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A microscopic derivation is given of the boundary conditions at a specular 
superconductor-vacuum (dielectric) boundary for the Ginzburg-Landau equations in 
superconductors with anisotropic pairing. Calculations were performed for a hexagonal crystal. 
The form of the boundary conditions in this case depends strongly on the orientation of 
the surface relative to the principal axes of the crystal lattice. The equations determining the 
dependence of the surface-superconductivity field for different types of order parameters are 
derived. The applicability of the results obtained to the identification of superconducting 
phases in UPt3 is discussed. O 1995 American Institute of Physics. 

I .  INTRODUCTION 

The superconducting properties of compounds with 
heavy fermions, such as UPt3, CeCu2Si2, UBe13, and others, 
have been actively investigated experimentally and theoreti- 
cally for the past ten years (see Refs. 1 and 2 and the litera- 
ture cited therein). The data on the low-temperature behavior 
of the heat capacity, the thermal conductivity, the nuclear 
spin relaxation time, and so on show that in these materials 
nontrivial pairing of carriers occurs and the superconducting 
state has a more complicated structure than in the standard 
BCS theory. 

Although the microscopic mechanisms responsible for 
the nontrivial pairing are still imperfectly understood, the 
phenomenological approach based on symmetry consider- 
ations has been found to be very fruitfuL3 The basic idea 
consists of the following: the superconducting phase transi- 
tion is accompanied by breaking of the symmetry of the 
normal-metal phase, described by the group 
G = COX U(1) X R, where G, is the point group of the crys- 
tal, U(1) is the gauge group, and R is the time reversal 
operation (the spin-orbit interaction in the materials consid- 
ered is strong). Nontrivial (anisotropic) pairing occurs in su- 
perconductors in which the symmetry of the order parameter 
~ ( k )  is lower than Go X R.  Near the critical temperature T, , 
the order parameter transforms according to an irreducible 
representation (one-, two-, or three-dimensional) of the 
group Go; this makes it possible to construct a Ginzburg- 
Landau expansion of the free energy in powers of the com- 
ponents of the order 

Great interest has recently been shown in the compound 
UPt3, in which the superconducting transition (T,-0.5 K) 
has been found to split into two close transitions with 
A T,-0.05 K . ~  The measurements show that the H -  T- P 
phase diagram contains at least three different superconduct- 
ing phases.5 The theoretical explanations of this fact are 
based on the assumption that UPt3 (hexagonal crystal with 
Go= D6h) possesses a multicomponent order parameter cor- 
responding either to a two-dimensional representation of the 
group D6,, (Ref. 6) or a combination of two- and 
one-dimen~ional~,~ or two one-dimensionaly310 representa- 
tions. We shall not discuss here the advantages and deficien- 

cies of these models; we merely point out that only addi- 
tional, more refined experiments will probably help to assess 
the faithfulness of these models (one such experiment would 
be to measure in this compound the anisotropy of the surface 
superconductivity field H,, for different geometries of the 
samples; the measurement of HC3 for whiskers is discussed 
in Ref. 11). 

The observation of a nontrivial dependence of the slope 
of the line HC3(T) on the orientation of the flat surface of the 
superconductor relative to the crystallographic axes in the 
basal plane would be decisive proof of anisotropic pairing; 
such a proof would make possible substantial progress in 
identifying the superconducting phases (see Sec. 3 below). In 
this connection, we recall that the manifestation of the non- 
trivial character of pairing as anisotropy of the upper critical 
field H,,,' which cannot be described by an effective-mass 
tensor, does not occur in hexagonal superconductors,12 and it 
is therefore useless for determining the type of symmetry of 
the order parameter. 

