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A system of two-dimensional equations, which describe the distribution of the phase differences 
of the Cooper pairs and magnetic fields in tunnel junctions and form the foundation of the 
nonlocal Josephson electrodynamics of such structures, has been derived for structures consisting 
of alternating flat superconducting layers with weak coupling. A two-dimensional nonlocal 
generalization of the sine-Gordon equation has been obtained for thick and thin superconducting 
layers. The spectrum of generalized Swihart waves has been obtained. An approach to the 
construction of slightly nonlinear vortex structures has been formulated, and the spectrum of their 
excitations has been determined. The nonlinear one-dimensional picture of the vortices in a 
layered structure with thin superconducting layers has been considered. O 1995 American 
Institute of Physics. 

1. INTRODUCTION 

Numerous results have recently been obtained in the 
field of nonlocal Josephson electrodynamics, which de- 
scribes structures with a characteristic spatial scale smaller 
than the London penetration depth. We first note here the 
work on the description of Josephson junctions between the 
end surfaces of thin superconducting Although the 
analysis of the equations appearing in this description was 
meager, recent studies"~~ have shown that more detailed re- 
sults of the theory of small-scale Josephson structures and 
junctions between thick superconductors can be used for the 
models described in Refs. 1 and 2. A general formulation of 
the electrodynamics of such tunnel junctions was given in 
Refs. 5-8. A theory of generalized Swihart waves and 
slightly nonlinear waves was formulated in Ref. 5. A solution 
describing a one-dimensional stationary kink corresponding 
to a motionless vortex similar in structure to an Abrikosov 
vortex was found in Ref. 6. Exact nonlinear solutions de- 
scribing the establishment of a stationary kink with time, as 
well as vortex decay, were obtained in Ref. 9. The first trav- 
eling vortex structure, which was discovered in Refs. 7 and 
8, corresponds to a 471 kink in a zero-current junction, in 
which dissipation is completely neglected. An expression de- 
scribing a traveling 2 7 ~  kink was found for a tunnel junction 
with a current under the conditions of strong dissipation in 
Ref. 10, and an expression describing a traveling periodic 
structure of vortices was derived in Ref. 11. This made it 
possible to obtain the current-voltage characteristic of a Jo- 
sephson junction determined by small-scale vortices. Station- 
ary periodic structures and relaxation to them were described 
in Ref. 12. Solutions for periodic traveling structures were 
obtained with the neglect of dissipation in the same work, 
and the foundation was laid for a nonlocal theory of the 
stability of stationary small-scale Josephson vortex struc- 
tures. Of course, all these achievements far from exhaust the 
possibilities of nonlocal Josephson electrodynamics. At the 
same time, the need to describe additional objects that have 
yet to be reported is clear. 

In this paper we formulate the main principles of the 
nonlocal electrodynamics of layered Josephson structures. 
The interest in such structures arose comparatively long ago 
in connection with the theory of layered compounds (see, for 
example, Refs. 13-16). On the other hand, models of 
high-T, superconductors as layered Josephson structures are 
very popular.16-19 The basic equations of the local electrody- 
namics of such structures were derived in Ref. 17. The solu- 
tion of such equations in Ref. 20, which was obtained using 
perturbation theory in the limit of weak coupling between 
neighboring Josephson junctions, is noteworthy. However, 
local Josephson electrodynamics becomes inapplicable when 
the characteristic spatial scales of the Josephson vortices are 
smaller than the London depths. We point out some physical 
situations in which a nonlocal description is necessary. The 
simplest example refers to the linear theory of Swihart 
waves.' According to Ref. 5, the nonlocal effect results in 
slowing of the linear waves when their wavelength is shorter 
than the London depth A. The latter occurs if the frequency 
of the Swihart wave w-ulh, where the phase velocity u is 
large compared with the Josephson frequency w,, but is 
smaller than the limiting value determined by the width of 
the energy gap. Another situation pertains to the physics of 
the spectral properties of Josephson junctions in a strong 
magnetic field H . ~ '  In this case the nonlocal theory is needed 
to describe vortex harmonics which vary on scales of the 
order of the magnetic length L , = @ ~ / ~ ~ T A H ,  where Qo is 
the magnetic flux quantum, but smaller than the London 
depth. Corresponding conditions are realized in supercon- 
ductors with a large value for the Ginzburg-Landau param- 
eter K = A / ~  (k is the correlation length), when the magnetic 
field strength H exceeds @d47rA2, but remains smaller than 
the lower critical value H , ,  = (@,/4.rrA2)ln(A/~. In addition, 
physical conditions under which, in contrast to the situation 
under ordinary Josephson electrodynamics, the London 
depth is greater than the Josephson length X i  appear in su- 
perconductors with K S ~ . ~ " ~  This occurs in tunnel junctions 
with a critical current density j, greater than ( ~ ~ c l 1 6 ' r r ~ A ~  
(c is the speed of light), but smaller than the pair-breaking 

