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A new method is proposed for analyzing Mossbauer spectra, which allows models of the spectra 
to be found with the largest possible number of lines. The technique is based on the 
proposition that for any given level of measurement accuracy it is impossible to detect splitting 
of the lines which is too small. Formulated mathematically, this allows certain criteria to 
be established on the density of the lines over the spectrum, by means of which the spectral model 
is not described in advance but is derived directly by fitting. The possibilities inherent in the 
method are demonstrated using examples of Mossbauer spectra for high-temperature 
superconductors. 0 1995 American Institute of Physics. 

1. INTRODUCTION 

Mossbauer spectroscopy is a powerful technique for de- 
riving information about the properties of solid bodies from 
the hyperfine interactions of the Mossbauer nucleus with in- 
ternal electrical and magnetic fields. The experimental 
method allows measurements to be made with high preci- 
sion, but extracting the parameters of the hyperfine structure 
requires a corresponding mathematical processing which 
should be commensurate with the capability of the experi- 
ment. 

The existing methods for fitting spectra can be divided 
into two classes. When the number of lines is relatively small 
the 2 method is used, i.e., the method of least squares.'-3 In 
alloys and amorphous materials a large number of lines from 
nonequivalent Mossbauer ion states can be superposed, and 
it is necessary to introduce continuous distributions of hyper- 
fine fields and to analyze them using a large number of lines, 
comparable with the number of spectral points. It is well 
known that this procedure leads to an ill-posed problem, and 
a large number of treatments have been devoted to it.4-8 

Without going into the mathematical nuances of these 
approaches, we note an important difference between them. 
In the 2 method the aim of the analysis is to extract the 
spectral parameters along with an indication of their preci- 
sion, i.e., an indication of the root-mean-square error. In the 
second approach there is actually no quantitative information 
in the sense that it contains no procedure for determining the 
errors of the parameters deduced. More careful examination 
reveals that the 2 method in many cases is also not quanti- 
tative. The procedure for determining the errors in the 2 
method is feasible only when a model of the structure, i.e., 
the number of lines in the spectrum is known exactly. In 
general this information is not known a priori, and it is nec- 
essary to use approximate models, which in some situations 
are quite crude. 

There exist mathematical methods for determining the 
reliability of these models, but the applicable criteria for re- 
liability are quite stringent-it is necessary that the 2 pa- 

rameter be very close to unity, which in many cases is not 
true. Naturally, in such cases the question of the precision of 
the resulting parameters remains open. 

In the present work we consider the problem of finding 
spectral models with the largest possible number of lines, but 
which allow a quantitative description with an indication of 
the average values and the errors in the derived parameters. 
The method is based on the idea that at a given level of 
measurement precision it is impossible to specify lines with 
too small a separation. This idea, formulated mathematically, 
enables us to establish an upper limit on the line number 
density even before the fitting procedure is carried out, and 
also to combine two lines into one according to certain cri- 
teria during the fitting process. Thus, the model is not pre- 
scribed ahead of time, but is derived directly in the course of 
fitting the spectrum. The basis of the method is described in 
Sec. 2. 

Generally speaking, the resulting solutions contain a 
large number of lines, and they may be quite difficult to 
interpret. The solutions can be simplified by throwing out 
lines with low intensities, combining closely spaced lines 
and by imposing relationships and using certain models 
about the shape of individual lines. These questions are dis- 
cussed in Sec. 3 using spectra of high-temperature supercon- 
ductors (HTSC) as examples. 

2. STATEMENT OF THE PROBLEM AND FUNDAMENTAL 
IDEAS OF THE THEORY 

A Mossbauer absorption spectrum consists of a convolu- 
tion of the line L , ( v )  of the source and the spectrum F , ( v )  
of the absorber: 

Here B is the number of photons which pass far from reso- 
nance. The function L , ( v )  is defined by the natural line 
width r, and the density of the line distribution p, (v)  in the 
source: 
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where f s  is the probability of the Mossbauer effect in the 
source. 

