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It is shown that the Bose condensates arising as a result of nontrivial pairing in uniaxial crystals 
whose order parameter forms a basis for a single two-dimensional irreducible representation 
of the crystal class can occur in seven states with different symmetry or structure in the classes 
D4h, DZd, 0 4 ,  C4u, D6h, D h ,  D3d, D3h, C3v, and D 3  and in four different states for the 
classes C4),, S4, C4, C6h, C6, Sb,  and C3. The symmetries and the conditions of stability of all 
of these phases were found. The results presented suggest previously unexamined scenarios 
of successive phase transitions in UPt, and U1 -,-ThXBel3. For cubic symmetry classes and Bose 
condensates described by a four-component order parameter, all arguments concerning the 
number of phases and the form of the phase diagram are completely identical to the results and 
conclusions obtained for hexagonal symmetry classes. The minimum degree of the Landau 
potential that leads to typical results in the case of Bose condensates in uniaxial crystals is 12. For 
Bose condensates in cubic crystals, the real and imaginary parts of whose components form 
independent bases for three-dimensional irreducible representations of cubic crystal classes, with a 
six-component order parameter either 17 or 9 superconducting phases are possible, depending 
on the symmetry of the order parameter. It was shown that besides the four one- 
parameter phases present in the total list of phases initiated by a single irreducible representation 
of the symmetry group of the problem, there is also a fifth phase that can be obtained 
within the Landau theory of second-order phase transitions. The main result is a list of the ordered 
phases that can be reached by successive second-order transitions. It is pointed out that in 
external fields, a magnetoelectric effect should occur at locations of nonuniform density of the 
Bose condensate arising as a result of pairing in a state in which the orbital angular 
momentum of the pairs is not completely frozen. O 1995 American Institute of Physics. 

1. INTRODUCTION 

During the last ten years, superconductivity, once 
thought to be among the best understood and most com- 
pletely studied physical phenomena, has become a vigorous 
field of physics, full of puzzles and questions. One of the 
most puzzling and, at the same time, experimentally quite 
well-studied phenomena is the superconductivity of heavy- 
fermion compounds. Most unexpected was the fact that sev- 
eral different types of superconducting phases have been 
found among the heavy-fermion compounds. The first mem- 
ber of this series was the compound CeCu2Si2 (1979) with 
the spinel structure,' tetragonally distorted by small displace- 
ments of the ions; the next member is UBeI3 (1983) with a 
special type of cubic structure;223 and, finally, there is the 
hexagonal compound UPt3 (1984) (Ref. 4).') The existence 
of several superconducting phases with different physical 
characteristics is a direct demonstration of the fact that pair- 
ing of charge carriers occurs in a state with nonzero pair 
angular momentum in these compounds. How is the angular 
momentum of pairs frozen by the crystal field? Which super- 
conducting states are possible and which succession of phase 
changes should be observed? The microscopic theory cannot 
answer these and similar questions.7 The first answer to the 
question of the symmetry and structure of superconducting 
phases with nontrivial pairing, which can arise as a result of 
a second-order transition from the normal state for all three 

crystals listed above, was given by Volovik and ~ o r ' k o v , ' ~ ~  
Ueda and  ice," and ~lount ."  The most complete work was 
Ref. 9, which is based on Landau's theory of second-order 
transitions," supplemented by the assumption that the spin- 
orbit interaction between the spin and the orbital angular 
momentum of pairs is strong. The latter assumption is not 
obvious, even for heavy-fermion compounds, and has been 
questioned.'3   ow ever, the results obtained in Ref. 9 can be 
regarded as symmetry-exact, since the spin-orbit interaction, 
though weak, is always present. For this reason, it is the 
results of Ref. 9 that give a precise answer to.the question of 
the choice of structure of the superconducting states which 
arise directly at the temperature of the second-order transi- 
tion from the normal state. However, Landau's theory of 
second-order phase transitions cannot determine which su- 
perconducting phases will replace the phases which arose 
from the normal state. 

Our objective in the present paper is to determine the 
superconducting phases with nontrivial pairing, in the pres- 
ence of strong spin-orbit interaction between the angular mo- 
mentum and spin of a pair, that can materialize in a cubic 
crystal, as well as the sequence in which these phases can 
appear with successive phase transitions. We underscore the 
fact that in the present paper we adopt the additional (with 
respect to Ref. 9) hypothesis that the representations accord- 
ing to which the order parameters transform do not change 
with successive phase transitions. 
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The question posed in the present paper is answered on 
the basis of a phenomenological theory based on the follow- 
ing results, which were obtained in Refs. 14-16. 