551 JETP 80 (3), March 1995 1063-7761/95/030551-09$10.00 O 1995 American Institute of Physics 551 



current jd = Doc/ 12  ~ ~ f l r ~ ~  (Ref. 22). The application of 
nonlocal electrodynamics to the description of tunnel junc- 
tions with a large critical current made it possible to predict 
small scale Josephson vortices, which are structurally similar 
to Abrikosov These situations, in which the non- 
local description must be used, pertain to the theory of a 
single Josephson junction. However, as will be shown below, 
the same situations are realized in the electrodynamics of 
layered Josephson structures if the thicknesses of the super- 
conducting layers L are greater than the London depth. Due 
to the appearance of an additional small scale in layered 
structures with thin superconducting layers (L < A ) ,  the non- 
local theory is also needed to describe the smaller spatial 
scales. 

The principles of the nonlocal Josephson electrodynam- 
ics of layered structures are formulated in Sec. 2, where we 
derive the basic infinite system of coupled equations for the 
magnetic fields and for the phase differences of the Cooper 
pairs in all Josephson junctions. 

New conditions, under which the influence of neighbor- 
ing tunnel junctions on the Josephson vortices appearing in 
them can be neglected, are derived using nonlocal electrody- 
namics in Sec. 3. Two-dimensional integral equations de- 
scribing small-scale vortices with a characteristic scale not 
exceeding the London depth are derived. In Sec. 4 nonlocal 
equations are obtained for simple vortex structures, such as, 
first, structures which periodically repeat the distribution of 
the phase differences of the Cooper pairs in periodically re- 
peated tunnel junctions and, second, structures which alter- 
nately repeat the phase distributions in two neighboring tun- 
nel junctions in a periodic system of superconducting layers 
and tunnel junctions. Section 5 includes a discussion of the 
electrodynamics of Josephson structures with thin supercon- 
ducting junctions. 

The application of the general principles of nonlocal Jo- 
sephson electrodynamics to specific problems is described in 
Secs. 6-8. More specifically, the spectrum of generalized 
Swihart waves, which differs qualitatively in the case of suf- 
ficiently short waves from the spectrum of ordinary Swihart 
waves, is found in Sec. 6. The problem of finding the exact 
stationary nonlinear one-dimensional vortex pattern in a pe- 
riodic Josephson structure with thin superconducting layers 
is analyzed in Sec. 7. It is shown that the vortex states de- 
tected are qualitatively similar to the states appearing in local 
Josephson electrodynamics, which is based on the equation 
of a mathematical pendulum. It is established that the vortex 
states found cease to exist when the thickness of the super- 
conducting layers exceeds a certain critical value (see be- 
low). Section 8 contains results based on the theory of weak 
vortex excitations in the tunnel junctions of a periodic Jo- 
sephson system in a strong magnetic field. The novelty here 
is the dependence of the frequency of the excitations on the 
magnetic field due to the periodic arrangement of the layers, 
which specifies the discrete arrangement of the lines in the 
spectrum. In addition, the two-dimensional description made 
it possible to establish the conversion of the line spectrum 
into a spectrum of bands, which are broadened as a result of 
consideration of the dependence of the excitations on the 

coordinates parallel and perpendicular to the average mag- 
netic field. 

