
erator. 

3. SPHERICALLY SYMMETRIC ACCRETION AND OTHER 
EXACT SOLUTIONS 

We now present the basic relations for spherically sym- 
metric accretion of matter onto a nonrotating (Schwarzs- 
child) black hole, which we will need below. The velocity of 
the medium at infinity is naturally set to zero, so that 
y, = 1. The flow is completely defined by two constants-for 
example, two of the thermodynamic functions at infinity, 
s, and p, , which according to (11) also determine the value 
of the Bernoulli integral E. The stream function @ is then 
trivially given by 

It is easily shown that this function (30) is in fact a solution 
of the equilibrium equation (12) for any constant ao. The 
actual value of @, (and the accretion rate @(a) = 2Qo) is 
dictated by requiring a smooth traversal of the sonic point 
D = 0, rather than by solving the equilibrium equation (12). 

In point of fact, we may write D(ro,co) = O  and 
N,(ro,co) = 0. Hereafter, a subscript 0 refers to a value at the 
sonic point in spherically symmetric accretion. For the 
spherically symmetric case in the Schwarzschild metric 
a = 0, these take the form 

The requirement that No(rO ,co) = 0 is automatically sat- 
isfied in the spherically symmetric case, since N,=O. In ad- 
dition, we can make use of (16), which by virtue of (30) and 
(31) at the sonic point takes the form 

In conjunction with (31)-(33) the definition (9) and the 
thermodynamic relations (25) and (26), the algebraic equa- 
tions (31)-(33) immediately enable one to determine all of 
the fundamental characteristics of the flow. For example, the 
radius of the sonic surface in the present case ( c ; ~  1 )  is 
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so that when c:G 1, 

"4 
r 0 = 7  

2co 

The relationship between c; and c i  can be obtained by 
combining (ll) ,  (13), and (25). The result is 

2 7 

and consequently, by virtue of (34), 

In the limiting case c;Gl, we obtain the well known 
 relation^"^ 

Similarly, 

Finally, the accretion rate can be written in the form 
2m,Qo, where 

Having specified two thermodynamic functions at infin- 
ity, for example c i (p ,  ,s,) and ,s,), we can thus 
use (21), (22), (35)-(37), and (16) to determine the thermo- 
dynamic functions p( r ) ,  M2(r), and c:(r-) at any point in 
space. At r G  r,, for example, we obtain 

In particular, at the black hole horizon, where a = O  and 
r = 2 J&, we have 

Consequently, when c i G  1 (and therefore c;G 1), the speed 
of sound remains small compared to the speed of light all the 
way out to the black hole horizon. 

We now note two more cases in which the equilibrium 
equation (12) can be solved exactly. First and foremost, we 
can obtain such a solution for dusty matter with P=O, for 
which C ? = O  and therefore D = - 1. That matter should move 
in exactly the same way as test particles at rest at infinity that 
possess no angular momentum with respect to the black hole. 
It is well known (see Ref. 20, for example) that for an arbi- 
trary black hole rotation rate, such motion can be directed 

precisely along a radius, thereby yielding streamlines with 
O= const. The density of those streamlines in this pressure- 
free case is also arbitrary. 

It can easily be shown that the arbitrary function 
@=@(8) (c: = 0) is, for D = - 1, a solution of the non- 
linear equation of equilibrium at any black hole rotation rate, 
no matter how high. In fact, since when c:= 0 we have 

throughout all space, the general relation (16) yields 

8.rr2mpE d m  8m2E sin 8 
~ ' ( r ,  0) = - - 

m i a e  a@/ae 

In this last equation, we have made use of the explicit ex- 
pressions (2), (4), and (5) for the metric coefficients a ,  p, 
and a. Inserting M2(r, 0) from (41) into Eq. (29), we obtain 

Thus, with c:= 0 in the stationary case at hand, the accretion 
rate @(.rr) is completely arbitrary. This should come as no 
surprise: given that D =  - 1, the flow remains supersonic 
throughout all space, and therefore no additional constraint 
on the sonic surface emerges. In the more general case of a 
nonstationary flow, the accretion rate itself will naturally be 
time-dependent (see Ref. 1, for example). 