First, the structures of all low-symmetry phases, which 
can be described by order parameters referred to a given 
representation, can be found exactly, if it is assumed that the 
nonequilibrium potential of the phenomenological theory 
(Landau potential) is an entire function of the most general 
form, possibly transcendental,17 and the degree of the ap- 
proximating polynomial is limited to a definite value. More- 
over, as shown in specific examples,16118319 an unjustified 
truncation of the expansion of the approximating polynomial 
can result in serious errors in the results obtained by the 
theory. We emphasize that the problem of enumerating all 
phases belonging to a given representation is solved uniquely 
and geometrically exactly, on the basis of the given 
method.14 

Second, there exists a general method for bounding the 
degree of the polynomial (not less than twelfth in the ex- 
amples considered) approximating the true Landau potential, 
so as to take into account all symmetry related features of the 
phase diagram.l4>l6 

Third, there also exists a geometrically exact and unique 
method for constructing the phase diagram in the space of 
the variable coefficients of the approximating Landau poly- 
nomial (in deformation space2') according to the form of the 
subspaces occupied by solutions of the equations of state in 
the orbit space.21 

Only the choice of the thermodynamic path, defined as 
the motion of a point representing a given crystal in the 
phase diagram in deformation space, contributes a small un- 
certainty in the questions addressed in this paper for compar- 
ing with experiment. This thermodynamic path is largely de- 
termined by the microscopic characteristics of a specific 
crystal. 

To make the exposition of the results obtained in this 
work clearer, the proofs of the assertions listed will be briefly 
reproduced in the first simple example analyzed in Sec. 2. 

Before presenting the main content of this paper, we 
wish to make an important remark. If the complex supercon- 
ducting order parameter is, with respect to its transformation 
properties, a basis function for a one-dimensional represen- 
tation of the group of the crystal class, then all results ob- 
tained by Volovik and Gor'kov will also be true in the ap- 
proach developed below. For this reason, in the present 
paper, where only phase transitions into the superconducting 
states described by a single irreducible representation of the 
symmetry group Y of the problem are considered, the results 
of Ref. 9 for the case of the complex one-dimensional irre- 
ducible representations Y will not be discussed. However, the 
method described below must also be used to describe the 
succession of phases resulting from the existence of two or- 
der parameters (for example, this scenario is often suggested 
for the succession of superconducting phases in 
U1 -,Th,Be13), and this will substantially alter the results of 
Refs. 7 and 22, which are based on Refs. 8 and 9. 

In accordance with what we have said above, our expo- 
sition is organized as follows. In Sec. 2 a relatively detailed 
discussion is given of the simplest of the two possible vari- 

ants of a phase transition into the superconducting state with 
nontrivial pairing in a cubic crystal of class O h ,  for which 
the components of the order parameter form a basis for the 
two-dimensional irreducible representation E ,  of the group 
O h .  In the last subsection of Sec. 2 the symmetry classifica- 
tion of superconducting phases is presented for nontrivial 
pairing in all other cubic classes, if the order parameter 
forms a basis for the two-dimensional representation of the 
symmetry group of the crystal class G,. In Sec. 3 the pos- 
sible superconducting phases in cubic crystals, if the compo- 
nents of the order parameter form a basis for the three- 
dimensional representation G,, are discussed. A brief 
exposition of the results for similar calculations for hexago- 
nal systems is given in Sec. 4. The structures of the super- 
conducting phases for crystals of the tetragonal system are 
discussed in Sec. 5. The last section (Sec. 6) contains a brief 
discussion of a new magnetoelectric effect, which should be 
observed at sites where the distribution of the order param- 
eter is nonuniform, for example, within domain walls be- 
tween different domains of the Bose condensate of a given 
structure. 

As shown in Refs. 8 and 9, the type and number of zeros 
in the superconducting gap in each phase can be determined 
according to the symmetry of the phases that is presented in 
the present paper. This question is not discussed below. It 
merits a separate study, especially in connection with Refs. 
23 and 24. 

2. STRUCTURE OF SUPERCONDUCTING PHASES OF A 
CUBIC CRYSTAL IN A TWO-COMPONENT COMPLEX ORDER 
PARAMETER 

2.1. From the phenomenological standpoint, the order 
parameter in the case of nontrivial pairing consists of a col- 
lection of complex coefficients {vp} in the expansion of the 
fluctuation amplitude of the probability distribution of pairs 
over basis functions of the irreducible representations of the 
symmetry group of the problem:7-11 

where G, is the symmetry group of the crystal class, R is the 
group determined by the time reversal operation R ,  and 
U,(a) is the gauge group of electrodynamics. 

As is usually done in Landau's theory, we shall assume 
below that it is not the basis functions but rather the compo- 
nents of the order parameter that transform under operations 
from Y. We note that it is convenient to classify the repre- 
sentations of Y, which are constructed on {vi, v:), accord- 
ing to the representations of G ,  , since the imaginary and real 
parts of {v,g*) form a basis for the same representation of 
G,. It is in the sense of this characteristic that we shall 
employ below two equivalent terms: the 2m-component or- 
der parameter, and the m -component complex order param- 
eter. The operation R in the space E, of the components of 
the order parameter is complex conjugation, and the opera- 
tion U1(a) is rotation by the same angle a in all subspaces 
(771 , 771), where 7; = 0; + i v;l:r . 

