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The change produced in the nonlinear optical properties of the surface of a metal by high-power 
laser radiation is analyzed. The dispersion relations for the nonlinear current are calculated 
on the basis of perturbation theory using the density-matrix formalism. The solutions of the kinetic 
equation which describes the evolution of the distribution function of the electron gas of a 
metal in the field of an intense electromagnetic wave are chosen as the zeroth approximation for 
the diagonal elements of the density matrix. It is shown that under the action of an intense 
heating laser pulse on the surface of a metal, an electron distribution function that is different from 
the equilibrium function is formed in the irradiation zone, and this substantially changes the 
dispersion relations for the imaginary part of the nonlinear current j i  and the associated nonlinear 
optical response of the surface. It is shown that the scale of the change in j: is determined 
by, besides the parameters of the heating laser pulse, the relaxation times of the electron gas in the 
metal, so that these times can be determined experimentally. O 1995 American Institute of 
Physics. 

I. INTRODUCTION 

There are a large number of theoretical and experimental 
works on the nonlinear optical response of a surface and the 
determination of the connection of this response with the 
microscopic electronic characteristics of the medium (see, 
for example, Ref. 1). Experimental techniques are trending 
toward shorter and correspondingly more powerful laser 
pulses for probing a surface. There naturally arises the ques- 
tion of how this radiation affects the electronic characteris- 
tics of a surface, specifically, the electron distribution func- 
tion (EDF). It is well known that for plasma and gaseous 
media, a deviation of the EDF from the equilibrium form 
results in a large change in the nonlinear optical properties of 
such media, specifically, a higher yield of optical 
 harmonic^.^,^ Such a possibility has not been considered for 
metals, probably because it is believed that since the 
electron-electron relaxation time is short ( ~ ~ , - 1 0 - ' ~ - 1 0 - ' ~  
sec), the deviations of the EDF from the equilibrium form 
are very small and cannot influence the macrophysical char- 
acteristics of media. These assertions are poorly substanti- 
ated, however, especially for nonlinear optical phenomena, 
where transitions between excited states can play a decisive 
role and the nonlinear response times of the medium are at 
least comparable to re,. 

A number of experiments435 which indicate directly or 
indirectly that the electron distribution function of a metal in 
a strong electromagnetic field is of a nonequilibrium nature 
have now been performed. It has been proved experimentally 
that the form of this function affects the reflection coefficient 
of a metal surface irradiated with high-power laser 
radiation: and this leads naturally to the idea that a similar 
effect should occur for the nonlinear optical characteristics of 
the surface. The methodological principles for analyzing this 
problem were formulated in Ref. 7, but we know of no at- 
tempts to assess the effect of the nonequilibrium nature of 

the EDF on the nonlinear optical response of a surface. This 
problem is also of interest because nonlinear optical methods 
for probing a surface provide a great deal of inf~rmat ion.~ 
Specifically, they directly yield data on the evolution of the 
electronic subsystem of a metal in a strong electromagnetic 
field. 

In the present paper we analyze the processes which 
could change the nonlinear optical properties of a surface in 
a strong electromagnetic field. 

2. FORMULATION OF THE PROBLEM 

In its classical formulation, the problem of finding the 
nonlinear response of a metal surface irradiated with high- 
power electromagnetic radiation reduces to finding the non- 
linear current. The solution of this problem in the perturba- 
tion theory approximation is well known and has been 
analyzed in detail by ~ l o e m b e r ~ e n . ~  In this method, how- 
ever, the equilibrium thermodynamic Fermi distribution is 
used as the zeroth-order approximation for the density matrix 
(see, for example, Ref. lo), and on the basis of the consid- 
erations stated above, this approximation may not be ad- 
equate for pico- and subpicosecond laser pulses. The alterna- 
tive to this approximation is to choose a different initial 
approximation which more accurately reflects the real physi- 
cal situation. 