From a theoretical standpoint, to calculate the surface 
superconductivity field it is necessary to know the boundary 
conditions on the order parameter in the Ginzburg-Landau 
region.13 These conditions in turn can be introduced phenom- 
enologically on the basis of a symmetry approach as 
 follow^."^ The boundary lowers locally (on a scale -to) the 
symmetry of the system to some subgroup G '  of the group 
G,  and this results in the appearance of a distinguished di- 
rection n-the normal to the surface. This effect can be de- 
scribed quantitatively by adding to the Ginzburg-Landau 
functional terms which are localized near the surface (delta 
functions) and are invariant under transformations from G ' ;  
these terms are constructed from the components of the order 
parameter and the vector n. In this approach the boundary 
conditions are obtained by the standard method: by varying 
the complete functional and equating to zero the sum of the 
surface contributions originating from both the standard and 
the additional terms (see Ref. 2 for a more detailed discus- 
sion). 

In the present paper we propose a derivation based on 
the microscopic theory of the boundary conditions for the 
Ginzburg-Landau equations in superconductors with aniso- 
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tropic pairing (this can be regarded as a method for calculat- 
ing the coefficients in the phenomenological surface invari- 
ants). In so doing, we proceed, following Ref. 14, from a 
simple model with specular reflection of electrons from the 
crystal-vacuum interface, neglecting the splitting of the 
phase transition. The surface superconductivity field (for 
UPt,) is calculated using the boundary conditions obtained, 
and the possibility of using measurements of Hc3 to deter- 
mine the representation according to which the order param- 
eter in such superconductors transforms is also discussed. 

This paper is organized as follows. A microscopic deri- 
vation of the boundary conditions of an order parameter of 
arbitrary symmetry in the Ginzburg-Landau region is given 
in Sec. 2. In Sec. 3 these boundary conditions, which turn out 
to be strongly anisotropic, are used to calculate Hc3(T) for 
different representations of the group D6h One-dimensional 
representations are considered in Sec. 3.1; in addition, for the 
representations B1,2 both the boundary conditions and Hc3 
have an anisotropy of sixth order and for the representation 
A,  the anisotropy is of twelfth order. Two-dimensional rep- 
resentations for which the boundary conditions and the 
slopes of the lines Hc3(T) are isotropic are studied in Sec. 
3.2. 

2. MICROSCOPIC DERIVATION OF THE BOUNDARY 
CONDITIONS 

The order parameter, which transforms according to the 
a representation of the group G o ,  has the following form in 
superconductors with anisotropic pairing:3 

where ~ j " )  are the basis functions of the chosen representa- 
tion, which consists of 2 x 2  matrices in the spin space (more 
accurately, because of the strong spin-orbit interaction, in the 
pseudospin space2). For singlet pairing 

and for triplet pairing 

The boundary conditions for the order parameter at the 
specular superconductor-vacuum (dielectric) boundary are 
determined from the solutions of Gor'kov's equations, which 
in the region of applicability of the Ginzburg-Landau theory 
reduce to a linear integral 

Let the normal to the surface be directed along the x axis 
and let the components 7, of the order parameter depend 
only on x, i.e., q1,2=(q1,2,0,0). Writing the painvise inter- 
action potential in the form1' 

c(k,kl)  = g'a'x h ~ " ' ( k ) h ~ ) + ( k , ) ,  
J 

and switching to the Fourier representation with respect to 
q1,2, we obtain the following equation for the order param- 
eter: 

(3) 

In the case of singlet pairing the kernel has the form (in what 
follows we drop the index a designating the representation) 

( 4 4  

In the case of triplet pairing 

i4b) 

The basis functions and d in these expressions depend on 
the direction of the vector k,=(K, ,p) and are assumed to be 
orthonormal: 

Jon sin B ~ B [ =  2 $'(n) = 1 

for singlet pairing and 

1: sin Bd B / : r g  d2(n) = 1 

for triplet pairing. 
The Green's functions appearing in Eq. (4) are the Mat- 

subara Green's functions for a normal metal with an isotropic 
excitation spectrum for a half-space with a specularly reflect- 
ing boundary. It has the following form in the coordinate 
representation:') 

where w = (211 + 1)  TT 
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s inqx,  s inqx2,  x1>0,x2>0,  

otherwise. 