2. DERIVATION OF THE BASIC EQUATIONS 

The basic equations of nonlocal Josephson electrody- 
namics for a layered structure of tunnel junctions that is not 
restricted in the direction of the x axis are obtained in this 
section. 

The starting equations for phase differences of the Cop- 
per pairs p,(p,t) are the ordinary equations of Josephson 
e l e ~ t r o d ~ n a m i c s : ~ ~ , ~ ~  

where p is a two-dimensional vector in the yz plane of the 
nth tunnel junction of thickness 2 d n ,  x, is the coordinate of 
the midplane of the nth nonsuperconducting layer, E, and u, 
are the dielectric constant and the conductivity of the mate- 
rial in the nth tunnel junction, and j,, is the critical Joseph- 
son current density. It was assumed in writing Eq. (2.1) that 
the thickness of the junction is small compared with the dis- 
tance over which the electric field varies. In turn, the varia- 
tion of E ,  and the magnetic field H= (O,H, ,Hz) across the 
junction is neglected in Eq. (2.2). At the same time, the com- 
ponents of the electric field which are tangential to the plane 
of the junction El undergo a jump. To determine it, we in- 
tegrate the tangential components of the following equation 
across the junction: 

L d 
curl E= - - - H. 

c d t  

Now, using nonstationary Josephson equation (2.1), we ob- 
tain 

- f i  a2 
2e  dtdp 

where ex is a unit vector parallel to the x axis. 
Then, in accordance with (2.1), Eq. (2.2) can be written 

in the form 
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where P ,=~Tu, /E ,  is a parameter which characterizes the 
dissipation and wj, = d l 6  aleld,j,, l h s ,  is the Josephson 
frequency. Therefore, the formulation of the equations of 
closed Josephson electrodynamics requires knowledge of the 
relationship of the tangential components of the magnetic 
field in the junctions to the phase difference of the wave 
functions in them. For this purpose we utilize the equations 
which describe the magnetic field H,(x,p,t) and the electric 
field E,(x,p,t) in the nth layer of a superconductor of thick- 
ness 2L, with a London depth A, : 

Taking into account the continuity of the tangential compo- 
nents of the electric field E,(x,+d, ,p,t) on the boundaries 
of the junctions and assuming that the nth tunnel layer is 
bounded on one side by the nth superconducting and on the 
other side by the (n + 1)-th superconducting layer, from Eqs. 
(2.4) and (2.7) we obtain 

The derivatives of the magnetic field in the superconductors 
appearing therein can be expressed in terms of the magnetic 
fields on the boundaries of tunnel junctions n and n + 1.  For 
this purpose we use the following solution of Eq. (2.6) in the 
nth superconductor: 

~(~-~,-~-d,-~)lH,(x,-d,,p',t) 

- sinh[ J w ( x  -x, + d,)] 

Substituting (2.9) into (2.8) and neglecting the small varia- 
tion of the magnetic field in a thin tunnel junction, we obtain 
the following system of integral equations, which defines the 
relationship of the magnetic field to the phase differences of 
the wave functions of the Cooper pairs cp, : 

where we used the notation 

The system of equations (2.5) and (2.10) comprises the foun- 
dation of the nonlocal Josephson electrodynamics of layered 
superconducting structures. We note that in the local limit, at 
which the variation of the magnetic field along the junction 
on the scale of the London depth is small, Eq. (2.10) corre- 
sponds to the result in Ref. 17 obtained for Josephson super- 
lattices. 

3. LIMIT FOR NEGLECTING THE COUPLING BETWEEN 
DIFFERENT TUNNEL JUNCTIONS 

In this section we consider a system of junctions in 
which the influence of the different tunnel junctions on one 
another can be neglected. In nonlocal Josephson electrody- 
namics it corresponds to the model presented in Refs. 5, 7, 
and 8. In contrast to those papers, here we give a two- 
dimensional description, which is needed to devise the 
theory of two-dimensional small-scale vortex lattices. At the 
same time, we show how the condition for neglect of the 
coupling between the different junctions changes for small- 
scale vortex structures, i.e., how the concepts of thin and 
thick superconducting layers in a layered Josephson structure 
change. 