We now consider an example of the calculation of the 
structure of the superconducting phases. In this example 
G,= O h ,  and the four-component order parameter forms a 
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basis for the two-dimensional representation of the group 
O h  . Let this be the representation E, ,25 for which we define 
the unit vectors ?;I+ and 7- 

d V + = e l + i e 2 ,  d / ~ ; = e T - i e ; ,  

d V - = e l - i e 2 ,  fiV77*=eT+ie;, (2) 

el-2kS-kZ-k;, e2-fl(kZ-k:), 

so that the expanded order-parameter vector can be written 
as a vector with the components 

{771+i772;771-i772;771*+i772* ;rlT-i772*). ( 2 4  

The kernel of the homomorphism of this representation (IK) 
includes only elements of the space group. In accordance 
with the notation used in Ref. 25, the set of generators of IK 
can be written in the form 

The group L(Oh ,E,) = D l(m) (group of all matrices of dif- 
ferent form of the corresponding four-dimensional represen- 
tation of y)14-16 is determined by the generators of R ,  U(a), 
and G , :  

E 
0 1 1 0  exp i a  
1 0  0 1 exp i a  

77- * 0 1 1 0  exp( - i a )  ' 

V+ * 1 0  o 1 exp( - i a )  

where ~=exp(2v i /3 )  and a is a parameter of the d@ 
continuous25 group D1(w). The diagonal matrices in Eq. (4) -= 77TF,1+ rl:l v-12~,2+317:r177*3~,3=0,  
are represented as columns. The order parameter inserted on 

drl+ 

the left in the form of a ket indicates the order of the basis d@ *3 2 
components that determines the specific form of the matrices -= V!F,~+ 7 7 + 1 2 ~ , 2 + 3  77+ 77-FX3=0, 
for subsequent calculations. Examples of the elements of 

d "rl 

Y(Oh) which correspond to the U,(=) matrices presented in + C.C. (7) 
Eq. (4) as are indicated-in the top row of Eq. (4). 

An entire rational basis of invariants (ERBI), consisting 
of the components of the order parameter, can be easily de- 
termined from the form of L(Oh ,~,).'"n the phenomeno- 
logical theory the significance of the basis lies in the fact that 
regardless of the form of the nonequilibrium Landau poten- 
tial, if the potential is approximated by polynomials, then no 
matter what the degree of the approximating polynomial, it 
can always be written as an entire rational function (i.e., a 
polynomial) using the polynomials in the ERBI. For 
L(0 ,  ,E,) the ERBI contains three functions: 

Therefore, we can write by definition 

where F is an approximating polynomial of arbitrarily high 
degree, possibly an infinite series. In accordance with the 
results of Refs. 14-16, the Landau potential of minimum 
degree, describing all structures which a given order param- 
eter can induce, must be of degree 12 in the components of 
the order parameter. According to Eq. (6), the equations of 
state that determine the structure of the Bose condensate of 
the superconducting phases assume the form 

To simplify the expressions, the two additional equations of 
state which are complex conjugates of the equations written 
out (and designated by + c.c.) are not presented in Eq. (7). 
The notation F,; represents a derivative of the function F 
with respect to the ith argument. The equations (7) can be 
regarded as linear equations in F,l ,  F,2, and F , ~ . ' ~  All solu- 
tions of these equations that have differing symmetry corre- 
spond to a decrease in rank of the 3 x 4  matrix M(Oh ,E,) 
consisting of the coefficients of this system of equations (7), 
which are linear in the Fi .I6 The conditions under which the 
rank of M(Oh ,E,) decreases, according to Eq. (7), have the 
form 

*3 3 -  3 *3 - 
? I T ( I V + I ~ - I ~ ; ) - I ~ ) ( V +  7- T + V -  ) -0 ,  

*3 3 - 3 *3 
v+I2-177-I2)(v+ 77- V + V -  )=O, 

+ C.C. (8) 

The system of four equations (8) has seven solutions with 
different structure and symmetry and, correspondingly, dif- 
ferent properties: 

1. 7 - = 0 ,  11>0, 12=13=0,  

2.  [+=&- ,  cos 3 ( R + - R - ) = 1 ,  

41~=11, 413=1:, 11>0, 

3 .  (+=&- ,  cos 3 ( R + - & ) = - I ,  
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5 .  cos 3 ( R + - R _ ) = l ,  1:=41;, 

6. cos 3 ( R + - a _ ) =  - 1 ,  1:=41;, 

Here, 77j= l  %]exp iR,, v+=t+ exp i a + ,  and so on. The 
seventh phase occupies a volume in the three-dimensional 
space of invariants (5) [in the orbit space C3 of the group 
L(Oh ,E,)] that is bounded by the surfaces 4-6 from Eq. (9) 
and their lines of intersection 1-3 from Eq. (9). We note that 
the phases 1-3 were discussed in Refs. 8 and 9, since a 
second-order transition is possible in them directly from the 
normal state. To obtain a clear picture of the subsequent cal- 
culations, Fig. l displays the region of orbit space that is 
stratified in accordance with the loci of the superconducting 
phases. 