Finally, a solution can also be obtained in the case 
c:= 1, for which, according to (13), we have DP1=0.  The 
equilibrium equation (12) then becomes linear, 

or equivalently 

A d2@ 1 
-- + T s i n  e d ( l E ) = o .  
p2 dr P d e  sin e ae (42) 

The solution of this linear equation (42) can be expanded in 
eigenfunctions Qn(8) of the angular operator 

 sin e ? ( i d )  de  sin e de  ' 

where 

Qo=l-cos 0, 

(the P, are Legendre polynomials). Specifically, 

Q = sin2 8, (45) 
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e2 = sin2 8 cos 8. (46) 

Here the term proportional to go( l  -cos@ corresponds to 
the case of spherically symmetric accretion. Far from the 
black hole, r +.A, the term proportional to gl(r)sin28 can 
easily be shown by direct recourse to Eq. (42) to take the 
form 

which corresponds to a uniform flux of matter, with 

Therefore, for a black hole moving at velocity v, through a 
medium with c:= 1, for example, we must compare the two 
leading terms in the expansion (43). Thus, we have for a 
Schwarzschild black hole 

where is given by (48). We see that when c:= 1, the 
accretion rate 2 a 0  is also arbitrary, since the flow remains 
subsonic out to the black hole horizon. A solution equivalent 
to (49) was first obtained in Ref. 12 for an arbitrary black 
hole rotation rate. 

4. ACCRETION ONTO A SLOWLY ROTATING BLACK HOLE 

We now consider accretion onto a slowly rotating black 
hole for which a 4.,&. Let 

then e e l .  We can thus assume that the thermodynamic 
functions of the medium at infinity, p, and s, , are the same 
as the characteristics of the medium considered in the case of 
spherically symmetric accretion. 

We see from the definitions (4) and (5) that when 
E 4 1, the corrections to the metric coefficient gik and thus to 
the equilibrium equation (12) are of order e2. It is therefore 
reasonable to seek a solution of the equilibrium equation (12) 
that is a small correction to the spherically symmetric solu- 
tion of (30), 

where as before, Qo is given by (38). Inserting (51) into (12) 
and collecting terms proportional to E' and a2,  we obtain 

d2f E2  
- e 2 a 2 ~  --Z-T(D+l)sin 8 -  -- 

dr P dB sin 8 dtl 

where 

Here we see that p ,  D, and N, are to be evaluated using 
the unperturbed stream function = a o ( l  - cos@ in the 
Schwarzschild metric a = 0. Thus, in particular, 
a2=1 -2,&/r, p = r ,  while the functions D and N, do not 
depend on the angular variable 8. The singularity in (52) 
then coincides with the sonic surface r = ro [Eq. (34)] given 
by the spherically symmetric solution with the same values 
of p and s at infinity. According to (31) and (32), we there- 
fore find that D(ro) = 0 and N,(ro) = 0 to zeroth order in 
E2. 

We note above all that by virtue of Eq. (13), 

so the relativistic factor a2 appears in all terms of Eq. (52). 
We can thus conclude that the linearized equilibrium equa- 
tion (52) gives rise to no singularities at the black hole hori- 
zon. On the other hand, we see that the angular operator in 
Eq. (52) is the same as the one in Eq. (42), and thus we can 
seek a solution of (52) in the form 

where the eigenfunctions Qn(8) are given, as before, by Eqs. 
(44)-(46). Since Qn(.rr) = 0 (n # O), the total accretion rate 
will be determined solely by the zeroth harmonic 
go( l  - cosq. 

Substituting the expansion (55) into Eq. (52), we now 
obtain a set of ordinary differential equations for the radial 
functions gn(r)  : 

In Eq. (56), the Cn are eigenvalues of the operator L o  
(Co=O, C1= -2,...). As we have already noted, all quanti- 
ties in (56) and (57) such as D(r) ,  N,(r), p ( r ) ,  c:(r), and 
a ( r )  should be taken from the spherically symmetric solu- 
tion. For the polytropic equation of state (20), these can eas- 
ily be determined using the algebraic relations (16), (25), 
(26), and (30). 