The treatment of layered structures on the basis of local 
electrodynamics allows us to state that superconducting lay- 
ers are thick when their thickness is much greater than the 
London depth: 

In fact, in this case the quantity a,(k) in Eq. (2.10), i.e., the 
influence of one superconducting layer on another, can be 
neglected, and the theory can thus be reduced to the Joseph- 
son electrodynamics of one tunnel junction. The situation 
changes in our case of a nonlocal theory, since even when 
condition (3.1) is violated (in the usual terminology this 
means that we have thin superconducting layers), the influ- 
ence of neighboring layers can be neglected for vortex struc- 
tures which vary abruptly enough along the tunnel layer. In 
fact, according to (2.11) and (2.12), a sufficient condition for 
this is 

which signifies that the penetration depth of a magnetic field 
into the nth superconducting layer (- 11 d m )  is small 
compared with its thickness L, , where llk is the character- 
istic spatial scale of the variation of a vortex structure along 
the tunnel layer. For just this reason, we shall use (3.2), in- 
stead of the usual condition (3.1), as a criterion of the tran- 
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sition to the limit of thick superconducting layers. When in- 
equality (3.2) is satisfied, Eq. (2.10) takes on the form 

The solution of this equation is 

where 

Here we have omitted the subscripts n and n + 1, replacing 
them, where necessary, by a plus or minus sign. Accordingly, 
A+ and A,- are the London depths of the superconductors on 
oppositelsides of a tunnel junction of thickness 2d. Here Eq. 
(2.5) talges on the form 

where A1=$/dp2 and A;= hc2/8rlel jc . In this case the dis- 
tribution of the magnetic field in the superconductors is de- 
scribed by the expression 

with a kernel Q, of the form 

~ [ 2 d + h - , / ~ + A + J ~ ] - ' .  (3.8) 

Equation (3.6) together with relations (3.4), (3.5), (3.7), and 
(3.8) generalizes the results in Ref. 8 to the case of two- 
dimensional geometry. If the phase difference varies on 
scales much greater than the London depths, kernels (3.5) 
and (3.8) can be approximated using a delta function: 

Q(p)=Q,(p,x=O), (3.9) 

In this case Eqs. (3.7) and (3.4) become 

and Eq. (3.6) becomes the two-dimensional sine-Gordon 
equation 

p a  i d 2  d2 
sin cp+ -Z. - cp+ --I c p = ~ ?  cp 

w j  dt o, dt dp ' 
(3.11) 

where cp= cp(p,t) and A;= @(2d + A +  + A _ ) .  
In the opposite limit of abrupt variation of the phase 

difference on scales of the London depths, kernels (3.8) and 
(3.5) may be represented in the form (X,Sd) 

Accordingly, Eqs. (3.6) and (3.7) take on the forms 

Equation (3.13) is the two-dimensional analog of the sine- 
Hilbert equation.8 

In the special case of identical superconductors 
(A+=A-=A) and with neglect of the thickness of the tunnel 
junction in comparison with the penetration depth of a mag- 
netic field into the superconducting layers, expression (3.8) 
takes on the form 

For scales exceeding the London depth, result (3.9) with 
A + = A - = A S  d follows from (3.15). In the opposite limit of 
small scales, we obtain expression (3.12) from (3.15). 

4. SIMPLEST VORTEX STRUCTURES 

We now analyze the system of equations (2.5) and (2.10) 
in the case of periodic layered Josephson structures. For sim- 
plicity, we restrict ourselves to a treatment of structures con- 
sisting of identical superconducting layers (X, = A, L, = L )  
and identical tunnel junctions (a, = cr, E ,  = E ,  d, = d, 
jnc= jc). Then, in view of the fact that 

the system of integral equations (2.10) takes on the form 
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Tic 
=-[ ex - (Pn(p,ti . 