In the momentum representation we have 

Substituting the last expression into Eq. (4), performing 
successive integrations first over p, K , ,  and K2 (i.e., with 
respect to the moduli of the vectors k,) and then over q,,,, 
and dropping the rapidly oscillating (on atomic scales) con- 
tributions, we obtain the following expression for the kernel 
Si, : 

S,,(XI 7x2) = - 

where p = g v o ,  vo = mivo ln2 is the density of states at the 
Fermi level, and vo is the Fermi velocity. The functions of 
directions fl,')(s,cp), where s =cos 8, are determined as fol- 
lows. For fixed angles OS9<27r and 0 s  0<7~/2, we intro- 
duce two unit vectors: 

n , = ( t c o s  0,sin 6 cos cp,sin 6 sin 9 )  

=(-+s, Ji-7 cos (P, JF7 sin cp), (6) 

which are related via reflection in the plane of the boundary. 
Then 

for singlet pairing and 

for triplet pairing. 
We have shown that the form of the kernel S i j  is deter- 

mined by the transformation properties of the basis functions 
of the representation in the case of reflection in the boundary 
plane. 

We shall now find, using Eqs. (3), (5),  and (7a,b), the 
boundary conditions for the components vi of the order pa- 
rameter for x = 0. The case of a diagonal kernel is important 
for the applications discussed below. Specifically, let Si,= O 
for i Z j and Sij= Si for i = j. We introduce the notation 

Then 

For an infinite uniform superconductor, the kernel of the lin- 
ear integral equation for the order parameter has the form 

We note the following important property of the volume ker- 
nel: 

which is simply the definition of the critical temperature T, : 

where the summation extends up to some maximum fre- 
quency (wD in the BSC theory). 

To obtain the boundary conditions for the Ginzburg- 
Landau equation, we must find the asymptotic solution (for 
~ + ~ ~ = v ~ / 2 . r r T , )  of the following integral equation13: 

(no summation over i ) .  By direct substitution, using Eq. (9), 
we can verify that the linear function 

with real bi (the physical meaning of the fact that bi are real 
is that no current flows through the boundary) is the desired 
asymptotic solution. The effective boundary condition then 
has the following form: 

The expression for b i  has the form 
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A variational calculation of hi is performed in the Appendix. 
We call attention to two important properties of h i .  For 

F ( - ) = F ( + )  [this occurs when the ith basis function remains 
unchanged under the reflection x- ,  - x ,  i.e., i+h;(n-)= i+hi(n+) 
or d i (n_ )=d i (n+) ] ,  we find that b i = m ,  i.e., ~ q ; / d x l ~ = ~ = O .  
This important result is not an artifact of the variational (ap- 
proximate) calculation, but rather it is exact. Indeed, in this 
case, extending the definition of the order parameter into the 
"unphysical" region x< 0  via v i ( - x )  = v i ( x ) ,  we find that 
the kernel (8) assumes the form of the uniform volume ker- 
nel s('), and the equation (10)  in the half-space becomes an 
equation in all space: 

TABLE I 

which determines the superconducting transition temperature 
for an infinite uniform crystal. The even solution of this 
equation is, by virtue of Eq. (9), simply a constant. There- 
fore, the boundary condition has the form 

In the other limiting case, when the ith basis function 
changes sign upon reflection, we have F ( + ) =  - I ; ( - ) ,  and we 
obtain hi=  0 from Eq. (12) .  We shall show that this property 

a(?n, + c n y )  + b:11, 

- 1 7 - 
zn,(n,  - 3n,n,)(tz; - 3 n y n i )  

Z(n: - 3n,n?,) 

S(ni  - 3 n y n i )  

Zn, . i n y  

i n y  + i n ,  . i n ,  - $ n y  

is also exact. The order parameter can now be continued into 
the region x<  0 ,  but it is now odd: v i ( - x )  = - v i ( x ) .  Then, 
Eq. (10)  with the kernel (8) once again transforms into a 
volume equation, whose odd solution is a linear function of 
x .  This gives the following boundary condition: 

Note. n,=cos esin cp, n,= sin a cos cp; i , j ,  and i are unit basis vectors in spin 
space. 