Proceeding from what we have said above, we reformu- 
late the problem as follows: let two beams of different radia- 
tion be incident on the surface of a metal-a heating beam 
with frequency w,, and a probing beam with frequencies w,  
and w2. We require that the following conditions be satisfied: 
1) the probing field must not affect, to a first approximation, 
the electron distribution in the conduction band; 2) the heat- 
ing field alters the electron distribution only as a result of 
intraband transitions; and, 3) the coupling of the heating field 
with the electron gas in the metal is local. These conditions 
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impose certain restrictions on the parameters of the model 
chosen. First, the heating radiation must be much more in- 
tense than the probing radiation: IhB11,2. In certain ranges 
of the frequencies and intensities of the heating radiation, the 
populations can change mainly as a result of intraband tran- 
sitions. The criterion for the external field to influence the 
change in the populations and off-diagonal elements of the 
density matrix as a result of interband transitions can be de- 
termined by analyzing the exact solution for a general two- 
level system (see, for example, Ref. 11). In the case when the 
frequencies of the heating field w h 4 w m n  (w,, is the fre- 
quency of an interband transition), the effect of the field on 
the change in the slowly varying part of the density matrix, 
resulting, specifically, from two-photon interband transitions, 
will be small if its intensity 

where Tmn is the relaxation time of the off-diagonal element 
of the density matrix (transverse relaxation time) and Q is 
the joint matrix element of the two-photon transition. Ac- 
cording to calculations, the transition is saturated in the op- 
tical range for heating radiation power densities of the order 
of hundreds of TWIC~', which is much higher than the 
threshold for surface damage, even for femptosecond pulses. 
The satisfaction of the third condition requires a normal skin 
effect, which for most metals occurs in the near-IR range of 
the ~ ~ e c t r u m ' ' ~ ' ~  and results in the relation h w h ~ l  eV. 

In the case when the conditions indicated above are sat- 
isfied, the effect of the heating field on the electron system of 
the metal can be analyzed on the basis of the kinetic equation 
for the electron distribution function, taking the electron- 
electron and electron-phonon interactions into account. The 
slowly varying solution obtained can be used as the initial 
state of the metal surface to describe the nonlinear optical 
response of the medium to the probe radiation. 

3. ELECTRON DISTRIBUTION FUNCTION OF A METAL IN A 
STRONG ELECTROMAGNETIC FIELD 

To analyze the effect of a strong high-frequency electro- 
magnetic field on the electron distribution in a metal, we 
employ an equation for the one-particle density matrix: 

where f(p,t) is the one-particle density matrix (which, in 
what follows, we refer to as the electron distribution func- 
tion), p is the canonical momentum, and S,, and S, are the 
electron-electron and electron-phonon collision integrals, re- 
spectively. 

The equation (1) was derived in the standard manner 
from the Heisenberg equations under the assumption that the 
distribution function is spatially uniform.14 This assumption 
is justified in the case of the normal skin effect. In the case at 
hand it is applicable if12,13 

where v is the characteristic electron velocity, S is the depth 
of the skin layer, and w is the frequency of the field. At 
optical frequencies (w-10'~-10'~ secpl) for metals 8--10-~ 
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cm and v l w - - 1 0 - ~  cm. Therefore, the dependence of the 
distribution function on the spatial coordinates and the trans- 
port processes associated with this dependence can be ne- 
glected. 

We obtain an equation for the slowly varying component 
of the distribution function by averaging Eq. (1) over one 
period of the field: 

where fo(p) = [exp( E, - eFIkBT ) + I]- '  is the equilib- 
rium distribution function; N(k,t) is the distribution function 
of phonons in a state with quasimomentum k. Since the 
electron-phonon coupling constants are small, we assume be- 
low that this distribution is the equilibrium distribution with 
a time-dependent temperature Ti(r,t); J, are Bessel func- 
tions; a = e ~ d m h w '  is the amplitude of the electron oscilla- 
tions in a high-frequency field E=Eo sin(wt); E ,  = p2/2rn 
is the electron energy; and, E, is the Fermi energy. The quan- 
tity C k  is related to the matrix element for scattering of an 
electron by an acoustic phonon from the state p into the state 
p': 

Here, L~ is the normalization volume. 
The first term on the right-hand side of Eq. (2) is the 

electron-electron collision integral in the 7 approximation. 
We note that the electron-electron collision integral does not 
contain any terms which correspond to induced absorption 
(emission) of photons, since the field may be regarded as 
uniform over distances of the order of the screening length. 