The spectrum of the absorber is defined by the following 
expression: 

Here p , (x )  is the density of the line distribution in the ab- 
sorber and a= fanauot  is the effective width of the absorber, 
fa  is the probability of the Mossbauer effect in the absorber, 
n ,  is the density of resonant nuclei in the absorber, a,, is the 
transverse resonant absorption cross section, and t is the 
thickness of the absorber. In the case of a "thin" absorber 
( a G l )  and a source with a single line we have 

where T = 2 T o  is twice the natural line width. 
The experimental spectrum N ( v i )  is measured at a finite 

number n of points v i  and contains statistical noise t i ,  so 
that 

It is assumed that the noise [ is uncorrelated, i.e., 

Usually the density p , (x )  of the lines in the absorber is 
prescribed in the form of a finite number n ,  of lines of a 
certain form: 

Here ak determines the intensity and Sk the rotations of the 
lines. The individual line shapes are usually given by Lorent- 
zians: 

where yk is the line width. The regular part of the spectrum 
is represented in the form 

where rk=rf yk andAk= f s f f f f k .  

2.1. Method of least squares 

In the method of least squares the unknown parameters 
Ak , Sk , r k ,  and B are found by minimizing the functional 

where n,= 3 n , +  1 is the number of unknown parameters. 
The problem reduces to solving the system of nonlinear 
equations: 

where pj is one of the parameters A k ,  Sk, rk ,  B. From the 
solution of the system (10) the average values pi are found, 
where the matrix of second derivatives 

determines the mean square errors: 

The quantity 2 defined by Eq. (9) is used in statistical 
analysis not only as the functional to be minimized in the 
technique for estimating the parameters P k ,  but also as a 
statistic which allows one to determine the quality of the fit 
or to choose the most optimum model if several ways of 
describing the spectrum are a~ai lable ."~ 

The parameter 2 is a random quality with the distribu- 
tion X 2 ( r ) ,  which asymptotically approaches a normal distri- 
bution when the number of degrees of freedom r = n - n ,  is 
large? The normalizing coefficient l / ( n  - n p )  in (9) is cho- 
sen so that when the method of estimating (10) is employed 
we have ?= 1 in the limit of large r .  Then the mean square 
deviation of 2 from unity is 

2.2. Limltations on the density with which lines are 
distributed through the spectrum 

The 2 method is the best fitting procedure when the 
number of lines is known, but here the number of lines is not 
known in advance. It would seem that there is a simple way 
out of the situation: choose the largest possible number of 
lines, e.g., equal to the number of channels. In this case there 
is a simple mathematical solution, but because of the statis- 
tical noise this solution turns out to be inappropriate from the 
physical standpoint: lines appear with negative intensities, 
etc. (see Fig. lb). This problem is well known to be 
ill-posed.l"n order to obtain reasonable solutions restric- 
tions on the form of the distributions are introduced by in- 
troducing auxiliary terms in the functional (9). Thus, in Ref. 
4 a functional was used which restricted the variations of the 
intensities Ak in neighboring channels: 

By varying the parameter A we can find solutions without 
negative intensities (see Fig. lc). The form of the smoothing 
term is not unique, however, and Ref. 8 used the functional 
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FIG. 1. Mossbauer absorption spectrum (a) for 5 7 ~ e  nucleus in oriented 
polycrystalline samples of the HTSC YBa2(Cu,,Fe,05),0,, for an angle be- 
tween the axis and the yray beam of B=O0 and various models of the line 
distribution: b) equivalently positioned lines ( 2 =  1.21); c) Hesse-Rubartsch 
technique (2=1.35);  d) "densest possible" solution in the present technique 
(2=1.02);  here Q is the signal-to-noise ratio. 

The formal similarity of the second term to the expression 
for the entropy is what permits this approach to be classified 
as a so-called maximum entropy formalism. 

Another approach to the solution of the ill-posed prob- 
lem is possible. The basic idea is that the number of allowed 
components in the spectrum should depend on the quality of 
the spectrum, i.e., on the signal-to-noise ratio. The occur- 
rence of unphysical solutions in the example shown in Fig. 1 
in an attempt to describe the spectrum with a large number of 
lines is due to the unreasonableness of the initial formulation 
of the problem: too large a number of fitting parameters was 
used. 

In choosing a model we should first of all take into ac- 
count the quality of the spectrum, and starting from that we 
should exclude solutions with unphysical behavior insofar as 
is possible. Let us analyze this concept for a simple example. 
Figure 2 shows model spectra of two closely separated lines 
(q is the separation between them) with different signal-to- 
noise ratios Q, together with the results of fitting the spectra 
in models with one and two lines (model 1 and model 2, 
respectively). For the spectrum with large Q the results of 
the fit unequivocally support the model with two lines, 
whereas for the spectrum with the small value of Q the 2 
parameters are close to one another and it is not possible to 
make a convincing choice of one or the other model. More- 
over, for this spectrum the description using two lines leads 
to a very large spread in the resulting parameters: the errors 
in determining A ,  , A,, and q are found to be larger than 
their mean values (see Table I). The use of model 2 in this 
case does not introduce any additional reliable information 
whatever. In general, for arbitrary Q the criterion for the 
reasonableness of model 2 is that the error in the intensity of 
each line be less than its mean value. 

