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Phase synchronization in a system of interacting nonlinear oscillators with a frequency ratio of 
1:2 in the presence of white noise, simulating the interaction of the phases with a heat 
bath, was investigated by means of computer modeling. It was shown that phase synchronization 
exists over a wide range of model parameters, and when the intensity of the fluctuations 
(i.e., the temperature) or the nonlinear coupling constant increase sufficiently, a transition to chaos 
occurs. The classical Fermi-resonance regime was investigated, and the application of the 
results obtained to specific metals is briefly discussed. O 1995 American Institute of Physics. 

1. INTRODUCTION 

The ideas and methods of the modern theory of dynami- 
cal systems are successfully applied in the most diverse 
fields of physics, and they are making it possible to establish 
deep structural analogies between seemingly disparate physi- 
cal phenomena.'-3 At the same time, the "nonlinear ideol- 
ogy" is virtually never used to study the dynamics of crystal 
lattices, apart from the simplest phenomena, such as the am- 
plitude dependence of the frequency of an anharmonic oscil- 
lator, giving rise to thermal expansion, or scattering of 
weakly interacting waves, which determines, for example, 
the thermal conductivity of crystals (see, for example, Ref. 
4). This situation is probably explained by the fact that in 
many important problems, for example in the study of the 
thermodynamics of crystals, the standard anharmonic pertur- 
bation theory is well-founded (because of the presence of a 
small adiabaticity parameter K )  and e f f e ~ t i v e . ~ ' ~  As noted in 
Refs. 7 and 8, however, in calculations of the dynamic struc- 
ture factor measured in inelastic neutron scattering experi- 
ments, this theory can be inadequate even if ~ 4 1  because of 
the fact that subtle phase relations between the interacting 
phonons are neglected. A similar situation occurs in the 
theory of disordered systems, where the key phenomenon- 
Anderson localization-cannot be studied by the average 
Green's function method, once again because averaging de- 
stroys information about the phase of the wave f u n ~ t i o n . ~  

An example of a nonlinear phenomenon that is sensitive 
to the phase relations and cannot be described in the standard 
phonon language is phase synchronization with a rational 
ratio of the seed frequencies of the phonons from different 
branches of the spectrum for definite values of the 
quasimomentum.8310 These results are only preliminary indi- 
cations, however, since in our preceding ~ o r k s ' ~ ~ , ' ~  the 
scales and the specific conditions under which this phenom- 
enon appears were not estimated as a function of the model 
parameters. A systematic solution of these problems requires 
that the effect of thermal fluctuations on the dynamical sys- 
tem (two coupled nonlinear oscillators) be taken into ac- 

count, and this is our objective in the present paper. Here, 
phase synchronization is studied by direct numerical model- 
ing of this phenomenon in a heat bath simulated by white 
noise. At the same time, the question of the manifestation of 
the phase synchronization of actually observed quantities (in 
experiments on quasielastic and inelastic neutron scattering) 
has been adequately studied in Ref. 10 and will not be dis- 
cussed here. The results of the present investigation could be 
of much more general interest than the specific problem for- 
mulated above, since the phase synchronization phenomenon 
is encountered in the most diverse physics and engineering 

and the effect of random perturbations on this 
phenomenon has essentially never been studied. 

2. FORMULATION OF THE MODEL 

Consider a system of two coupled oscillators described 
by the Lagrangian 

L =  $(li2+lj2)- ;w;u2- ; ~ ~ ; V ~ - A U U ~ - ~ ( U ~ + V ~ ) ,  

(1) 

where u(t)  and u(t)  are the coordinates of the oscillator, w0 
and R0 are the frequencies of small oscillations and are in the 
ratio 2:l (wo=2Ro+v, Ivl<w), A is the anharmonic coupling 
constant responsible for phase synchronization, and "intra- 
mode7' anharmonicity terms proportional to u are included in 
order to guarantee stable motion for large values of u and u 
(u>O). 