The equation (2) shows that the induced absorption 
(emission) of photons is possible in electron-phonon colli- 
sions [the second term on the right-hand side of Eq. (2)]. 

In studying the kinetic processes in the electron gas of 
the metal, the fact that, as a rule, the distribution function 
over the direction of the momentum relaxes much more 
quickly ( ~ - 1 0 - ' ~  sec) than the energy distribution function 
(T-10-l3 sec) must be taken into account.15 This fact makes 
it possible to simplify the kinetic equation even more. Aver- 
aging Eq. (2) over the directions of the momentum and ne- 
glecting the contribution of electron-phonon scattering (the 
term with n = 0 in the electron-phonon collision integral) to 
energy relaxation, we obtain 

where 4%) are the electron-phonon collision frequencies, 
given by 
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The argument of the Bessel function (ak-X 
= e ~ , v ~ / h w ~ )  is a parameter which determines the mul- 
tiphonon nature of the process.16 Since in our problem the 
field strength is limited by the plasma-formation threshold 
(~ ,<10 '  V/cm for femptosecond pulses), X < 1  always 
holds, and the contribution of multiphoton processes can be 
neglected compared to one-photon processes. 

A further simplification, which makes possible a simple 
estimate of the contribution of electron-photon collisions, 
consists of the following. Let v(,+) and v(~-) be energy- 
independent and given by 

where v is an effective electron-photon collision frequency. 
The physical reason for the appearance of the Heaviside step 
function B(E) in Eq. (5) is that the electron energy cannot be 
negative [see Eq. (4)]. The parameter v equals the number of 
photons absorbed by one electron per unit time, and it can be 
estimated as 

V =  W/(n1fiw8), 

where W is the power density of the absorbed radiation and 
n l  is the effective electron density. Finally, we write the 
kinetic equation in the form 

The equation (6) was previously derived in Ref. 17 phe- 
nomenologically. The solution of this equation was obtained 
in Ref. 18 in the form of a series in the small parameter 
K= VT,, , 

where K, is a small dimensionless parameter equal to the 
number of incident field photons per electron over the time 

Tee : 

KO= Wo~, , l (n lhoS) ,  (8) 

where Wo is the peak power density of the absorbed radia- 
tion. 

Substituting this expansion into the kinetic equation, we 
obtain a system of recurrence relations whose solution has 
the form 

x ~ " [ f o ( ~ , T , ( x ) ) l e x p ( ~ n - x ) ,  (9) 

where x = t/ T,, ; P(t) = W(t)/ Wo ; Te = Te(r,t) is the tem- 
perature of the electron gas, as determined from the heat- 
conduction equation,19 which makes it possible to explicitly 

take into account the diffusion spreading of heat; An is the 
result of the displacement operator A operating n times on 
the function f (E ,t): 

The expression for f , , ( ~ , x )  can be substantially simpli- 
fied if 

Estimating the derivative on the left-hand side of this 
inequality, we find that it differs from zero over narrow en- 
ergy ranges of width GT, adjoining points on the energy axis 
where E ~ -  E 2 h w = 0.  Since most observed physical quan- 
tities are determined by the higher-order moments of the dis- 
tribution function, for T,Ghw the contribution of the time 
dependence T,(t) to the kinetics of these quantities does not 
exceed T,/hw. In this case 

where the function @,(x) describing the temporal behavior 
of ~ ( E , x )  is given by 

It can be shown that for laser pulse durations T ~ ~ T , , ,  
the form of the function @,(t) simplifies, and @,(t) 
= exp(-nt2/<) in the case of a laser pulse with a Gaussian 
temporal profile. 