214 dp a I 
Let us consider a vortex structure in which the phase differ- 
ence and the magnetic fields in all the junctions are identical: 

In this case from Eq. (4.1) we find that the magnetic field 
H(p, t )  is described by relation (3.4) with the kernel 

For its part, the distribution of the phase difference is de- 
scribed by nonlocal equation (3.6) with replacement of the 
kernel Q by (4.2). Under conditions for the applicability of 
local electrodynamics, under which the characteristic scale of 
the variation of the phase difference greatly exceeds the Lon- 
don depth, Q is approximated by a delta function: 

~ ( p ) =  f G ( p ) [ d + A  tanh :I1. 
This leads to the following relation between the magnetic 
field and the phase difference: 

Tic L -' 
H(p, t )  = - ex - cp(p,t) d + A tanh - . (4.4) 

414 [ ddp I[ A ]  

The equation for cp(p,t) becomes a local equation of the 
form (3.11), where the role of the Josephson length X j  is 
played by the quantity {A$2[d + A t a n h ( ~ / A ) ] } " ~ .  

We proceed to an examination of another simple ex- 
ample of a nonlinear electrodynamic structure which is real- 
ized in layered compounds. More specifically, we assume 
that the distributions of the magnetic fields and the phase 
differences in neighboring tunnel junctions differ in sign: 

In this case it follows from Eqs. (4.1) that such a nonlinear 
vortex structure is described by Eq. (3.4) and by Eq. (3.6) 
with the kernel 

In the limit corresponding to the local theory, in which the 
characteristic scale of the variation of the phase difference 
significantly exceeds the London depth A, Eqs. (3.4) and 
(4.5) give 

i ic  L -' 
H ( p , t ) =  - ex - cp(p,t) d +  A coth - . (4.6) 

414 [ d p  I [  A ]  

In the same limit, from (3.6) we obtain the sine-Gordon 
equation for the phase difference 

p a  i d 2  
sin cp+ - - c p +  --Z c p = ~ ?  A 

Wj2 at W ,  dt eff 10, 

where the effective Josephson length depends on the thick- 
ness of the superconducting layers: 

Let us consider the example of a more complicated non- 
linear vortex structure, in which the alternating distribution~ 
of the phase difference 

( P Z ~ ( P , ~ ) =  ( P I ( P , ~ ) ,  ( ~ 2 n + l ( p , t i =  ( P Z ( P , ~ )  

and the alternating distributions of the magnetic field 

are realized in the tunnel junctions. In this case from the 
system of equations (4.1) we find that the distribution of the 
magnetic field strength in each tunnel junction is determined 
by the values of the phase differences in both the junction in 
question and in the two neighboring junctions: 

a= 1,2,  

where 

According to (2.5), the distribution of the phase difference in 
the junctions is described here by a system of two coupled 
equations 

In superconducting layers whose thickness is greater 
than the penetration depth of a magnetic field in them, the 
kernels Qap(crf  p)  are exponentially small. This makes it 
possible to describe the distribution of the phase difference 
in neighboring junctions using perturbation theory (see, for 
example, Ref. 20). 

Finally, we dwell on the case in which the distribution of 
the phase differences and the magnetic fields in neighboring 
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junctions differ slightly from one another. Here the system of 
difference equations (4.1) may be written in the form 

where the coordinate x replaces the discrete values of the 
midpoints of the junctions x, . 

5. JOSEPHSON STRUCTURES WITH THIN 
SUPERCONDUCTING LAYERS 

We move on to an investigation of vortex formations in 
Josephson structures consisting of thin superconducting lay- 
ers under conditions in which the reverse of inequality (3.2) 
is satisfied, i.e., the thickness of the layers is much smaller 
than the penetration depth of a magnetic field into the super- 
conductor. 

We begin the analysis with an examination of symmetric 
vortex formations (cp,= cp, H,=H). In this case, from (3.4) 
and (4.2) we have 

where A& = A ~ L I ( L  + d).  This relation must be supplemented 
by Eq. (2.5). The system of equations (5.1) and (2.5) can be 
rewritten by introducing the vector potential 
A=(A(p,t),O,O), which is defined by the relation 
H=curl A, in the following form 

where Qo= af ic le l - '  is the magnetic flux quantum and 
A =A(p,t). Eliminating the vector potential from (5.2) with 
the aid of the solution of (5.3) 

A(p, t )= - - 
I f -pl I  @' I dp' ( A )B(P1.f) .  2h2L mKO- eff 

(5.4) 

we obtain the following nonlocal equation: 

i a2cp  A; 
sin cp+--+--= 

W: dt W: at2 

where Ko(x) is the modified Bessel function of the second 
kind. We stress that the investigation of specific situations 

may be simpler under certain conditions when Eqs. (5.2) and 
(5.3) are used. This is especially clear in the stationary case, 
in which Eqs. (5.2) and (5.3) reduce to a single nonlinear 
differential equation. 