-qlu 

. l u  

B, ,  

Bzu 

El ,  

E2, 

/.4,, 

1-4,  

1 
I 
i 
1 BI, 

I B:, 

\Ely 

E:, 

It should be noted that the conditions (13)  and (14)  were 
obtained in Ref. 2 by the method of quasiclassical trajecto- 
ries, and they are also essentially identical to the boundary 
conditions found in Ref. 14 for the components of the order 
parameter in the A phase of superfluid 3 ~ e .  

In the general case, if the basis functions do not have a 
definite parity under reflection in the boundary plane, the 
integral equation (3) does not reduce to a simple form and, 
correspondingly, the boundary conditions are different from 
(13)  or (14) .  In this situation the general formula (12)  should 
be used. 

n ( n t  + 11;) + b711 

1 - t i  - n Y  

n,(tzi - 3n,ni) 

n , (n i  - 3 n y n t )  

n,n, , n,ny 

2r1,nY , n$ - n i  

3. CALCULATION OF THE SURFACE-SUPERCONDUCTIVITY 
FIELD 

We now consider the problem of surface superconduc- 
tivity for nontrivial types of Cooper pairing. We confine our 
attention to the case of a hexagonal superconductor (UPt3), 
i.e., G o = D , , .  The point group D6, has twelve irreducible 
representations: eight one-dimensional ( A ,  ,A2 ,B , ,B2 )  and 
four two-dimensional (E , , E 2 )  of different parity.'5 The basis 
functions of these representations are presented in Table I . ~  

3.1. One-dimensional representations 

We consider first the order parameters corresponding to 
the one-dimensional representations [see Eq. ( I ) ] .  The 
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whose solution which decreases as x--t + has the form 

FIG. 1. Relationship behveen the flat surface of the sample and the principal 
axes ( i , j , i )  of the crystal lattice. 

Ginzburg-Landau functional in an external magnetic field H 
has the same form for all one-component order parameters 
dr) : 

where 

B = curl A 

(the z axis is directed along the six-fold axis). The critical 
temperature T, and the coefficients a, /?, and K1,4  depend on 
the representation chosen. 

The field Hc3(T) is defined to be the field in which near 
the surface the normal state is absolutely unstable. Accord- 
ingly, we must solve the linearized Ginzburg-Landau equa- 
tions in a half-space which follow from Eq. (15). Let the 
field H be directed along the six-fold axis and let the normal 
to the boundary (which is assumed to be flat) lie in the basal 
plane and make an angle 4 with the principal axes of the 
hexagonal lattice (see Fig. 1). Choosing the gauge 

A= (O,Hx,O) 

and substituting the order parameter in the form 

where h=2aHlQo ,  we obtain the following Ginzburg- 
Landau equation: 

where H,(x) are Hermite  function^^).'^ with the index 

The boundary condition for the order parameter at x=O has 
the form 

where the parameter b is given by (12) and, in contrast to the 
ordinary isotropic superconductivity, can be strongly depen- 
dent on the angle 4 in the case of anisotropic pairing. We 
find these dependences below. First, however, we make sev- 
eral general remarks. 

Substituting the solution of the equations into the bound- 
ary condition, we obtain an equation for the parameter 
A =  A(r,h) (for convenience we set r = &xo): 

The derivation employs the property of the Hermite func- 
tions 

The surface-superconductivity field is obtained from the so- 
lution of Eq. (18) by minimizing h with respect to r ,  after 
which ~ ( h )  is calculated from Eq. (17). For arbitrary values 
of b, the transcendental equation (18) cannot be solved ana- 
lytically, but the problem can be simplified in two limiting 
cases. 

In the limit b+m [in the theory of ordinary supercon- 
ductivity a boundary condition of this type is used to study 
the superconductor-vacuum (dielectric) boundary], we ob- 
tain an equation for h(r)  that does not depend explicitly on 
h. Solving the equation numerically gives h,,=0.59 and 
r=0 .77 ,  i.e., from Eq. (17) 

see Ref. 17. 
For b = 0 we have f(0) = 0. Therefore, v=O (r  = m), i.e., 

in this case the surface-superconductivity field is identical to 
the volume critical field Hc2. 