The main assumption leading to the form (11) of the 
solution is that it must be possible to write the collision 
integrals in the T-approximation. In so doing, it was assumed 
that f ( ~ , t )  relaxes to the equilibrium function f,(c,T,) with 
a time-dependent electron temperature ~ , ( t ) . ' ~  

It is well known that the effect of ultrashort laser pulses 
on a metal surface is to produce a dynamically nonequilib- 
rium situation in which the electron temperature T, de- 
couples form the lattice temperature Ti ,  but both the electron 
and phonon distribution functions individually retain their 
equilibrium form.5 

Analysis of the solution (11) gives several different re- 
sults. Figure 1 displays the electron distribution function, 
calculated from Eq. ( l l ) ,  for sodium with different values of 
the laser radiation characteristics. The figure also displays 
the equilibrium electron distribution function with tempera- 
ture T, , as calculated from the data of Ref. 19 (dashed lines). 
From Fig. 1 and the expression (11) it is evident that in the 
region of interaction of the radiation with the metal surface, 
there is formed predominantly an electron distribution func- 
tion with a periodic stepped structure with step hw the am- 
plitude of the steps being proportional to K", and the tempo- 
ral behavior of each step being determined by the form of 
@,(t). The curves 1 and 2 were obtained for a 1.17 eV 
heating photon and power densities W=200 and 600 
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FIG. 1. Electron distribution function computed for sodium irradiated with 
high-power laser radiation. 

Mw/cm2, respectively. The curve 3 was obtained for a 0.5 
eV heating photon and a power density of 200 Mw/crn2. As 
the intensity of the heating radiation increases or the energy 
of the heating photons decreases ( ~ + 1 ) ,  the stepped struc- 
ture is smoothed out, and in the limit, as can be seen clearly 
in the figure, the solution (11) approaches the solutions ob- 
tained in Ref. 19. 

4. ANALYSIS OF THE CHANGES IN THE NONLINEAR 
RESPONSE OF A METAL 

It follows from what we have said above that the actual 
number of electrons occupying nonequilibrium states is ex- 
tremely small, and most electrons occupy equilibrium states. 
It is very important, however, that a small number of elec- 
trons occupy states above the Fermi level that are essentially 
empty in the case of equilibrium heating. 

In the long-wavelength approximation (assuming that 
the size of the "main region" of the crystal is much smaller 
than the wavelength of the radiation and the wave vector of 
the radiation is small compared to that of an electron in the 
crystal) the following expression can be derived for the non- 
linear component of the current d e n ~ i t ~ : ~ " ~  

a ,  and q, are, respectively, the components of the vector 
potential and the wave vector; f, are the diagonal elements 

FIG. 2. Na[100] dispersion curves.20 

of the density matrix; pm,= - ifiJ$:rV$nCl,ld~ are the ma- 
trix elements of the momentum operator; and, $,,, is the elec- 
tron wave function. The summation extends over the band 
indices and the electron wave vector k,; it is assumed that 
the matrix elements depend on k,. The symbol PlW2 repre- 
sents a term which is the same as the last term except that the 
frequencies of the field are interchanged. The bracketed 
terms are presented in Ref. 7, where an expression can also 
be found for the permittivity tensor i(w,). 

It follows from Eq. (12) that the nonequilibrium struc- 
ture arising in the electron distribution function (11) in a 
strong field can affect the imaginary part of the current den- 
sity, i.e., the so-called nk-dependences in the linear case. 

In the case of a transverse electromagnetic field in a 
crystal, the second and third terms in brackets in Eq. (12) 
vanish. The contribution of the remaining terms to the imagi- 
nary part of the nonlinear current as a function of the trans- 
verse relaxation time and the frequencies of the probe field 
can be different. Without loss of generality, we shall consider 
the change produced in the nonlinear current by the imagi- 
nary part of the nonlinear polarizability. We note that the 
imaginary part of the linear permittivity will have a similar 
effect. In analyzing the experimental data, this contribution 
can also be taken into account on the basis of measurements 
of the linear response at the corresponding frequency. 

Let the model system be a sodium surface. We shall 
analyze the change in the contribution to the nonlinear re- 
sponse of the electrons in states with symmetry A. Figure 2 
displays the dispersion curvesz0 for Na[100] (here a = 8.11 
a.u. is the lattice constant; the triangles correspond to the 
energies at the symmetry points and H). The dashed line 
represents our extrapolated curve, obtained on the basis of 
the parabolic-band model. It is evident from the figure that 
for optical frequencies, interband transitions can actually oc- 
cur between the lowest bands. In this connection, we focus 
on the two-band model. In this case, the last term in expres- 
sion (12) will have the following form: 
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FIG. 3. Dispersion curves for the imaginary part of the nonlinear current for 
different values of the heating-radiation power density: W=50 ( I ) ,  200 (2), 
and 800 M W I C ~ ~  (3).  