If the phase difference depends only on the single coor- 
dinate z, from (5.5) we have 

For nearly symmetric structures, in which the distribution of 
the phase difference cp, and the magnetic fields upon the 
transition from layer to layer is a slowly varying function of 
n, from (4.13) we obtain 

where the continuous coordinate x replaces the discrete co- 
ordinate of the midplane of the tunnel junction. Equation 
(5.7) together with (2.5) describes three-dimensional vortex 
structures under conditions under which the reverse of in- 
equality (3.2) is satisfied. We note that Eq. (5.7) coincides 
with the equation obtained in Ref. 24, which was devoted to 
an investigation of vortex structures in layered Josephson 
compounds (see also Refs. 13 and 14). For antisymmetric 
vortex distributions (cp,= - cp,+ , = cp, H,= -H,+ =H), 
from (3.4) and (4.5) we obtain a local relation between the 
magnetic field and the gradient of the phase difference, 
which is defined by Eq. (4.6) in the limit L << A. Accordingly, 
the distribution of the phase difference is described by the 
sine-Gordon equation with the Josephson length 

which is smaller than the usual Josephson length A,. 

6. SWIHART WAVES 

We now consider the limit of the linear theory corre- 
sponding to small perturbations of the phase difference 
which permit the use of the approximation sin cp,= cp, . In 
view of the linear nature of the problem, it is convenient to 
write the expressions for the magnetic fields and the phase 
differences in the form exp(- i o t +  ikp). The substitution of 
such expressions into the linearized equation (2.5) together 
with the relations (3.4) and (4.2) gives a dispersion relation 
between the frequency w(k) of the linear modes of the 
multilayer structure and the wave vector k: 

556 JETP 80 (3), March 1995 Aliev et al. 556 



In the case of small ohmic losses in the junctions, in which 
[WISP, the decay constant y equals Im w=p/2. The real fre- 
quency w(k) is specified by the square root of the right-hand 
side of (6.1): 

~ ( k ) =  ",{I + ; k 2 ~ i [ d +  A JTTPP 

For superconducting layers which are so thick that L S A 
or kL S 1, the spectrum of generalized Swihart waves 

w2(k) = w;{l+ 4 k 2 ~ i [ d  + A J T T P P l l }  (6.3) 

coincides with the result obtained in Ref. 5. 
In the limit of thin superconducting layers 

(L GA,kL G I ) ,  Eq. (6.2) gives 

If it turns out here that k2A2 is greater than unity and dlL, we 
have 

This frequency does not depend on the wave vector and 
greatly exceeds the Josephson frequency, if h i 9  2A2L. In the 
latter limit we have 

Since this equation does not contain an influence on the part 
of the critical current, it corresponds to a regime under which 
the Josephson effect is negligible. 

We move on to a treatment of the antisymmetric mode. 
Here kernel (4.5) must be used instead of (4.2) to obtain 
result (6.1). Accordingly, we obtain 

In the case of small losses, the decay of this mode, like that 
of the symmetric mode, is specified by y=p/2, and the real 
part of the frequency w(k) is given by the square root of the 
right-hand side of (6.7). For sufficiently thick superconduct- 
ing layers (L 4- 9 1 )  the frequencies of the sym- 
metric and antisymmetric modes are similar, and relation 
(6.3) is valid for them. ,In the limit of thin superconducting 
layers, from (6.7) we obtain 

Frequency (6.8) is significantly smaller than the frequency of 
the symmetric mode. 