This model is probably the simplest model that describes 
phase synchronization (the well-known "spring pendulum" 
model of Vitt and ~ore l ik"  also contains anharmonic terms 
in the kinetic energy). Similar systems were apparently first 
studied in connection with the so-called Fermi resonance 
problem13-15-singularities of the infrared and Raman spec- 
tra of molecules with a rational ratio of the frequencies [for 
example, 1:2 in the case of CO, (Ref. 13)]. For molecules, 
however, the ultraquantum limit w S T  (T is the temperature) 
is valid;14 this case is much simpler than the classical case 
studied here, when w is at most of order T. As we shall see 
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below, the latter case is of interest for metals. In the ul- 
traquantum limit the Fermi resonance results in splitting of a 
series of lines and violation of the selection rules that forbid 
certain lines in the Raman scattering spectra.'' In the classi- 
cal regime, however, as we shall see, the picture is much 
richer; a low-frequency component appears in the 
spectrum,738310 a transition to chaos can occur, and so on. The 
onset of low-frequency dynamics is especially interesting; 
roughly speaking, this dynamics relates to the Fermi reso- 
nance as electron paramagnetic resonance (microwave tran- 
sition between Zeeman sublevels) relates to the Zeeman ef- 
fect (splitting of optical lines). In the ultraquantum limit, the 
intensity of these low-frequency transitions is of the order of 
exp(-wdT), i.e., it is vanishingly small.7 

Adding damping and random forces to the equations of 
motion with the Lagrangian (1) gives 

where y and r are the corresponding damping constants of 
the oscillations and f i  are random forces of the "white 
noise" type with the correlation functions 

It is well known that this choice of correlation functions 
guarantees that the system will relax to a Gibbs distribution 
corresponding to the temperature T . ' ~  The system of equa- 
tions (2) gives an approximate description of the transverse 
and longitudinal phonons at the point 

of metals with a body-centered cubic lattice (a is the lattice 
parameter). It differs from the model studied in Ref. 10 in 
that it includes random forces and terms with a .  To better 
represent the real values of the parameters, we present the 
results of microscopic calculations for potassium at constant 
temperature:10 

Here, the frequencies and damping are given in units of the 
ion plasma frequency op i ,  T is given in units of 
M o $ ( a / 2 ~ ) ~ ,  and X is given in units of ~ w ; ~ ( 2 1 r / a ) .  

In the numerical calculations the parameters w,, R,, and 
X were chosen near these values, and y and r were varied in 
proportion to T, as should be for phonon damping at tem- 
peratures above the Debye temperature.6 A reasonable esti- 
mate for o,  ensuring that the corresponding contribution to 
the total energy is small for the thermodynamic equilibrium 
values 

is u=0.004-0.008. In most cases we set a=0.0055. To 
speed the thermalization process, the initial conditions were 
chosen in the form u = u T ,  v = v T ,  u=O, and 3 = 0 .  

FIG. 1. Eigenvalues of the matrix M,, , which determines the stability of 
two fixed points (primed and unprimed, respectively), as a function of the 
detuning of the frequency v for the parameter values given in (3). 

3. INVESTIGATION OF PHASE SYNCHRONIZATION IN A 
SIMPLIFIED MODEL 

To understand the possible regimes of behavior of the 
system (2), we shall analyze first a simplified version of this 
model. For this, we represent the solution in the form 

and where A = r exp(i g51) and C =R exp(i 4,) are complex 
amplitudes, which change over a time interval of the order of 
I-'. Neglecting the rapidly oscillating terms in the equations 
for A and C as well as the terms which are of higher order in 
A, we transform the system (2) to the form 

dr A 

-+ dt y(r-uT)+ - R ~  sin @=O, 
2wo 

dR 2X 
-+I'(R-vT)- -Rr sin @ = 0 ,  
dt W 0 

where @=4,+2&. The interaction with the heat bath is 
taken into account in Eqs. (4) by introducing the terms - y u ~  
and -TvT, which describe the relaxation of r and R to the 
thermodynamic equilibrium values. This system of equations 
was derived in Ref. 10. Here we give the results of its nu- 
merical solution. 

Phase synchronization, i.e., the regime with @=const 
and a definite ratio of r and R ,  corresponds to stable fixed 
points of the system of equations (4). The fixed point (r*, 
R*, @*)  is stable is all eigenvalues Ai of the matrix Iwijll in 
the linearized equation 

[a = (r,R,@)] have a negative real part. A numerical in- 
vestigation for the parameters (3) showed that for 
vSvc=0.065 there exist two such points, and the initial con- 
ditions determine the point to which the solution of Eq. 4 is 
attracted. Indeed, one can see from Fig. 1 that Ai<O for all v 
for which solutions exist for a fixed point. Figure 2 displays 
the approach of the solutions @(t) of Eqs. (4) to a fixed point 
under different initial con- 
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ditions. For v>v, there are no fixed points. For what follows, 
it is important that, first, two fixed points exist and, second, 
phase synchronization remains over a wide range of detun- 
ings vlwo, of the order of 12%. Over this entire interval, one 
fixed point of cD lies close to 0 and another lies close to T 

( 0 . 0 3 1 ~  and 0 . 9 7 ~  with v=O). 