For example, with c:+l, p=rn,, and r # 513, Eq. 
(57) in dimensionless variables 

becomes 

where according to (26), 
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and by virtue of (27) and (28), the dimensionless quantity 
u(x) satisfies 

We now determine the boundary conditions on Eqs. (56) 
and (57). Most importantly, we see immediately from the 
two equations that the requirement that @(r,  8) be regular at 
the sonic point r = ro leads to the following conditions on the 
radial functions g, : 

It can easily be verified that Eqs. (58) and (59) follow di- 
rectly from the regularity condition No(ro) = 0. We see that 
for c i G l  (and hence for r o S . A ) ,  the correction to the 
spherically symmetric solution at the sonic point has, apart 
from a multiplier e2, an additional small factor ( & ~ r ~ ) ~ .  As 
for the radial function go (which by virtue of Eq. (58) for 
n = 0 should not depend on the radius, go= const), the van- 
ishing of the eigenvalue C0 means that it cannot be deter- 
mined from Eq. (56). 

Accordingly, the prerequisite for the solution to be regu- 
lar at infinity can be written in the form 

lim g,(r)=O, n ZO. 
r i m  

Since as is easily verified, the two asymptotic solutions of 
Eqs. (56) and (57) are 

[cf. (47)], so that regularity at infinity requires that we take 
the decreasing solution r-". Equations (58)-(60) also 
make it possible to completely determine the radial functions 
g,(r) for n # 0. 

More than anything else, Eqs. (59) and (60) show that all 
of the radial functions except go and g2(r) vanish. The latter 
g2(r) must be chosen in such a way as to yield a decreasing 
solution m rP2  as r+m. An analysis of Eqs. (57) and (58) 
shows that at distances rGro ,  

g2(r)mr(l-3r)/2. 

The radial function therefore takes the convenient form 

where, according to (59) 

In Fig. 1, we show the behavior of the function G(r) 
obtained by numerically solving Eq. (58) with boundary con- 
ditions (59) and (60) for the case c:Gl, and for various 

FIG. 1. The behavior of G ( r )  for various values of T. 

values of the polytropic index T. We see that on the whole, 
g2(r) retains its power-law behavior over the full range of 
radii, 2&< r <  r0 . Accordingly, the derivative g;(ro) takes 
the convenient form 

where the numerical coefficient k2( r ) ,  which is of order 
unity, also depends on the polytropic index T. Table I lists 
some values of k2(r) .  

We note finally that, as is clear from Eq. (62), 
g2(2~)=(&/r0) (5-3r ) '2 .  The largest perturbation of the 
stream function Qo(r) therefore takes place near the black 
hole horizon, where the correction, however, is at most of 
order - ~ ~ ( & / r ~ ) ( ~ - ~ ~ ) / ~ .  Hence, the perturbation remains 
small over all space outside the black hole. 

We now determine the constant go ,  which governs the 
correction to the accretion rate. To do so, we consider in 
more detail the behavior of the solution near the sonic sur- 
face r = r , ( O), whose radius, by virtue of our assumption 
that the thermodynamic functions match at infinity, ought to 
differ from r0 by a quantity of order - e2. We can therefore 
write 

It would be reasonable to suppose that the thermody- 
namic functions Mi($) ,  p*(O), and c:(O) at the sonic 
point differ from the corresponding values M i ,  p o ,  and c i  
given by (35)-(37) for the spherically symmetric solution by 
a quantity of order e 2  as well. Hence, we can write 

To determine the four dimensionless functions d( 0), q( O), 
p(O), and b(6), it is then sufficient to make use of the two 
thermodynamic relations (19) and (24), which yield 

TABLE I. 
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plus the exact relations D(r  ,) = 0, Nr(r ,) = 0, in which we 
need to expand terms out to quantities of order c2. The end 
result is 

2 2 ro 2f 
- b + - z d = - -  
1 -co a, sin 0 drd6 

Since g,=const here, the only harmonic that enters into the 
derivative 

is g2(r)sin2~cos 0. From (64), we then have 

dB2 
le31 sin tJ drde =Tk2( r ) (3cos2B-1 ) .  

r = r o  '0 

To summarize, we can write the solution of Eqs. (69)- 
(72) with c,G 1 (-&/roG 1)  in the form 

where 

For r = 513 (k2(5/3)= 1 from Table I), we see that a more 
accurate expansion in S/ro is required. 