2.2. The structures of the superconducting phases written 
out in Eq. (9) differ qualitatively with respect to symmetry or 
structure and, accordingly, with respect to the material ten- 
sors constructed from the components of the order parameter. 
The symmetry of the phases Hi(Oh ,E,) is determined by the 
product of two groups, IK(Oh ,Eg) and Hi[Dl(m)], each of 
which is determined by its own set of generators (following 
the notation of Ref. 25): 

4.  H,(Oh ,E , )=IK(O~ , E , ) { u ~ ( - ~ +  -a - )R} ,  (lo) 

As we can see, the spatial symmetry of the Bose condensate 
is the same in phases 2 and 3,  and the total symmetry of 
phases 5 and 6 is also the same. We shall show that phases 5 
and 6 have a qualitatively different structure: They are 
a n t i - i s o s t r ~ c t u r a l . ~ ~ ~  Phases 2 and 3 are also anti- 
isostructural. The fact that phases 2 and 3 are qualitatively 
distinguishable and lie in different regions of the phase dia- 
gram in the space of coefficients of the Landau potential can 
be easily seen from the results obtained by Volovik and 
~ o r ' k o v , ~  who showed that in the first three phases in (9) and 
(lo), a second-order phase transition can occur directly from 
the high-symmetry normal phase. In addition, a transition 
into phases 2 and 3 is possible only under incompatible con- 

FIG. 1. Loci representing different phases in the orbit space s, for the group 
D , ( x )  (a) and the group D,(x)  (b). 

ditions imposed on the coefficients of the Landau potential. 
For phases 5 and 6 (of course, just as for phases 2 and 3), this 
follows from the fact that they lie in different subspaces of 
the orbit space (Fig. 1). The fact that the physical properties 
of these phases are different can be seen, for example, from 
the form of the physical tensors, which are proportional to 
the square of the components of the order parameter. If the 
true scalar-the density of the Bose-condensate pairs 

P = I  77+12+1 77-l2=~1=Ie1l2+Ie2l2 (11) 

is ignored, the other components of the physical tensors, 
which are bilinear in the components of the order parameter, 
are a component proportional to the "antiferromagnetic" 
vector of the Bose condensate9 
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and the two components of the symmetric irreducible tensor 
of rank 2 

As we can see from Eq. (9), the antiferromagnetic moment 
characterizes the Bose condensate in phases 1, 5, 6,  and 7, in 
complete agreement with the symmetry of the phases (10). 
The components A and B of the rank-2 tensor are mani- 
fested, for example, in the interaction of the Bose condensate 
with the elastic subsystem of the crystal. To describe the 
interaction of the Bose condensate with the elastic subsystem 
of the crystal, taking into account the fact that these interac- 
tions are small, it is sufficient to supplement the potential (6) 
with two terms. The first is the nonequilibrium energy of 
elastic deformations 

where Cik are the elastic moduli in Voigt's notation,26 Uik are 
the components of the deformation tensor, and 
&E ,= (2~ , , -  u,- u,,), d E 2 =  Uxx- Uyy , and 
\/JAV= Uxx+ U,,+ U,, . 

The second term in A@ is the part of the nonequilibrium 
potential that determines the interaction of the order param- 
eter characterizing the Bose condensate and the elastic sub- 
system: 

The components of the total Landau potential (14) and (15) 
are written in a form that is convenient for describing the 
Bose-condensate domain of phases 2, 3, 5, and 6,  where 
sin(LR+-a-)=O. The spontaneous deformation responsible 
for the difference of the parameters of the unit cell along the 
x and y axes in phases 2, 3, 5, and 6,  whose tetragonal spatial 
symmetry is determined by the Bose condensate, equals 
zero: 

since B=O. The spontaneous deformation of the cell along 
the z axis is either greater or less than the spontaneous de- 
formation of the cell along the x axis, depending on the sign 
of cos(fl+ -In-) = 2 1 and the sign of the interaction between 
the elastic subsystem and the Bose condensate: 

Therefore, the phases 5 and 6 are, by definition,16 anti- 
isostructural. Indeed, if for example a, - cu,[+(- >0, then (c  
- a )  is positive in phases 2 and 5 and negative in phases 3 
and 6. 