For arbitrary 0 < b < m, we expect that a superconducting 
state will arise near the surface in a field between Hc2(T) 
and H~!)(T); in addition, the surface-superconductivity field 
is no longer a linear function of the temperature because the 
right-hand side of Eq. (18), and therefore also A, depend 
explicitly on h. It is easy to determine the asymptotic behav- 
ior of H,, for weak and strong fields. As h+O, the second 
term on the right-hand side of Eq. (18) dominates, and we 
return effectively to the situation b=O, i.e., in weak fields 
Hc3=Hc2. In strong fields, the first term remains on the 
right-hand side of Eq. (18) and the picture is similar to the 
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FIG. 2. Critical field of surface superconductivity as a function of tempera- 
ture for boundary conditions of the general form df(0)ldx = (llb)f(O). 

case b+m, i.e., here the HC3 line is parallel here to the HS!) 
line. A transition from one asymptotic behavior to another 
occurs in fields hmbP2 (the section with negative curvature). 
The qualitative dependence of the surface-superconductivity 
field is displayed in Fig. 2 (see also Ref. 18). It should be 
kept in mind, however, that the theory presented here is valid 
only in the Ginzburg-Landau region, i.e., in sufficiently 
weak fields, and for this reason a dependence similar to that 
shown in Fig. 2 can be observed only for b S  5,. 

Using Eq. (12), we shall now find the angular depen- 
dences of the parameter b for different one-dimensional rep- 
resentations. 

A ,,. For the unit representation A ,, we can set, without 
loss of generality, a = b =  1 (see Table I), i.e., the basis func- 
tion @=O, and from Eq. (12) we obtain b = m. Therefore, the 
boundary condition for the Ginzburg-Landau equations is 
identical to Eq. (13); this leads to the ordinary isotropic sur- 
face superconductivity. 

A, , .  In this case we obtain (setting, once again, a =  b 
= 1)  

f ( + ) ( s )  = F(+)(s) = 1 - 2s2, f(-)(s) = F(-)(s) = 1 

and 

Since the parameter b is of the order of to,  i.e., it is much 
less than the correlation length in the Ginzburg-Landau re- 
gion, we can set b =  0 and therefore Hc3(T) = Hc2(T). 

A,,. The basis function in the principal axes has the 
form (c is a normalization factor; see Table I): 

To calculate the functions f(') from (7) appearing in the 
kernel (5 ) ,  the basis function must be rewritten in the coor- 
dinates (x,y,z) associated with the surface (Fig. 1). It is 
convenient to switch to the complex coordinates 
(+ = n,? in,. Then 

5/= iic(5:+8?)(5:-5?),. 

Since the complex coordinates 5, transform as follows ac- 
companying a transformation from ( i , j , i )  to (x,y ,z) 

we have 

i c  - ic  
@(n+)= (5:-5!)= 7 (COS 64(5:-5!) 

- i  sin 64(56,+56)) .  

In the case of a reflection in the plane of the boundary 
5+ - - 5- , and therefore 

i c 
@(n-)= - 4 (-cos 6+(56,-(6)-i sin 64(56,+56)) .  

Substituting the expressions found above into Eq. (7a), 
we obtain 

The algorithm for subsequent operations is obvious: the 
expressions for n, and n, must be substituted into the last 
formula, the integration over q must be performed, the nor- 
malization factors must be taken into account, and the ex- 
pressions obtained for F(*)(S) (in this case polynomials of 
degree 12 in s )  must be substituted into Eq. (12). Carrying 
out these rather lengthy calculations, we obtain the final re- 
sult presented in Table 11. 