By way of example, Fig. 2 shows the shape of the sonic 
surface for r=4/3 ,  ~ ~ ~ & ~ / r ; = 0 . 1 .  In actual fact, when 
A-=%ro, an additional small factor A 2 / r ;  enters into the 
expression for d in (74) [as it does for g2(ro)], so that the 
sonic surface differs little from a sphere of radius ro .  

As for go ,  we actually require a fifth relationship, which 
can be derived from (16). Expanding it near the sonic surface 
to order - c2, we obtain 

FIG. 2. Shape of the sonic surface for r=4/3, ~ ~ ( . , & ~ / r i ) = 0 . 1 .  

On the right-hand side of this equation, due to the term 
(llsine>(df/dO), we have besides g2(ro) the zeroth harmonic 

go: 

j d f l  =go+g2(ro)(3 cos2 e- 1).  
sin 8 J 6  

r = r o  

It can easily be shown that the left-hand side of Eq. (78) 
is a linear combination of Eqs. (69)-(72). This is as it should 
be, since the differential equation (19), which leads to Eq. 
(69), can be derived directly from (16). For the five equa- 
tions (69)-(72) and (78) to be compatible, the determinant of 
the generalized matrix must vanish, implying that 

so that 

and the expression for g2(ro) is the same as in (59). We see 
that the expression for g n  also contains an additional factor 
&/ro41.  

We can thus write the complete solution of Eq. (52) that 
describes axisymmetric accretion onto a slowly rotating 
black hole: 

+ c2g2(r) sin2 e cos el ,  (82) 

where a. is given by (38), and the radial functions go and 
g2(r) are given by Eqs. (62) and (81). The solution is com- 
pletely determined by the two thermodynamic functions s, 
and p,, which are specified at infinity. 

To conclude this discussion, we note that for the physi- 
cally reasonable condition c t < l ,  the radius ro of the sonic 
surface is significantly greater than 2 d ,  the radius of the 
black hole. Rotation effects under these circumstances are 
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exceedingly weak. Likewise, the shape of the sonic surface 
will be only slightly distorted, so that the effects considered 
in this section are scarcely of practical interest under realistic 
conditions. In our opinion, therefore, the fundamental result 
here is more of a mathematical nature. In fact, it was shown 
above that the well-known earlier spherically symmetric ac- 
cretion regime is stable against small perturbations associ- 
ated with black hole rotation. 

5. ACCRETION ONTO A SLOWLY MOVING BLACK HOLE 

We now examine the problem of accretion onto a 
Schwarzschild black hole moving at velocity v ,+c ,  relative 
to the ambient medium. We take as the small parameter here 

We transform immediately to the rest frame of the black 
hole, in which the velocity of the medium is v , .  As 
r--+w, the stream function @ should display the asymptotic 
behavior (47) and (48), i.e., it should be completely specified 
by the first harmonic g,(r)sin28. Making use of the defini- 
tion (38) of a,,, that behavior can conveniently be rewritten 
in the form 

where 

is a numerical coefficient (for which values are listed in 
Table 11). Clearly the asymptotic function (84) is formally 
linear in the small parameter (83). On the other hand, the 
Bernoulli integral E = p ,  y, for e,#O differs from the value 
~ ( ' ) = p ,  for a black hole at rest by a quantity of order 8:: 

As in the preceding section, we seek a solution of the equi- 
librium equation (12) in the form 

[ 
w 

@ ( r , e ) = @ ,  1 -cos 8+ e l  g n ( r ) Q n ( 0 )  . (87) 
n=O I 

We note straightaway that formally the expansion (87) holds 
only at small distances r + r ,  from the black hole: 

since at large distances the perturbed term (84) becomes 
larger than the term Q o ( l  -cosB), which describes spheri- 
cally symmetric accretion. Nevertheless, we will show that 
the expansion (87) correctly details the behavior of the 

FIG. 3. The behavior of g , ( r )  for various values of T. 

stream function throughout all space, because the term pro- 
portional to e l  corresponds exactly to the asymptotic behav- 
ior far from the black hole. 