In choosing models of more complicated spectra we 
should exclude lines that do not satisfy the condition 
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FIG. 2. Model spectra of the line doublet ( q /  
d r=  . 02)  with Q = 2 0  (a) and 200 (b); the curves 

show the deviation between the model spectra 
and that calculated using one (c,d) and two (e,f) 0 
lines. 
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TABLE I. Parameters of the specira shown in Fig. 2 

Spectrum a (Q = 20) ISpectrum b(Q = 200) 
Model I / Model 2 1 Model I I Model . 2 

Note:A, and 6, are the intensity and position of the ith 
line; A is the toal intensity; 6 i s  the center of mass of 
the two lines; q is the separation between the lines. 
The quantities 6,. 6. and q are given in units of T. 
Errors are shown in parentheses. 

In the models considered above we can find simple ana- 
lytical expressions for the mean square errors of the derived 
parameters. Thus, for model 1 we have 

where we have written Q = J ~ A ;  here and in what 
follows r is the line width in the channels. 

In real situations the parameter Q can reach a value of 
order lo3, and consequently the precision with which the 
position of a line is determined can be very high. 

For model 2 (see Appendix) the presence of a neighbor- 
ing line (regardless of its intensity) increases the error in the 
intensity of each line, so that condition (16) is violated as 
soon as the separation q between lines becomes less than a 
quantity q,, the solution of the equation 

For q04r this equation assumes the following simple form: 

The presence of additional lines can only cause go to 
increase, and so Eqs. (18) and (19) determine a lower bound 
on the separation between neighboring lines in spectra of the 
most general type. The parameters Qi appearing in Eq. (18) 
are unknown. Exact knowledge of them, or what is the same 
thing, exact knowledge of the line intensities of the spectrum 
would amount to a complete solution of the original problem 
of fitting the spectrum. Consequently, in the initial stage of 
the analysis we can hope to obtain only more or less effec- 
tive estimates for Q i .  

If we express the experimental spectrum in units of the 
statistical error a, which we will assume to be the same for 
all points of the spectrum, then the function 

will immediately determine an upper bound for gi ,  since the 
spectral line number density is bounded by the function 

where a = ( 3 / 2 ) ' 1 6 = 1 . 0 7 .  

If the number of lines NI(T) over a portion of the spec- 
trum of width r is much greater than unity, then the estimate 
(21) can be improved: 

nl(ui )=  l l q o = a l ~ ( v i ) 1 ' 4 / r ,  (22) 

where a , - 1 . 1 9 .  

If the lines satisfy condition (16) and Eq. (22), then the 
total number of lines with which the analysis must start turns 
out to be much less than the number of channels, and the 
unphysical aspects of the solution are largely removed. How- 
ever, the estimates of Qi given above are not optimal and can 
be improved considerably. 

2.3. Estimates of the line density over sharpened spectra 

In Ref. 11 a new spectral sharpening technique was pro- 
posed which uses a simple transformation to derive new rep- 
resentations of the experimental data in which spectral line 
broadening due to the natural width of the lines of the source 
and the absorber is largely eliminated. 

In accordance with (4) and (9, the regular part of the 
spectrum is a convolution of the spectral density p,(x) with 
a Lorentzian. Using the integral transformation 

we can easily derive the peak spectrum:" 

which is a convolution of the spectral density pa(x) and the 
square of the Lorentzian. Successive application of the op- 
erator A allows us to obtain even higher orders of sharpen- 
ing: 

N ~ ( u ) = N ~ ( u ) +  ( ~ / ~ ) A [ N ~ ( u ) - N ( u ) I  

and so forth [cf. Eq. (ll)]. The functions t2 and 5,, which are 
transformations of the statistical noise &, are no longer white 
noise, i.e., they do not satisfy condition (6). 

The sharpened spectrum N3(v) corresponding to the 
spectrum in Fig. l a  is shown in Fig. 3a; it more adequately 
represents the absorber line spectrum, and consequently de- 
termines the upper bound for Qi more precisely than the 
original spectrum: 

If we assume N1(T)%l, then in analogy with (22) we have 

nl(vi)  = l l q o = a 3 ~ 3 ( v i ) ' 1 4 / r ,  (27) 

where a 3 = 1 . 4 2 .  