We can see that the boundary condition on the order 
parameter is strongly anisotropic. Therefore, the field HC3 
will also have an anisotropy of order 12, specifically, we 
have b = 0 for 4=0,  27~/12, ..., i.e., Hc3 takes on its minimum 
value, equal to Hc2. For +=2424,  2 ~ 1 8 ,  ... we have b=m, 
and Hc3 takes on its maximum value, equal to H:!). For 
intermediate angles a nonlinear temperature dependence 
Hc3(T) should be observed (see Fig. 2). 

The remaining one-dimensional representations can be 
studied similarly. The corresponding values of b ( 4 ) /  to are 
summarized in Table 11. We emphasize that although the ex- 
pressions obtained are approximate (they are of an interpo- 
latory character), they reflect correctly the important features 
of the functions b (4) .  The final result is that for the order 
parameter transforming according to A2 ,  the field Hc3 has an 
anisotropy of order 12, and in the case of B ,  and B2 the 
anisotropy is of order 6. 

To avoid misunderstanding, it should be noted that by 
anisotropy of the surface superconductivity we mean here 
the anisotropy of the slope of the Hc3(T) line for a fixed 
direction of the external field-along the z axis-and differ- 
ent directions of the normal to the surface in the basal plane. 

Another consequence of the anisotropy of the boundary 
conditions, which is more suitable from the standpoint of 
performing an experiment, is the appearance of lines of zeros 
of the order parameter on the surface of cylindrical samples 
oriented along the hexagonal axis [the order parameter van- 
ishes at locations where b(+)=O]. It is qualitatively clear 
that this in turn results in a corresponding "real" anisotropy 
of the surface critical field in the basal plane. 

3.2. Two-dimensional representations 

For a two-component order parameter, the Ginzburg- 
Landau functional, up to quadratic terms, has the form 
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TABLE 11. 

We require that the coefficients of the gradient terms satisfy 
the following boundary conditions19: 

where K1 23 = K1 + K2 + K3 . These conditions follow from 
the requirement that the gradient part of Eq. (19) be positive 
definite. 

The corresponding linearized equations (the order pa- 
rameter does not depend on z )  have the form 

We now introduce, following ~hitomirskii , '~ the new 
functions p, = p, + i v2 and the operators D .  = DxT iDy , 
and we also use the fact that 

Then, the equations assume the form 

where 

Ko=(K123+K1)/2, K2=(K2-CK3)/2. 

In Ref. 19 these equations were used to find the upper critical 
field HC2 in an infinite volume. In this case the solution must 
decay as x+ - m. The solution of Eq. (21) can then be ex- 
pressed in terms of Hermite polynomials. In our case, how- 
ever, we do not fix the behavior of the solution at -m and, 
correspondingly, we do not require positive definiteness or 
that the indices of the Hermite polynomials be integers. The 
Hermite polynomials thus become Hermite functions H,  .I6 

We now seek the order parameter in the form 

77% = exp(ihxoy If. (x). 

The particular solution of Eq. (21) has the form 

where 

The fact that Eq. (21) is indeed satisfied can be verified by 
using the following identities (see Ref. 16): 

(D:+ D; )F ,=(~v+ 1 ) h ~ , .  

Substituting Eq. (22) into Eq. (21) gives the following rela- 
tion between T, h, and v: 

T=( - (2v+3)Ko 

Then the order parameter q is given by 

In contrast to the one-component case [see Eq. (17)], the 
expression (23) does not permit finding v as a unique func- 
tion of T and h.  Since it is quadratic in v, this equation can 
have two roots with a fixed dimensionless ratio 
h =  -ar /K1h:  
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where 

D = ~ K : + K ~  - ~ K ~ K : - K - ( K ~ - K : ) ( ~ K , - K - )  

The corresponding values of q1,,(A) are 

We assume below that the discriminant is positive, and v l , ~  
and ql, ,  are real. Ignoring this requirement, by the way, does 
not introduce any fundamental difficulties, since the Hermite 
functions can be analytically continued to complex values of 
the index.16 We note that if K2=K3 ,4) it can be shown, tak- 
ing Eq. (20) into account, that D > 0.  