7. VORTEX STATES IN A PERIODIC JOSEPHSON 
STRUCTURE WITH THIN SUPERCONDUCTING LAYERS 

In this section we discuss several consequences of Eq. 
(5.6) for a periodic structure in which the thickness of the 

superconducting layers is smaller than the London depth. 
This has been greatly simplified owing to the mathematical 
analysis of such an equation in Ref. 25. Following that paper, 
we introduce the function 

dz'  12-zrl 
a(z , t )= - I-. 21.. exp[ - F) q(zr , t ) .  (7.1) 

Then the integral equation (5.6) reduces to the system of 
differential equations 

p aq 1 d2q 1 
sin q+--+7--Z=-(a-q), 

w; dt W, dt p 

where p = 2 A 2 ~ l A ~ ,  a=a(z , t ) ,  and q =  cp(z,t). 
In the stationary case, the solution of this system of 

equations can be written in quadratures: 

where q0 = q ( z  = z,), and C, is an integration constant. 
The last equation reveals that solutions with a bounded 

derivative appear only when (compare Ref. 25) 

The value p=1 corresponds to a bifurcation point, at which 
there is restructuring of the phase portrait of the differential 
equation 

d 2  
;i;i ( p + p  sin q ) = p  sin p. (7.6) 

Assuming that the thickness of the superconducting lay- 
ers is sufficiently small, i.e., that L < L , = A ~ / ~ A ~ ,  we can 
state in accordance with Eq. (7.4) that values of the integra- 
tion constant in the range - l < CO< l correspond to a vor- 
tex chain described by a solution q (z )  which oscillates near 
a special point like a "center" in the phase plane and has a 
periodically vanishing derivative dq ldz .  Similar solutions of 
the Peierls equation are found to be unstable when they are 
analyzed with the sine-Hilbert equation.12 This also applies 
to similar solutions of the sine-Gordon equation. The values 
C,> 1 correspond to periodic (rotational) solutions, which 
correspond to the presence of a magnetic field in the case of 
Josephson structures. Such states are usually stable. Finally, 
the value of the integration constant C,= 1 corresponds to 
the separatrix in the phase plane of Eq. (7.6). In this case the 
solution can be written in the formz5 

J1+ p cos2 (I,+ fi cos (I, 

JI + p  cos2 JI- J1 + p  cos JI 

Jp- + cos2 (I,- cos (I, 
+c0s2 *+COS (I, 
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where $= cp/2. This solution defines a 27r kink when the sign 
is positive or an antikink when the sign is negative. 

Let us dwell on the solution describing a nonlinear peri- 
odic vortex chain with a sufficiently strong magnetic field. 
Assuming that C,% 1, we have 

* J-:=~+~ sin p .  
A eff 

According to (3.4), the magnetic field H averaged over the 
oscillation period of the phase difference of the Cooper pairs 
is specified by the constant Co in the following manner: 

This equation makes it possible to find the lower bound for 
the thickness of the superconducting layers, if it is borne in 
mind that H does not exceed the lower critical field. 

8. SPECTRAL PROPERTIES OF LAYERED JOSEPHSON 
STRUCTURES IN A STRONG MAGNETIC FIELD 

Following Ref. 21, we consider the frequency spectrum 
of layered Josephson structures in a strong magnetic field 
H= (o,H,o), in which the distribution of the phase differ- 
ence is described by Eq. (3.6) with the kernel Q in (4.2). 
When the layered structure has a strong mean magnetic field 
[compare (7.9)] 

Neglecting the weak spatial modulation of the magnetic field 
H ,  we rewrite linear equation (8.5) in the form 

where k, varies within the one-dimensional Brillouin zone 
over the range - 7r/LH<k,<7r/LH. Then in the case of 
weak coupling of the harmonics, which is realized when 

we find 

and the frequency spectrum of the excitations: 

the solution of Eq. (3.6) for the ground state of the system 
may be represented in the form 

where LH is a scale characterizing the mean magnetic field, 
and the coefficient of sin (z/LH) is assumed to be much 
smaller than unity. In this case the first term in Eq. (8.2) 
corresponds to the mean magnetic field, and the second term 
describes its periodic variation in space, which is weak under 
the conditions of inequality (8.1): 

~ i [ d +  A tanh(L/A)] 
COS - . 