2.4. Method of least squares with combination of closely 
spaced lines 

At the beginning of the fit the lines are arranged in ac- 
cordance with condition (27). The first line is placed at the 
spectral point v,  with minimum value N ( v i ) .  The range of 
values around v j  within which there should be no lines is 
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FIG. 3. Successive discrete forms of the spectrum in Fig. la: a) sharpened 
spectra; b) taking into account the limit on the line distribution density over 
the spectrum (n,=45, 2=0 .97;  c) after combining closely-spaced lines 
without changing their positions (n,=33,  ,$=l.ll); d) base solution with 
the line positions varied (n l=23 ,  ,$=1.01). 

estimated according to Eq. (27), and this range is excluded 
from further consideration. The procedure is repeated until 
the whole range of velocities is exhausted. The resulting set 
of line positions is fixed and the 2 method is used to find the 
line intensities of these locations. Figure 3b shows the result 
of this analysis, from which it follows that even in this initial 
stage of the fit physically unacceptable aspects of the solu- 
tion are substantially eliminated: there are few lines with 
negative intensities, their intensities are small in absolute 
value, and their total contribution to the spectrum is rela- 
tively small. Since the estimates (26) and (27) are approxi- 
mate, in the solution shown in Fig. 3b some of the lines have 
large errors in the intensities, and condition (16) does not 
hold for them. Such lines are eliminated from further consid- 
eration by combining them with their neighbors which have 
higher uncertainties in intensity. Thus the intensity of the 
resulting line is defined as the sum of the intensities and its 
position is defined as the position of the center of mass of the 
combined lines. This procedure allows us to substantially 
reduce the number of lines (see Fig. lc) without going 
through a complicated iteration procedure. 

The next stage of analysis consists of fitting the spec- 
trum using the 2 method, but now with both the intensities 

- 1 5 0 J t  8 r 3 0 8 , 1 1 

-4 -2 0 2 4 
v, mmls 

FIG. 4. Potassium ferrocyanide calibration spectrum. 

and the positions of the lines being varied. The spectral 
model found previously is used as a zeroth approximation. In 
the course of iteration lines can appear with large errors in 
the intensities, which are eliminated by combining two 
closely spaced lines exactly as described above. 

Thus, in contrast to the dimensional 2 procedure, in this 
approach the number of lines in the model varies in the 
course of the spectral fit. Figure 3d shows the results of this 
analysis. 

The analysis given illustrates the proposed alternative 
approach for solving ill-posed problems. The solution ob- 
tained, which can be defined as the base solution, is maxi- 
mally allowed in the sense that it has the minimum value of 
2 for the largest possible number of lines consistent with 
condition (16). 

3. ANALYSIS OF THE BASE SOLUTION 

The base solution found in the previous section is still 
not the final form of the density pa of the absorber line 
distribution, since in a real experiment the Lorentzian form 
of the source line L,(v )  undergoes distortion due to a differ- 
ent sort of interaction in the source itself, which can either 
cause additional broadening or change the shape of the line 
from Lorentzian. Although the additional broadening of the 
line in the source is generally small, the question regarding 
the line shape remains open and should be answered sepa- 
rately in each specific experiment by means of calibration 
measurements of the spectrum of a standard absorber. In our 
case a calibration spectrum of potassium ferrocyanide was 
measured; it approximates a Lorentzian line well with a 
width r ,=0.244 mm/s (Fig. 4). If we take into account the 
additional broadening in Eq. (4) and perform the analysis 
described in the previous section, we obtain the spectral 
model shown in Fig. Id  and in Table 11. As can be seen, a 
relatively small amount of additional line broadening sharply 
reduces the number of lines in the model, which undoubtedly 
imposes severe demands on the behavior of the calibration 
measurements-the statistical quality of the calibration spec- 
trum should be higher than for the spectrum of the sample 
being studied. 

As can be seen from Table 11, the fitting technique de- 
scribed above reveals lines of relatively low intensity (of 
order a few percent of the total area of the spectrum). Elimi- 
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TABLE 11. Parameters of the model lines shown in 
Fig. Id. 

nation of these lines increases 2 ,  but this increase can be 
quite small, and if there is any difficulty in interpreting these 
lines they can be discarded in a first approximation. Thus, if 
we take away line 9 in the spectrum of Fig. Id, then 2 
increases by less than 0.001, and the question of whether this 
line exists or not can only be answered conclusively by 
means of more sensitive measurements. 