The eigenvalue is found to be doubly degenerate, and 
accordingly the general solution of Eq. (21) has the form 

where p is a free parameter, which we choose, without loss 
of generality, to be real. Substituting Eq. (26) into the bound- 
ary conditions yields a system of two transcendental equa- 
tions for A(h,xo,p). Minimizing A with respect to the pa- 
rameters x, and p makes it possible, in principle, to find the 
temperature dependence of the surface-superconductivity 
field Hc3(T). 

What are the boundary conditions on the components of 
the order parameter? In the case of two-dimensional repre- 
sentations of the hexagonal group, the second-order terms in 
the Ginzburg-Landau functional-both the uniform and gra- 
dient terms-have the continuous symmetry Dm,, in the basal 
plane (if the magnetic field is oriented along the z-axis). This 
allows us to choose the basis functions in the most conve- 
nient manner-specifically, so that the kernel (5) is diagonal 
and independent of 4, and so that we have independent in- 
tegral equations for each component vi.  

E l .  The basal functions of the representation El,  are 
such that under the substitution n,+ - n, , - n,n, 
changes sign and ~,b~-n,n, does not. Therefore, 
F{-)(s) = - F\+ )(s) and F$-)(s) = F ~ ) ( s ) ,  i.e., the bound- 
ary conditions have the form 

We stress that these expressions are isotropic in the basal 
plane. 

Similarly, it is easy to see that for the representations 
El,, the boundary conditions are identical to (27), because in 
this case too, one basis function changes sign on reflection in 
the boundary plane and the other does not (see Table I). 

Substituting Eq. (26) into Eq. (27) gives equations for 
A(h,xo,p) from which, using the property 

of the Hermite functions and eliminating p ,  we obtain an 
equation for A(h,r) (once again, we set r = &xo): 

where 

In these expressions q1,2 and v , , ~  are related to A by Eqs. 
(24) and (25). 

An important property of Eq. (28) is that this equation 
does not contain an explicit dependence on h,  i.e., A =  A(r), 
and therefore the function Hc3(T), corresponding to 
Ami,the minimum solution of Eq. (28) with respect to 
r-is linear, but the coefficient cannot be determined analyti- 
cally. 

A numerical calculation for K1 = K2=K3 yields 
Amin=0.89 and r = 0 . 5 5 ,  i.e., Hc31Hc2=1.24. 

E 2 .  The situation in this case is different for the repre- 
sentations E and E2,. 

?g 
The basis functions of E2, (see Table I) behave oppo- 

sitely under the reflection n,+ - n, , and therefore the 
boundary conditions have the form (27), and the equation for 
Hc3(T) is identical to Eq. (28). For K 2 = K 3 = 0  (see footnote 
4) the equations for vl and % decouple, and therefore the 
components of the order parameter can be studied indepen- 
dently and similarly to the one-dimensional case (see Sec. 
3.1). For vl we have HC3(T)=Hc2(T),  and for % we have 
HC3(T)= 1.69Hc2(T), i.e., for Hc2<H<Hc3 a phase of the 
type (0,l) appears. 

We now substitute the basis functions of the representa- 
tion of E2, from Table I into Eq. (7%). These functions ob- 
viously do not have definite parity under reflection, and we 
obtain 

The boundary conditions are identical for the two compo- 
nents of the order parameter and have the form 

where the parameter b, which is independent of direction in 
the basal plane, is presented in Table 11. 
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Since b is small ( b  < to ) ,  we can employ the following 
boundary conditions for the Ginzburg-Landau equations: 

Substituting Eq. (26) into Eq. (29), we arrive at an equation 
similar to Eq. (28), where the functions g,(r,X) assume the 
form 

In the special case K ,  = K3 = 0 (see footnote 4), the compo- 
nents of the order parameter become independent, and we 
verify that HC3(T) = HC2(T) by substituting into the bound- 
ary conditions (29). In the general case, the slope of the Hc3 
line can be determined numerically. 