4. NUMERICAL MODELING PROCEDURE 

The system of equations (2) was solved by integrating 
the stochastic equations directly by a standard method.17 This 
method is an extension of the Runge-Kutta scheme used for 
solving deterministic differential equations. In the latter case, 
the desired solution x( t  + h) is constructed by expanding in 
powers of the step h ,  such that the order of magnitude of the 
error not exceed hk, where k is the order of the method. In 
application to stochastic differential equations, this proce- 
dure is modified: in addition to the standard Taylor part, there 
appears an expansion in powers of & for the random 
Wiener process. An algorithm of order k is a procedure for 
which the error of all moments of the random function 
x ( t+  h)  -x(t) does not exceed hk. 

In application to the solution of a system of differential 
equations of the form 

where 

k = 1 ,... , N, and N is the number of equations, the corre- 
sponding 1-step numerical algorithm is as  follow^:'^ 

~ k ( h ) = ~ o k + h ( A i g i k + . . . + A ~ g ~ k ) +  &&YO,. 

Here, {x,) is the set of variables x ,  ,...$, , and Yik is a ran- 
dom quantity with covariance 

(YikyjpcL)=Lijskfi > 

or, equivalently, 

where Zik are N m  independent Gaussian random variables 
with zero mean and unit variance. Generally speaking, m = 1 
+ 1, but in certain cases an algorithm can also be constructed 
with a smaller value of m. 

We employed a four-step third-order method, designated 
in Ref. 17 as 3 04s2G with m = 2 and the parameters A ,Pi, , 
and Xi, presented in Ref. 17. This method was previously 
found to be helpful in modeling anomalous lattice dynamics 
in strongly anharmonic crystals (in the much simpler case of 

one mode).18 The system of equations (2) was integrated 
over a sequence of time intervals [t,, tI+,] of the same 
length t '  =tI+, - tI ,  and the state of the system reached by 
the end of the Ith interval was taken as the initial state for the 
next segment. To find the frequency spectrum, corresponding 
to a long-time realization x(t) of length Mt '  ( M B  1; x is u, 
v ,  or uu2), the coefficients aI(w,) of the discrete Fourier 
transform were determined for each Ith time interval, 

and then summed with the weight exp(- i o,tI) 

Here, m is the number of partition points, At=tr l (m- I ) ,  
the times ti lie in the interval [tl, tl+,], and t I=I t r .  To 
calculate the Fourier transform, the realization x(t)  was re- 
placed by x( t )  -i, where i is the average displacement over 
the integration time. As a result, a contribution from static 
displacements of the type i 2 q w )  was eliminated from the 
spectral density P(w)  = 1 a(w)I2. 

To estimate the power spectrum P(w),  a well-defined 
procedure must be used for filtering (smoothing) the com- 
puted periodogram ~ ( w , ) .  Such a procedure, on the one 
hand, makes it possible to eliminate unphysical oscillations 
resulting from the computational error and, on the other 
hand, to simulate the Gaussian instrumental broadening in 
the experimental determination of P(w),  for example, by 
means of neutron scattering. We employed the filtering pro- 
cedure described in Ref. 19 in which the power spectrum is 
estimated by the expression 

1 (w- 
p ( w )  = - I X i ( w ' ) e x p ( -  2s2 ) d w ' .  (11) J2lrs - m  

We used Simpson's rule to integrate over a discrete set of 
points trapezoidal method. The quantity s was set equal 
to 1.5Aw, where Ao=2.rrlt1 (s-0.075) is the frequency 
resolution. 

FIG. 2. Approach of @(t) to values corresponding to different fixed points 
T=0.01, u=0.02, and the values of the other parameters given in (3 )  for 
different initial conditions: u(0)=0.62uT,  v (0 )=1 .232vT,  @ ( 0 ) = 0 . 5 5 ~  
(curve I ) ,  and @ ( 0 ) = 0 . 2 5 ~  (curve 2).  
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FIG. 3. Spectral densities P,(o)  (curves I, I f ,  I") and P , (o )  (curves 2, 2', 
2") with a=0.0055 and different values of the parameters: 1,2-T= 0.01, 
X=0.03, v=0.03; 1',2"-T=0.01, X=0.05, v=O.O; 11',2"-T=0.015, 
X=O.O5, v=o. 