We note two important features in the spectrum of Fig. 
Id. First, not one additional line can be added to this spec- 
trum without violating condition (16). Second, we can try to 
improve the agreement by varying the widths, but in this 
example that cannot be done without violating (16) and re- 
ducing the number of lines. Consequently, the model of Fig. 
Id  can be called the "densest possible" discrete solution for 
the spectrum of Fig. la. 

The discrete forms of the spectrum found above approxi- 
mate the real density of states, in which continuous line dis- 
tributions may exist alongside the discrete lines. In general 
the form of these distributions is unknown and must be ana- 
lyzed separately, but the most popular shape is a Gaussian 
distribution. The simplest way to test for the presence of 
continuous distributions using the technique described above 
is to combine two closely spaced lines into a single line of a 
particular shape (e.g., by convolving a Lorentzian and 
Gaussian line) whose width is an additional variable param- 
eter. If the quantity 2 decreases as a result of adjustment, the 
assumption that there is a continuous distribution is con- 
firmed. This procedure can be very useful, but in our specific 
example it is ineffective. 

The maximum number of lines that can be resolved in 
the spectrum depends on the statistical quality of the spec- 
trum. However, if some a priori information about the object 
of investigation is known which allows certain relations to be 
imposed on the parameters of the model, the number of per- 
mitted lines for a given level of statistics can be increased. 
As an example, consider the spectrum of the same oriented 
HTSC specimen measured in the geometry with a "magic" 
angle 8=55" between the axis and the y a y  beam (Fig. 5a). 

Line 
No.  
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 I 
12 
13 
14 
15 

FIG. 5. Experimental spectrum (a) of the same HTSC sample as in Fig. l a  
with a "magic" angle of incidence 0=5So and "densest possible" solution 
(b) for the spectrum. 

The densest possible model of fifteen lines for this spectrum 
obtained using the above technique is shown in Fig. 5b. 
However, in this geometry at an angle of incidence 8=55" 
the spectrum of the oriented specimen in the absence of mag- 
netic hyperfine splitting should consist only of symmetric 
quadrupole doublets. In order to impose relationships we 
must use some intermediate spectrum with a large number of 
lines, e.g., the base model obtained without treating the ad- 
ditional broadening in the source, such as the model of Fig. 
3d. The corresponding model consisting of twenty-one lines 
is shown in Fig. 6a. 

Mossbauer studies of HTSCs have already been carried 
out for many years, and at the present time an extensive 
experimental data base has been compiled. For HTSC 
samples consisting of YBa,(Cu, _,Fe,),O, with a low con- 
centration x < 0 . 1  of Fe and oxygen content y 2 6 . 5  a large 
number of quadrupole doublets have been identified by vari- 
ous authors (see, e.g., Refs. 12-15 and work cited therein). 
These correspond to nonequivalent Fe atoms at Cu positions 
with a different configuration of nearest oxygen neighbors. 
The results of this work are summarized in Fig. 6b. 

The imposition of relationships begins by combining the 
pair of the strongest lines in the model of Fig. 6a into a 
symmetric doublet installed in the diagram of Fig. 6b; then 
the spectrum is fitted again. The balancing procedure is re- 
peated for the new set of parameters, and so on. After all the 
relationships are imposed, the spectrum is fitted using the 
additional broadening in the source. The resulting model, 
shown in Fig. 6c, now contains eighteen lines. 

The line parameters in the models of the spectra of Figs. 
l a  and 5a can be made more precise if we take into account 
the fact that they are spectra of the same specimen, and per- 
form a simultaneous analysis using lines at identical posi- 
tions in both spectra. As an initial choice of the parameters it 
is natural to use the positions of the lines in the model of Fig. 
6c, which contains a larger number of lines. The results of 

Area, in % 

13(7) 
28(6) 
7( 1) 

7.1(6) 
3.9(6) 
2.6(4) 
0.7(4) 
3.6(8) 
1.2(7) 
2.1(7) 
3( 1) 
9( 1) 

2.0(4) 
6(1) 
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Position in mm/s 

- l.OO(2) 
-0.94(1) 
-0.81(2) 
-0.63(1) 
-0.50(2) 
-0.37(3) 
-0.18(8) 
0.03(2) 
0.139) 
0.28(4) 
0.49(3) 
0.60(1) 
0.76(3) 
0.95(2) 
1.056(6) 
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FIG. 6. Base model (a) and "densest possible" solution with relationships 
(c) for the spectrum of Fig. 5a; b) published data for the position of the 
quadmpole doublets in Mossbauer spectra of Y B ~ , ( C U , . F ~ , ) ~ O , .  

seen from Table 111, the total line intensities in each doublet 
are the same within the limits of error for the two spectra, 
which argues in favor of the validity of this scheme of com- 
bining spectra into doublets. 