2.3. The region of the coefficient space of the Landau 
potential where some phase is stable are determined by the 
positive-definiteness of the 4 x 4  matrix of second derivatives 
d2@/dTidrlk and the relative magnitude of the minima of @ 

that correspond to that phase. As we have already mentioned, 
the minimal Landau potential possessing all symmetry prop- 
erties must be of twelfth degree in the components of the 
order parameter. In the general case such a potential corre- 
sponds to a modal corresponding to four 
modal parameters and 14 deformation parameters.28 If, how- 
ever, only the simplest structure-sensitive potential that pos- 
sesses all symmetry properties of the phase diagram is of 
interest, then it is sufficient to study a primitive 
potentia121929'30 of the form 

Of all conceivable potentials of degree 12, the potential (17) 
leads to the simplest phase diagram in the three-dimensional 
space of deformations A ,(a , b,  ,c  l). The simplicity lies in 
the fact that if a second-order phase transition between any 
two phases is not symmetry-forbidden, then according to Eq. 
(17) the lines of stability which bound these phases will al- 
ways coincide. Therefore, the theory based on Eq. (17) will 
lead to a phase diagram with the maximum number of 
second-order transition boundaries between the phases (9). 
On the other hand, the potential (17) can be formally re- 
placed by an arbitrary potential of degree 12 by making a 
nonlinear substitution of the maximum number of deforma- 
tion parameters for (a , b , c ,)  and the seven maximum pos- 
sible independent coefficients of an arbitrary potential of de- 
gree 12 for (a2,b, ,c2).  In accordance with Landau's basic 
idea, such a nonlinear substitution is completely analogous to 
a nonlinear multiparameter substitution of 21 invariants of 
the form (I l  , l ~ , I 2 , I 1 I 3  , I ~ I ~ , I ~  ,..., I ~ I ~ )  for {Il ,12,13). 
Such a substitution corresponds in orbit space to a continu- 
ous nonlinear deformation of the surfaces and, correspond- 
ingly, the lines displayed in Fig. 1. Therefore, on the one 
hand, having obtained a phase diagram in the space a , ,  b l ,  
and c1 of the potential (17), a three-dimensional section of 
the twelve-dimensional phase diagram of the most general 
form can be represented by an imaginary deformation of the 
phase boundaries. On the other hand, a number of general 
assertions, based on the following two general relations from 
Ref. 14, have been proved21 for a potential of the form (17): 

Here {x,) = { 7, , v:), and summation over repeated indices 
is implied. Therefore, in the orbit space 2, the vector dI with 
components {dlp) tangent to the stratum occupied by the 
phase is perpendicular to dQPldIp. For Eq. (17) this means 
that 

where X i  are arbitrary coefficients of the unit vectors ni  from 
the subspace of the normals to dI. 
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FIG. 2. Phase diagram in the space ( a ,  ,b ,  , c , ) ,  cor- 
responding to the potential (17) and the set of invari- 
ants (5) (a) and (36) (b). c) Cross section of the dia- 
gram in b) in the ( a ,  , b , )  plane in the half space 
c,>o.  

The solutions (18) which correspond to positive-definiteness 
of d2@ exist in the region defined parametrically by Eq. (19) 
as a function of the surface that is a map of the stratum of the 
phase A,  in Fig. 1 onto the normals to this surface, which are 
parameterized by the image points of the ~ t r a t u m . ~ ~ ' ~ ~ ' ~ ~  A 
real solution of the equations of state exists right up to the 
branch surface of this solution-the envelope of the family 
of normals.21 With these rules we obtain Fig. 2 from Fig. 
1-the form of the phase diagram in the space ( a ,  ,b ,  , c , ) .  
Figure 2 displays only the phase stability boundaries. In the 
figures the phase numbers are circled and correspond to the 
notations for a-Eqs. (9) and (10) and b and c-Eq. (38). In 
all figures the lines OL are the lines of four-phase points of 
second-order transitions, which are a specific characteristic 
of the phase diagrams induced by multicomponent order pa- 

rameters, and the lines P R  are the lines of the critical points 
at which a second-order transition is succeeded by a first- 
order transition; the lines OT are the lines of three-phase 
points which become Gibbs points of equilibrium of three 
phases in the more complete theory; the lines KM and KN 
are the lines of critical tangency of the stability boundaries of 
phases 5 and 6 from Eqs. (9) and (10). In b, N is the normal 
to the phase and in a the boundary with the normal phase in 
the plane a  = 0  is not drawn. It is evident from Fig. 2 that the 
anti-isostructural phases 5 and 6 do indeed lie in different 
regions of the phase diagram. Moreover, when the nonlinear 
interactions which distort (Fig. 2) the phase diagram are suf- 
ficiently weak, the transition between phases 2 and 3, and 
between phases 5 and 6,  always proceeds through an inter- 
mediate phase. 
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2.4. After such a detailed discussion of the structure of 
the phases corresponding to Y ( O h )  and L(Oh ,E,), we now 
briefly discuss other possible variants of the structure of 
Bose condensates in which the symmetry of the order param- 
eter is determined by the two-dimensional irreducible repre- 
sentations of cubic groups. For Y ( O h )  there is another pos- 
sibility: the components of the order parameter form a basis 
for E ,  . The kernel of the homomorphism 