A ; ( ~ + A )  L H ] (8.3) 

Let us consider weak periodic perturbations of the 
ground state of the system parallel to the mean magnetic 
field: 

cp(p,t)= (PO(Z)+ (P~(z ,~)cos(~,Y).  (8.4) 

In the linear approximation for determining the small 
correction (pl, from Eq. (3.6) we have 

where c,= wjAj is the velocity of the Swihart wave.22 
According to (8.8), only excitations at the frequencies 

w,  , which cause weak modulation of the magnetic field with 
the periods 27rLHlm, appear in the linear approximation 
with respect to the amplitude pl(z,t) .  Consideration of non- 
linear corrections in both the equation for the ground state 
and the equation for pl (z , t )  creates a possibility for the 
appearance of excitations with frequencies which are mul- 
tiples of w, .21 

Result (8.8) is distinguished qualitatively from the result 
obtained in the theory of the spectral properties of a single 
Josephson junction21 by the fact that the previously obtained 
discrete spectrum of excitations is replaced by a set of spec- 
tral bands owing to the consideration of the spatial modula- 
tion of the phase difference parallel and perpendicular to the 
constant magnetic field. In addition, the width of each spec- 
tral band is determined by the wave numbers k,, and k,. Such 
inhomogeneous broadening of the spectral lines results in 
overlap of the spectral bands, if k,BImllLH. The frequen- 
cies om (8.8) of such short-wavelength perturbations are al- 
most independent of the magnetic field. 
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When k&, and k,L,Glrnl, the spectrum of excitations 
is represented by a set of narrow overlapping spectral bands. 
In this case, in the limit of comparatively thick supercon- 
ducting layers, where L d l +  ( ~ x I L ~ ) ~  + A ,  from (8.8) we 
find 

Expression (8.9) repeats the result in Ref. 21 and leads to 
two asymptotic dependences of the frequencies on H: W , K H  

and w , ~  G. 
The influence of the neighboring Josephson junctions on 

the spectral composition of the excitations becomes signifi- 
cant when 

Expression (8.8) then takes on the form 

A dependence of w, on H in the form (8.10) can appear only 
when k,, k , , G ( d + ~ ) 4 . r r l m l ~ / @ ~ .  

For such k, and k, in weak magnetic fields we have 
W , K H ,  and in stronger fields the w ,  do not depend on the 
magnetic field strength. When d,  k,, and k, are small, 
w ,  =const if 

where LGA. Since in the theory presented here the field H 
should be smaller than the lower critical field22 HCl, (8.11) 
can hold only when L % A/ln(A/&). For its part, the smallness 
of k, and k, signifies that the scales of the perturbations 
parallel and perpendicular to the magnetic field should sur- 
pass the correlation length. 

9. CONCLUSIONS 

A system of coupled equations for the phase difference 
of the Cooper pairs and the magnetic fields of the different 
junctions in a layered structure of tunnel junctions between 
superconducting layers has been derived. The conditions un- 
der which the different junctions do not influence one an- 
other have been revealed. They are possible, in particular, for 

superconducting layers whose thickness is smaller than the 
London depth. A comparatively simple integral equation de- 
scribing small-scale two-dimensional Josephson vortices has 
been derived. For a periodic Josephson structure with strong 
coupling between the different junctions, integrodifferential 
equations describing simple vortex structures have been de- 
rived for the phase difference of the Copper pairs. The con- 
ditions for applicability of a description of Josephson vorti- 
ces based on a system of two differential equations have 
been determined. The spectrum of generalized Swihart 
waves in a periodic multilayer structure has been obtained. 
An exact one-dimensional stationary description of the phase 
difference of the Cooper pairs in a Josephson structure with 
thin superconducting layers has been considered. Finally, a 
theory of the spectrum of excitations in a periodic structure 
of Josephson junctions in a magnetic field has been devised. 

Thus, the basic principles of the nonlocal electrodynam- 
ics of small-scale vortex formations in multilayer Josephson 
structures have been formulated, and some comparatively 
simple solutions describing vortices have been obtained. 
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