+ p 1 + + 2 ,  (13) 

where G is the reciprocal lattice vector of the crystal. In the 
calculations it was assumed that the matrix elements and the 
relaxation time are independent of the electron wave vector 
k,. We note that six terms in the sum (11) were included in 
the computational results presented below. 

In the case of the nonequilibrium electron distribution 
function ( l l ) ,  the dispersion curves for the imaginary part of 
the nonlinear current must have a stepped form (Fig. 3). Fig- 
ure 3 displays the curve for nonlinear summation of the fre- 
quencies wl+ y with fiw2=l.18 eV, hwh=1.17 eV, 
T,,= 10-13 sec, ~ , , = 6 . 1 0 - ' ~  sec, and W=50 (curve I ) ,  200 
(2), and 800 MW/cm2 (3). The step width is determined by 
the energy of the heating photons, the reciprocal lattice vec- 
tor, the Fermi energy EF, the number of the step, and the 
character of the dispersion law, and can be found from the 
expression 

h ~ , = r n - ~ / ~ f i ~ ( J ~ -  JcF+ ( n  - l)f iwh).  
(14) 

Since the amplitude of a step is proportional to K, i.e., the 
power of the heating radiation and the electron-electron re- 
laxation time, the quantities mentioned above can be judged 
according to their behavior. As the power density of the heat- 
ing radiation increases, the dispersion curves become 
smoother and approach the curves obtained when the heating 
of the electron gas is an equilibrium process. The dashed 
lines represent the analogous dependences obtained under 
the assumption of equilibrium heating of the surface. 

Figure 4 displays the ratio R of the imaginary part of the 
nonlinear current j: , calculated for the nonequilibrium case, 
to j: calculated for equilibrium heating (solid line) and to 
j: calculated for a "cold" metal at an electron gas tempera- 
ture of 300 K (the process wl+w2 with fiw2=1.18 eV, 
hwh=1.17 eV, T,,=IO-'~ sec, ~ , , = 6 . 1 0 - ' ~  sec, and 
W=200 MW/cm2). It is clear from the figure that the differ- 
ence between the curves is greater in the spectral range cor- 
responding to transitions whose initial states lie fiwh above 
the Fermi level (in this case the frequency of the direct in- 

FIG. 4. Dispersion curves of the ratio of the imaginary parts of the nonlinear 
current in the nonequilibrium and equilibrium cases (see text). 

terband transition from the Fermi level is 5.54 eV). As the 
frequency of the probe radiation increases further, the contri- 
butions of states lying above and below the state correspond- 
ing to a direct two-photon transition cancel one another. As a 
result of this cancellation, the effect of the nonequilibrium 
electrons remains even in the high-frequency region of the 
spectrum; this is especially clearly seen in comparing the 
nonequilibrium response to the response of a "cold" lattice 
(the features on the dashed curve correspond to the peaks in 
the population difference f ( ~ ) -  f0(&) [compare Fig. 11. In 
the case when the probe radiation frequency w2 is compa- 
rable to wl, however, the increase in the effect of nonequi- 
librium electrons in the high-frequency region of the spec- 
trum will not be so large because of the effect of the 
transposed term. In certain spectral regions, R depends on 
the ratio of T,, and TI, and on the parameters of the heating 
and probe radiation, and it can reach several orders of mag- 
nitude. 

The stepped character of the dispersion curves is more 
pronounced for w2<wh (Fig. 5). displays j: as a function of 
the frequency wl of the probing radiation; the curves were 
obtained for different frequency conversion processes with 
heating photon energies of 1.17 (a) and 0.5 eV (b) 
(T,, = 10-l2 sec, TI2 =6. 10-l4 sec, and W=80 N W / C ~ ~ ) .  
Curve 1 corresponds to frequency summation w1+w2 
(w2=l.01wh) and curve 2 corresponds to second harmonic 
generation at the frequency 2wl ; the dashed line corresponds 
to the dispersion curve of the imaginary part of the linear 
current. One can see from the figure that as the frequency of 
the heating radiation increases, the stepped character of the 
curves becomes more pronounced. Numerical calculations 
show that the change in the response in the nonlinear case is 
much greater than for the linear case. 