IK(Oh , E , ) = I K ( O , E ) { U l ( ~ ) l )  

but by definition L(Oh ,E,) = L(Oh ,E,). Therefore, the 
ERBI, the number of phases, and the form of the phase dia- 
gram, which are determined only by the group 
L(Oh ,E,)=Dl(m),  for the case of the components of the 
order parameter which form a basis for E,,  are identical to 
the number of phases, the form of the phase diagram, and the 
number and form of the polynomials in ERBI for the ex- 
ample of E ,  already analyzed above. The symmetry of each 
of the seven ordered phases can be written in the form (10) 
with lK(Oh ,E,) replaced by IK(Oh ,Eu).  

Similar replacements must be made when studying 
phases of a Bose condensate which are induced by the two- 
dimensional representation of class 0. The only additional 
point is that IK(0 ,E)  consists of four and not eight ele- 
ments: 

IK(O,E)={CZ,,UX,)=D,. 

Calculations are also not required to investigate phases in- 
duced by the two-dimensional representation T d ,  since 
L(Td  ,E) =L(Oh ,Eg). In the group L(Td  ,E)  (4),  however, 
the second matrix corresponds to the element S: of the space 
group. Correspondingly, to determine the structure of the 
Bose condensates (lo),  the operations c:, U ~ ( T ) C : ,  C:R, 
and so on must be replaced everywhere by s:, u ~ ( ~ ) s : ,  and 
S ~ R .  

For the groups Th and T ,  which have two and one two- 
dimensional physically irreducible representations, respec- 
tively, the groups L are identical for all three representations: 

L ( T h  ,E,)=L(Th ,E , )=L(T ,E)=D2(m)CD1(m) .  

The group D2(m) is determined by the set of generators L l  
without the one parameter represented by the second matrix 
in Eq. (4)  and corresponding to the C: operation in O h .  It 
follows from this that the ERBI for D2(m) contains four 
polynomials. Besides the three polynomials (5) ,  D2(w) ap- 
pears in ERBI in the form of the polynomial 

3 *3 *3 3 3 3 
14=i(7+77- - 77+ 77_)=2(+(- sin 3 9 .  (21) 

As a result, three phases of the Bose condensate, which have 
different symmetry and structure and are determined by the 

two-dimensional representation E ,  in the crystal class T h ,  
are possible. All of these phases lie on the cone 1 ~ + 1 ~ = 4 1 ~  
in the four-dimensional orbit space 2,: 

3 .  1 i + 1 ~ = 4 1 ~ ,  H 3 =  IK(Th ,E,). (22) 

Here 

IK(Th ,Eu)={U; ,Ci , U I ( ~ ) I }  

and for the class T 

Otherwise, the relations (22) remain in force for the conden- 
sate phases determined by E,(Th) and E ( T ) .  

3. STRUCTURE AND SYMMETRY OF BOSE CONDENSATES 
IN SUPERCONDUCTING PHASES OF CUBIC CRYSTALS 
WITH A THREE-COMPONENT COMPLEX ORDER 
PARAMETER 

3.1. The symmetry of the order parameter of a Bose 
condensate, whose components form a basis for three- 
dimensional irreducible representations of the crystal classes 
O h ,  0,  and T d ,  is described by the same group L =El(m).l6 
The elements of the point group El(m) are 6 x 6  matrices 
describing the transformation of a vector with components 
(771, v2,  v3, 77; , 77; , 77;) in the six-dimensional space E,. 

All matrices E1(m), just like the matrices D,(m), have either 
block-diagonal or block-antidiagonal structure. The maxi- 
mum dimensions of the blocks are 3 x 3 ,  and the top block is 
always the complex conjugate of the bottom block. We shall 
exploit this to simplify the notation. We write the generators 
of E1(w), which are diagonal matrices, just as in the case of 
D,(m), in the form of columns, each element of which is a 
diagonal element of a matrix l i  E E l(m).  The block-diagonal 
or antidiagonal matrices will be written in the form of 3 x 3  
matrices, lying in the top half of a 6 x 6  matrix. We shall 
distinguish the block-diagonal matrices from the block- 
antidiagonal matrices by a symbol placed to the right or left 
at the bottom of the matrix: J for diagonal or L for antidi- 
agonal matrices. Thus, any element li E E l ( w )  can be repre- 
sented as a product of the following six matrices [generators 
of El(m)]:  