Substituting the expansion (87) into the general equilib- 
rium equation and retaining only terms proportional to e l ,  
we obtain for the radial function g , ( r )  

Since D ( r O )  = Nr(rO) = 0, the regularity condition at the 
sonic point r = ro is 

The boundary condition at infinity, according to (84) and 
(85), becomes 

lim g , ( r )  = K ( T )  r 2 / r i .  
r + m  

Furthermore, the "radial constant" g o ,  as in the case of ac- 
cretion onto a rotating black hole, cannot be determined from 
the equilibrium equation. Finally, by virtue of the regularity 
condition gn(rO) = 0 at the sonic point and the limit (60) at 
infinity, the remaining radial functions g 2 ( r ) ,  g 3 ( r ) ,  ..., all 
turn out to vanish: 

In Fig. 3 we have plotted g l ( r ) ,  obtained by numerically 
integrating Eq. (89) with boundary conditions (90) and (91) 
for various polytropic indices T. We see that g , ( r )  ap- 
proaches its asymptotic behavior g l ( r )  r2  [Eq. (91)] fairly 
rapidly for r >  ro . At the same time, the derivative g ; ( r o )  is 
conveniently given by 

Table I1 also lists values of k l ( T ) .  Note that in contrast 
to the situation for accretion onto a rotating black hole, the 
expression for g ; ( r O )  contains no additional small param- 
eters. 

On the other hand, for r e r , ,  the asymptotic form of 
g , ( r )  is 
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TABLE 11. 

Values of Kin( r )  are listed in Table 11. We see that when 

the perturbed term @o~lg l ( r ) s in28  at distances 
2&<r<ros;Ki?, becomes greater than @o(l-cos8), 
which corresponds to spherically symmetric accretion. This 
means that the linear approximation (89) breaks down over 
that radial interval, and it is necessary to solve the full non- 
linear equation (12). Incidentally, the linear approximation is 
also inapplicable in the hyperbolic region, which has no ef- 
fect on the behavior of the solution at r> ro .  

Let us now determine go ,  which dictates the behavior of 
the accretion rate. To do so, we again write out the expres- 
sions for the radius r,(O) of the sonic surface and the 
thermodynamic functions M: ( 8) = M2(r, , B), p, ( 8) 
- - p( r ,  ,8), andc:(~)=c;(r, ,8): 

In the process, two of the five equations relating the dimen- 
sionless functions d(  O), b( 8), p (  8), and q(8) are given by 
Eqs. (69) and (70), as before. Equations (71), (72), and (78), 
on the other hand, may now be written in the form 

Here we have taken advantage of Eq. (86), according to 
which the Bernoulli integral remains the same, to order 
- c l ,  as in the case of spherically symmetric accretion. In- 
serting the equation 

1 
-. dfl =go+2gl(ro)cos 8 
sin 8 d 0  

r = r o  

into (95), we obtain from the matching requirement on Eqs. 
(69), (70), and (93)-(95) that 

Thus, to first order in c , ,  the accretion rate onto a moving 
black hole does not vary. To the same accuracy, then, the 
solution of the equilibrium equation (12) can be written out 
as 

In particular, at r 9 ro , we have 

r 
1 - cos 8+ c l K ( r )  

In point of fact, for E G (, f l l ro)  'j2, the analytic expression 
(98) accurately describes the flow of matter throughout all 
space. 