We now consider the effect of the relaxation times TI2 
and T,, on the magnitude of the nonlinear current. We note 
that the characteristic transverse relaxation times, determined 
by both nonadiabatic and adiabatic interactions, are, as a 
rule, less than the characteristic electron-electron times, de- 
termined by inelastic interactions of the electronic subsystem 
in the bottom band. As expected, when the relaxation time 
T,, decreases, the electron distribution function thermalizes 
more rapidly and, correspondingly, the heating field becomes 
less influential (Fig. 6). Here, the coefficient R is the ratio of 
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the imaginary part of the nonlinear current in the presence of 5. CONCLUSIONS 
the heating field to the imaginary part of the nonlinear cur- 
rent on the "cold" surface, Fig. 6 displays the curves ob- 
tained for different ratios of the relaxation times TI2=0.17,, 
(curve I) and TI2=0.5r,, (curves 2 and 3). Here, ho,=3.51 
eV, ho2=1.18 eV, hw,,=1.17 eV, and W=100 (curves I and 
2) and 400 M W / C ~ *  (curve 3).  As the transverse relaxation 
time increases, the contribution of the equilibrium electrons 
to the imaginary part of the current density (13) decreases, 
the consequently the difference between the equilibrium and 
nonequilibrium cases increases. It is evident from the figure 
that the nonlinear processes make it possible to observe this 
effect for shorter relaxation times than in the analysis of the 
linear response (the dashed lines correspond to the same 
curves for the linear case). A similar result also obtains as the 
heating radiation power density increases. 

The results show that the nonequilibrium structure pro- 
duced by powerful laser radiation in the electron gas of a 
metal results in large changes in the linear and nonlinear 
responses of the surface. Analysis of the latter will definitely 
improve surface diagnostics. It is obvious that the compli- 
cated band structure of different metals can mask the effect 
of the nonequilibrium electrons. Nonetheless, these difficul- 
ties can be overcome by choosing suitable probe and heating 
radiation, as well as the geometry of the experiment. We 
wish to underscore once again that because the number of 
nonequilibrium electrons is small, the absolute magnitude of 
the nonlinear response can be small, but its relative change, 
as shown above, can be very large, making this effect a 
"threshold" effect and creating the potential for direct obser- 
vation of the effect. At the same time, the direct functional 
dependence of the observed response on fundamental char- 
acteristics of an electron gas, such as the energy relaxation 
time re, and the transverse relaxation time T,, , makes it 
very important to perform such measurements and this, to- 
gether with the progress made in modern femtosecond laser 
technology, can be easily realizable experimentally. 

FIG. 5. Manifestation of nonequilibriurn in different 
wave interaction processes (see text). 

A possible mechanism by which strong laser radiation 
can influence the nonlinear response of the surface of a metal 
was demonstrated for the example of a quite simple model. 
In the analysis a number of assumptions were made, which, 
in our opinion, do not distort the physical picture of the 
phenomenon. Specifically, there is no doubt that in the real 
case, all interband transitions, and not just those in the sym- 
metry direction, must be taken into account. Although for 
simple metals (such as sodium) this is not so imvortant be- 
cause of the high degree of symmetry of the Fermi surface, 
for metals with a more complicated band structure the latter 
can change substantially the dispersion relations for the non- 
linear current. In spite of the obvious limitation of the model 
considered, however, the main conclusion that the frequency 
dependence of the nonlinear current changes in a strong field 
is also valid for more complicated systems. This must be 
taken into account when performing experiments on nonlin- 
ear optical probing of a surface, since for a number of rea- 

FIG. 6. Effect of the relaxation time on the magnitude of the nonlinear 
current (see text). 
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sons, specifically, intensification on nonuniformities, the field 
at the surface cannot be assumed a priori to be weak, even 
for moderate laser radiation intensities. 
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