5. COMPUTATIONAL RESULTS 

Figure 3 displays the spectral density (spectral power) 
obtained for the realizations u ( t )  and v ( t )  by the above- 
described method for Mt'  =3500 and the parameter values 
given in (3). During this time interval the spectral density 
reaches a stationary value and thereafter remains essentially 
constant. The function P,(w) is characterized by a broadened 
peak at the frequency oo ;  P,(o) contains, together with 
broadening, an appreciable low-frequency contribution, 
which indicates that slow processes occur in the system. The 
calculations show that these low-frequency contributions are 
virtually absent from P,(o). 

As noted in Refs. 8 and 10, the most important indica- 
tion of phase synchronization is the nontrivial character of 
the dynamics for o 4 o 0 ,  specifically, the appearance of a 
"central peak" in the spectral density PU,2(w). Indeed, at 
wo=2no the quantity u ( t ) v 2 ( t )  must contain a contribution 
C which remains constant in the limit t - + w  and depends on 
the relative phase of the modes u ( t )  and v ( t ) .  In the phase 
synchronization regime, this phase is a determinate quantity 
(see Ref. lo), and for this reason it gives a contribution of 
the form c 2 @ o )  to PUUz(o) on averaging over the random 
forces. Here, Icl=lcos @I-1 since the stationary values of @ 
are close to 0 or .rr (see Sec. 111). In the absence of phase 
synchronization, however, C = 0.  This contribution also does 
not arise if the deviation from the resonance conditions is 
sufficiently large, when v = q - 2 0 ,  is not small (v> v,). For 
T=0.01 and A=0.03, this happens for wo=0.55 and 
Ro=0.245--compares the curves 1, 2, and 3 in Fig. 4. Errors 
in the numerical calculations, especially the finite size of the 
integration step, can lead to the appearance of a spurious 
central peak. We chose the step so that the central peak 
would be absent for selected values of a and other param- 
eters, when A=O. 

As one can see from the data shown in Fig. 4, the central 
peak exists over a wide range of v. It should be noted that the 
spectral density peaks at of 0. This indicates that slow qua- 

FIG. 4. Spectral density Pu,z for T=0.01, a=0.0055, h=0.03, and v=O.O, 
0.03, and 0.06 [curves 1-3, respectively, (a)] and X=0.05 and v=O.O, 0.04, 
0.05, and 0.06 [curves 1-4, respectively (b)]. 

siperiodic processes occur in the system. Direct observation 
of the trajectories u ( t )  and u ( t )  shows that these processes 
can be identified with transitions induced by thermal noise 
between the stable phase-synchronization points, where u ( t )  
and u 2 ( t )  oscillate approximately in phase or antiphase. This 
significant property is an important feature of the system of 
equations (2) and does not show up in the simplified model 
(4). 

Comparing Figs. 4(a) and 4(b) shows that the behavior 
of the spectrum for large detunings v (at the threshold where 
phase synchronization vanishes) is very sensitive to the val- 
ues of the coupling constant A. For A=0.05 the "ordinary" 
beats with frequency v and the above-discussed "nontrivial" 
low-frequency dynamics are superposed on one another, and 
this results in the appearance of two distinct peaks. For 
A=0.03 these beats are less pronounced. 

We now discuss the sensitivity of the results to the 
model parameters. As one can see from Figs. 5 and 6, phase 
synchronization appears more easily both as A increases 
(which is quite natural) and as T increases. For a system in a 
heat bath (i.e., with white noise), this result is nontrivial and, 
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FIG. 5. Spectral density P,,z for T=0.01, v=0.03, u=0.0055, and A=0.01, 
0.03, 0.04, and 0.05 (curves 1-4, respectively). 

as far as we know, this is the first proof of its existence. 
Indeed, as T increases, not only do the equilibrium ampli- 
tudes u and v increase (this effect is understandable and 
reduces to an effective increase of A), but both the damping 
and the noise intensity-factors whose role is very difficult 
to assess analytically-also increase. 