exp z a 
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The first column in Eq. (23) determines the order of the basis 
functions which is chosen to write the matrix li . It is written 
in the form of a "half-ket." The same elements of the enu- 
merated crystal classes uYoo), c$*l), and c:("') correspond 
to matrices 2-4 in all four three-dimensional representations 
of Oh(Flg,F2g,Flu,F2u) as well as in the two three- 
dimensional representations of O(F1 ,F2) and two three- 
dimensional representations of Td(Fl ,F2). Matrix 5 corre- 
sponds to time reversal R.  Matrix 6 corresponds in 
L(Oh ,F2,), L(Oh ,F2u),  and L ( 0 , F 2 )  to an element of the 
crystal class c$'") and in L ( O h , F l  ), L(Oh,Fl , ) ,  and 
L ( O , F l )  to the element u,(T)c$~ ld. To determine the 
structure of the ordered phases of the Bose condensate, it 
must also be kept in mind that the kernel of the homomor- 
phism IK of the representation of the group Y(Oh) with re- 
spect to E ,(m) for L(Oh ,F2,) and L(Oh ,Fig) consists of 
two elements: the identity element (E)  and space inversion 
{E,I), and for L(Oh,F2,)  and L(Oh,F lu )  the kernel 
IK = {E, U,(T)I}. For Y ( 0 )  the representations of L ( 0 , F  ,) 
and L ( 0 , F 2 )  are exact: IK(O,Fi)={E). 

For the crystal class Td,  the groups L(Td ,F1) and 
L(Td,F2)  are also exact representations of Y(T,). In the 
case of L(Td,F1) the element a(l lO)~Y(Td) corresponds to 
the sixth matrix of Eq. (26), and for L(Td,F2) we have 
u ~ ( ~ T ) u ( ~ ~ ~ ) E  Y(Td). 

For the crystal classes Th and T the group L =E2(m), 
which describes the transformation properties of Bose con- 
densates with nontrivial pairing, is determined only by the 
first five matrices from the set (23). They also correspond to 
the same elements, which are enumerated above for the 
classes O h ,  0 ,  and Td. The kernel of the homomorphism 
K T  g =  and IK(Th,F,)={E,Ul(~)I) .  For 
Y(T), E2(03) is an exact representation. 

According to Eq. (23) we find, in accordance with Ref. 
16, that the entire rational basis of invariants that corre- 
sponds to Eq. (23) consists of eight functions, among which 
one is of sixteenth degree in the components of the order 
parameter. Therefore, the Landau potential that describes the 
problem of the symmetry and structure of the ordered phases 
of Bose condensates with nontrivial pairing has the follow- 
ing form in the case of an order parameter with three com- 
plex components: 

Here 

where 

i l  =2{5:5: sin 2(R1-f13) +5;5: sin 2 ( f12-0 , )  

+ 5:5; sin 2(fl3 - fl2)), 

i 2=  25:5;5:{5: sin 2(f12- R3)  + 5; sin 2(f13- 0 , )  

+ 5: sin 2 ( R 1  - f12)). 

All of these polynomials of the components 
{ v l ,  v2 ,  v3,  7: , 7," , 7,") are linearly independent. It is also 
obvious that two syzygys can be established between the 
invariants (24). They are quite complicated, and we do not 
need them in the present investigation. 

In Eq. (24), just as in Eq. (9), rfi= 5, exp iR,. We note 
that one invariant is quadratic in the components of the order 
parameter, two are quartic (they also occur in Ref. 9), one is 
of sixth degree, two are of eighth degree, and there are two 
each of twelfth and sixteenth degrees. Therefore, if the ex- 
pansion of the Landau potential in the components of the 
order parameter were used and the potential were required to 
describe all possible states with a given order parameter, it 
would be necessary to work with a potential with a minimum 
degree of 32. For this reason, the methods developed in Refs. 
14-16 must be used to solve the equations of state, and the 
mathematical apparatus proposed in Ref. 14 is completely 
adequate for the problem. 

Repeating calculations similar to those in Sec. 2.2, we 
find that in the case L =E1(m), seventeen ordered phases of 
different symmetry are possible. 

3.2. To obtain the form of the solutions of the equations 
of state, all 48 6 x 6  matrices of different form, which depend 
on one continuous parameter a (the rotation angle in the 
subspace (7 ;  , $), which corresponds to the gauge transfor- 
mations of electrodynamics), were written out following the 
geometric method of Refs. 14-16. Next, the different values 
of a = a p ,  for which the matrix l i (ap)  has a form such that 
the action of the matrix on the space c6 of the components of 
the order parameter leaves a subspace invariant, were deter- 
mined for each of the 48 matrices parameterized by a ,  li(a), 
and E (m). Then, all different invariant subspaces of the space 
c6 of the components of the order parameter and all of their 
possible intersections, which, according to Refs. 14-16, also 
correspond to their own phases (higher symmetry) were de- 
termined. Then, the subspaces in the orbit space 2, that cor- 
respond to these subspaces in E6 were calculated. As is well 
known14-l6 and illustrated above for the example of a two- 
component order parameter, to each subspace of orbits iden- 
tified in this manner, there corresponds a unique phase de- 
scribed by the order parameter under study. The stability 
region of this phase in the space A ,  of the phenomenological 
parameters of the structurally stable Landau potential can be 
obtained, as mentioned above, using a well-defined proce- 
dure to project out of the orbit space according to the rules of 
differential geometry. The results of these calculations are 
presented below. 