The solution of Eqs. (69), (70), (93), and (94) is now 
finally given by 

where D l  is given by (77). Accordingly, the shape of the 
sonic surface is given by 

We now show that our solution (97) correctly describes 
the accretion of matter throughout all space, including the 
region r>r , ,  where the perturbation term @o~lg l ( r ) s in28  
becomes greater than the zeroth-order term a o ( l  - cos8). To 
do so, we note that both the stream function Do( l  -cos8) 
corresponding to spherically symmetric accretion and the as- 
ymptotic function c @o~( r2 / r i ) s i n28  corresponding to a 
uniform flux are asymptotic solutions of the linear part of Eq. 
(12), which is identical to (42) at r B r o .  We can show that in 
the asymptotic region r > r, , the contribution of nonlinear 
terms to (12) is of order sf, so that they need only be taken 
into account in the next order of the expansion of the solu- 
tion in powers of E ,. 

Indeed, at distances r 9 r o ,  the value of D,  which ap- 
pears in the denominator of the nonlinear terms in (12), is 
dominated by the small quantity (E - a 2 p 2 ) l p 2  in the de- 
nominator of the second term. Making use of (16) to find the 
difference E ~ -  a2p2 ,  we have 

As a result, we can write the second and third terms of (12), 
to order of magnitude, as 
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FIG. 4. Flow structure and shape of the sonic surface for r=4/3 ,  
E ,  = 0.6. Labels on the curves denote the value of @I@,, and dashed curves 
indicate streamlines and the sonic surface obtained numerica~l~. '~ 

where, by virtue of (85), K ~ ( M ~ / M ~ ) ( C ~ / C ~ ) -  1 for all T. 
Therefore, both at distances r-r, (where @-@,) and at 
r+r, where @-@0(r/rm)2, we have 

Here A - @lr2 corresponds, to order of magnitude, to the 
term in Eq. (42), and consequently to the linear term in Eq. 
(12). At distances r>r,, the second and third terms of (12) 
are thus at most of order E ; .  

A similar analysis shows that to order of magnitude, the 
nonlinear part of the fourth term in (12) is 

so that the last term is also of order E:. 

Figure 4 shows the structure of the flow (97) and the 
shape of the sonic surface (100) for r =4/3, =0.6. The 
dashed curves are streamlines and the sonic surface obtained 
numerically by ~ u n t . ' ~  Clearly, the solution (97) is essen- 
tially identical to the numerical result, despite the fact that 
e l  is close to unity in the case considered here. Here, as for 
a slowly rotating black hole, there are no discontinuities 
whatever in the flow. This is consistent with numerical re- 
sults that predict shock formation only for ~ ~ ~ 1 . ~ 3 ~ ~ - ~ ~  
Lastly, we point out that the boundary condition gl( ro)  = 0 
implies a flow that is all but spherically symmetric near the 
sonic surface, which is also consistent with numerical 
results.16 

6. CONCLUSION 

To summarize, the presence of a small parameter in the 
problem of accretion onto a black hole makes it possible to 
carry out a systematic analysis of the equilibrium equation 
(12), and to determine the shape of the sonic surface and the 
behavior of the accretion rate. 

We have shown that neither slow rotation nor slow linear 
motion of the black hole alters the essential character of the 
accretion. As before, the flow can extend out to supersonic 
velocities and be collisionless; in that sense, the familiar 
spherically symmetric solution is stable. On the other hand, a 

systematic analysis of the stability of the resulting flow natu- 
rally requires that one consider equations that are both more 
general and time dependent. In particular, the possibility that 
the flow may be shocked at supersonic velocities cannot be 
ruled out, i.e., a shock wave may exist near the gravitating 
 enter.^^'^^ 

We note that the foregoing approach can be adopted to 
analyze flows in many other astrophysical objects: general- 
izing Eq. (12) to the L # 0 case enables one to study hy- 
drodynamic accretion of matter with nonvanishing angular 
momentum, as well as mass ejection from rotating stars. 
Lastly, the full magnetohydrodynamic Grad-Shafronov 

which has been widely discussed in the context 
of active galactic nuclei in quasars?4-28 young stellar 
o b j e ~ t s , ~ ~ , ~ ~  and stellar (solar) wind and radio pulsars,30331 
can also be investigated in similar fashion (see Ref. 32, for 
example). These problems, however, lie outside the scope of 
the present paper. 
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