The critical value of A at which phase synchronization 
appears lies in the range 0.03-0.05 (for T=0.01). As we 
have already mentioned, phase synchronization appears more 
easily as the temperature increases. For large values of T (or 
A with fixed T), wide-band noise (curve 5 in Fig. 6) appears 
in addition to the central peak in PU,2(w); this probably in- 
dicates that the intermode pumping of energy, described by 
the term huv2 in Eq. (I), is chaotic. We do not possess suf- 
ficient data to choose an adequate scenario of the transition 
to chaos. At the same time, we note that this transition is 

FIG. 6. Spectral density PUu2 for v=O, a=0.0055, A=0.05 and T=0.01 
(curve I ) ,  T=0.012 (2), T=0.014 (3), T=0.015 (4), and T=0.016 (5). 

accompanied by the appearance of additional peaks in 
PUU2(w), indicating that the number of harmonics increases 
(see curves 4 and 5 in Fig. 3). 

It should be noted that the critical values of T and A for 
the transition to chaotic behavior are very sensitive to the 
choice of u, and they decrease as u decreases. 

6. DISCUSSION OF RESULTS AND CONCLUSIONS 

We now discuss the possible physical consequences of 
these results. As shown in Ref. 10, phase synchronization for 
phonons with q=qo  should result in the appearance of waves 
of quasistatic displacements of atoms with this value of q. 
We underscore the fact that this result cannot be obtained on 
the basis of the model (2) investigated here, since, as shown 
in Ref. 10, for quasistatic displacements to appear, transfer 
processes and the spatial dispersion of u and u must be taken 
into account explicitly and terms of the type uv3  (intramode 
anharmonicity) must also be included in the Lagrangian (1). 
The term u v 3  has the effect of eliminating the phonon carrier 
frequency, and this is important for separating the contribu- 
tions of quasistatic displacements. The amplitude of the qua- 
sistatic displacements is then found to be proportional to the 
height of the central peak in PuU2(w). 

The proof of the possibility of the appearance of quasi- 
static displacements, as discussed in Ref. 10, is quite rigor- 
ous in this section; the key problem is the appearance of 
phase synchronization itself. Moreover, phase synchroniza- 
tion should be manifested as splitting of the phonon frequen- 
cies for q=qo  or, at least, as a sudden broadening of these 
peaks, if the resolution is high enough. The analysis of the 
experimental data performed in Ref. 10 seems to show that 
this behavior occurs in alkali metals for 

but more accurate measurements are required in order to 
draw final conclusions. 

Our results show that near room temperature T,, alkali 
metals are suitable objects for observing phase synchroniza- 
tion. Appropriate experiments may be feasible (i.e., a search 
could be made for quasistatic " d i k e "  d i~~lacements '~ )  for 
T,< T< T, , where T, is the melting point. An even better 
object is the high-temperature bcc phase of alkaline-earth 
metals (Ca and Sr), whose phonon spectra are similar to 
those of alkali metals and whose anharmonicity is much 
stronger.20 

We also call attention to the newly discovered transition 
to chaotic phonon dynamics with increasing T (Fig. 6). It is 
possible that in metals, at least for certain modes, the phonon 
picture no longer provides a faithful representation near T,, 
not only under conditions of very strong anharmonicity (as 
shown in Ref. 18) but also with moderate anharmonicity and 
a resonance ratio of the frequencies. By an unfaithful phonon 
picture we mean a situation in which the structure factor 
S(q,w) at fixed q for a given polarization vector does not 
have a well defined (i.e., sufficiently narrow) peak as a func- 
tion of w, or it has more than one peak, so that the phonon 
frequency cannot be determined. This situation was dis- 
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cussed qualitatively in Ref. 7 in connection with the scenario 
of melting of alkali metals. An investigation of this situation 
in more realistic models (including the coordinate depen- 
dence of the displacements) is a very interesting problem. It 
is also of interest to describe in detail the transition to chaos 
in the model under study from a more formal point of view; 
this requires the use of more subtle and rigorous methods for 
solving the stochastic differential equations than the method 
used in Ref. 17. 

In summary, the Fermi-resonance picture which we in- 
vestigated (rational ratio of phonon frequencies) in the clas- 
sical case, which is characteristic of metals, is much richer 
and more complicated than the ultraquantum limit typical of 
molecules consisting of light atoms. 

The investigation described in the present paper was 
made possible by partial support provided by the Interna- 
tional Science Foundation (Grant RGQ 000). 
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