4. CONCLUSIONS 

In summary, measurements of the surface- 
superconductivity field HC3(T) make it possible in principle 
to identify the superconducting phases in UPt,. Even in the 
case of the simplest geometry investigated in the present pa- 
per, specifically, when the field is oriented parallel to a 
smooth superconductor-dielectric boundary passing through 
a six-fold axis, observation of the anisotropy of the slope of 
the Hc3(T) line as a function of the angle between the nor- 
mal to the surface and the principal axes of the crystal lattice 
would make it possible to narrow substantially the range of 
models which purport to explain the experimental phase dia- 
gram (see introduction). 

The isotropic linear dependence Hc3(T) = 1 .69HC2(T) 
means that we are dealing with the unit representation A,,. 
The absence of surface superconductivity, i.e., the fact that 
the lines of Hc3 and HC2 coincide, points toward the repre- 
sentation A,,. Different values of the ratios of the slopes of 
the straight lines Hc3(T) and Hc2(T) may correspond to the 
two-dimensional representations E l  or E,. 

The anisotropy of the Hc3(T) line indicates the existence 
of a one-component (nontrivial) order parameter, corre- 
sponding to B, or B, in the case of anisotropy of order six 
and A, in the case of anisotropy of order 12. 

It is clear that the types of behavior of Hc3 listed above 
also remain, at least qualitatively, in a different geometry of 
the problem, corresponding better to experiment, specifically, 
when the field rotates in the basal plane. In the present case, 
however, the anisotropy of Hc3 can arise because of effects 
associated with the shape of the sample (existence of flat 
boundaries), as a result of the "beak-shape" dependence, 
known from the theory of ordinary superconductivity, of Hc3 
on the angle between the direction of the field and the plane 
of the boundary. It is periodic dependences of this type that 
were recently observed in whiskers." Therefore, to eliminate 

such effects as much as possible, Hc3 should be measured on 
samples of different shape, specifically, cylindrical samples. 
The observation of surface superconductivity anisotropy in 
this case would be a strong argument for one or another 
one-dimensional representation. 
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discussions. 
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APPENDIX 

We employ the variational method proposed in Ref. 20 
to calculate the coefficient b, in the linear asymptotic form of 
the order parameter. 

We transform in Eq. (8) to the dimensionless variable 
X = x l t o .  Then 

Since q(X) is asymptotically ( X B  1) linear, we seek a solu- 
tion in the form (dropping the subscript i )  

v(X) = C(X+ 9(X)), 

and 

b / t o =  lim q(X). 
X+m 

The equation for q(X) has the form 

To formulate the variational principle, we note that the inte- 
gral equation (Al) is derived by varying the functional 

where 

Then, the extremum (minimum) of the functional is 
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. =  
1 

"In 2J:dXE (X) q(X) ' 

We now show that the required limiting value, of the 
solution of Eq. (Al) as X-+w can be expressed directly in 
terms of amin. Let 

q(X)=blto+Q(x),  

where Q(X)-+O as X-+m. Substituting into Eq. (Al), we 
obtain an equation for Q(X). Next, multiplying both sides of 
this equation by X1 and integrating over X, from 0 to a ,  we 
obtain finally 

The quantity amin can be calculated by the variational prin- 
ciple. Choosing a constant as the trial function and substitut- 
ing it into Eq. (A2), we arrive at Eq. (12) (see Ref. 20 for a 
discussion of how to improve computational accuracy). 

"AS indicated in the Introduction, here we are considering the single (ath) 
representation with the maximum transition temperature, thereby neglect- 
ing effects associated with the possible coexistence of different symmetry 
in a system of two order parameters, which gives rise to splitting of the 
superconducting transition. 

am  he Green's function is proportional to the unit matrix, in spite of the 
strong spin-orbit interaction. 

3 ' ~ h e  functions f(x) can also be expressed directly in terms of Weber func- 
tions (parabolic cylinder functions). 

4 ) ~ n  the weak-coupling theory, assuming exact electron-hole symmetry, we 
have K, = K,=  K, for the representation E l  and K ,  = K, = 0 for the repre- 
sentation E ,  .6 
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