These examples include the most important steps in the 
analysis that arises in the proposed new technique for fitting 
Mossbauer spectra. 

4. CONCLUSION 

Thus, in the present work an alternative approach has 
been proposed for solving ill-posed problems, based on the 
relatively simple principle that the line number density over 
a spectrum is limited by its statistical quality. The proposed 
procedure is uncomplicated to use and very efficient in terms 
of the number of numerical calculations, since there is no 
need to specify initial fitting parameters and a substantial 
portion of the analysis consists of verifying the criteria de- 
rived above, which does not require the use of an iterative 
procedure. The resulting model contains the largest possible 
number of lines that can be resolved in the spectrum with a 
given level of statistics, and it provides a good basis for 
further analysis. 

The analysis carried out in this work of HTSC spectra, 
which are fairly complicated to interpret, gives reason to 
hope that the proposed technique may be efficiently used to 
solve a wide class of Mossbauer spectroscopy problems. 

I am grateful to V. M. Cherapanov for providing HTSC 
Mossbauer spectra for analysis. This work was supported in 
part by the Russian Fund for Fundamental Research. 

the fit are shown in Table 111. Note that all the lines in the 
HTSC spectra identified in any previous work (see Fig. 6b) APPENDIX: MATRIX OF SECOND DERIVATIVES AND MEAN 

are shown in the resulting discrete version and are well de- 
SQUARE ERRORS IN MODEL 2 

termined in the sense that the errors in the intensity of all For the model of a spectrum of two lines considered in 
lines are less than their mean values. Furthermore, as can be Sec. 2.2 we introduce along with the intensities A ,  and A 2  

TABLE 111. Model line parameters in the combined analysis of the spectra of Figs. l a  
and 5a. 
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Position in mm/s 

-1.01(1) 
-0.95(1) 
-0.90(2) 
-0.80(1) 
-0.66(2) 
-0.54(2) 
-0.40(2) 
-0.24(2) 
0.022(4) 
0.19(2) 
0.33(2) 
0.48(2) 
0.58(1) 
0.64(1) 
0.77(2) 
0.93(3) 
1.02(2) 
1.09(2) 

Line 
NO. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12 
13 
14 
15 
16 
17 
18 

Area, in % 
Spectrum in Fig. l a  I Spectrum in Fig. 59 

9(5) 
27(3) 
6(5) 

5.0(9) 
5 3 7 )  
5.0(7) 
2.8(4) 
1.4(3) 
3.7(2) 
1.9(3) 
1.6(4) 
2.0(7) 
7( 1) 
3(1) 

1.6(5) 
3(2) 
lO(2) 
5 0 )  

9(4) 
180) 
5(3) 

4.0(5) 
4.6(6) 
3.8(6) 
2.1(3) 
1 3 3 )  
6.2(2) 
1.5(3) 
2.1(3) 
3.8(6) 
6.2(2) 
4.6(6) 
4.0(5) 
543) 
18(3) 
9(4) 



the dimensionless variables y 1,2=61,2/r for the positions of Then the matrix of the second derivatives in (11) takes 
the lines and the dimensionless parameter q  = ( S2 - Sl) /T the following form: 
which determines the separation between them. 

For the mean square errors we have, in accordance with 1 2 23 
(121, A A 1 A A 2 = - r r  

where 

In accordance with (A2), the errors M I , ,  for each of the 
lines increase without bound as l / q 3  when q  decreases. On 
the other hand, the mean square error AA in the total inten- 
sity 

AA= Jizz%, (A51 

does not depend on q .  A similar situation also arises in con- 
nection with the positions of the lines. The errors are 
proportional to 1 / q 2 ,  whereas the mean square error in the 
position of the center of mass 

is independent of q  for small q .  In deriving Eqs. (A5) and 
(A6) it is necessary to take into account the correlations in 
the errors of the intensities and positions of the lines: 

( (  2 A I A 2  3 q 4 + ~  3 1  1 ' 
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