If the same simplifications are used to write down the 
symmetry groups and invariant subspaces as in Eq. (23), the 
possible structures of the Bose condensates can be written in 
the form given below. We note that only one domain-the 
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representative of the phase-is written everywhere, but the obtained by taking into account the kernel of the homomor- 
gradient invariance is preserved in the expression of the sym- phism from the group H i ( 0 ) .  Obvious replacements of the 
metry of the domain. symmetry operations in H i  are required to obtain similar an- 

The phase symmetry group was written for the group swers for other crystal classes. 
O(F2).  The groups Hi(Oh ,F2,) and Hi(Oh ,F2,) can be 

The phase corresponding to this solution of the equations of state is denoted by the number 4 in Ref. 9. Its symmetry group 
H 1  is written here as a product of groups represented by the generators. In what follows, we shall write the symmetry group 
of the Bose condensate as a product of symmetry groups of its normal series.14-l6 We write the abelian subgroups themselves 
only by indicating the generators.2' In the eight-dimensional orbit space this phase, as noted above, occupies a one-dimensional 
subspace 11>0 and I p = O  for p = 2  ,..., 8. 

In Ref. 9 this phase is indicated by the number 2,2) and as one can see, it also occupies a one-dimensional subspace in the orbit 
space 2,. 

\ 

In Ref. 9 this structure is designated by the number I . ~ )  

3 .  
51 exP i f l ~  31,= I:, 271,=1:, 314= - 21:, 2 7 1 , ~  -I;', 
61 expi(fll-.rr/3) 271,=1;1, 3 5 ~ 7 = - ~ 7 ,  3 7 ~ 8 = ~ ! ,  
t1 exp l(fl l+.rr/3) H ~ ( o , F ~ )  = { u ~ ( ~ T / ~ ) c : ( ~ ~ ~ ) } { u ~ ( -  2f11 + ~ T / ~ ) C ~ ~ O ) R ) .  

In Ref. 9 this structure is given the number 3.2) 
One other structure of the superconducting phase, previously not discussed, though this structure, just as the preceding 

four structures, lies in a one-dimensional subspace in the orbit space and is described by the order parameter under consid- 
eration, is possible. We note that the phase 5 can also be obtained as a stable phase within the theory of Ref. 9 taking into 
account the sixth power of the components of the order parameter. This phase can adjoin the normal phase at a second-order 
transition point. The situation is completely analogous to the one described in detail for the orthorhombic phase B ~ T ~ O , : ' ~ ~ ' ~  

4. 

In the transverse case, the regions of existence of phases 1 and 5 in the phase diagram are separated by regions of existence 
of other phases of lower symmetry. The transition between phases 1-5 is always only a first-order transition, at least because 
their symmetries are not related by the group-subgroup relation.12 

The projection of the regions of existence of the first five phases on the three-dimensional subspace &(I1 ,12,14)CC8 of 
the orbit space is displayed in Fig. 3. 

The two-parameter phases, following next in size, can no longer be obtained as stable phases within the theory of Ref. 9, 
which takes into account powers no higher than the sixth in the components of the order parameter in the Landau potential. 

We now list these lower-symmetry phases, indicating their symmetry. The first five low-symmetry phases depend on two 
parameters, and for these we can also give their position in orbit space: 

51 exp ifl l  ~ I ~ = I : ,  ~ I ~ = - I : ,  2 1 ~ -  I~=I,=I,=I,=I,=o, 
51 exp i ( f l l+  .rr/2) l(001) 

0 
H4(0,F2)={U1(- .rr/2)C4 {U1(-2CIl - .rr/2)~y'O)R}. 
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61 exp i f l i  1 412=1:, 1:+1,5=41;, 13=15=17=18=0, 
51 exp ifl2 
0 H6(0,F2)={U1(-f l l  - f 1 2 ) ~ ~ 1 1 0 ) ~ ) { ~ l ( . r r ) ~ ~ 0 1 } ;  



51 exp i f l l  1 I,=17=18=o, 41:(212- I ~ ) = ( ~ I ~ I ~ ) ~ - I : ,  

10. 51 exp i f l l  ~ ~ I ~ ( ~ I ~ + I ~ ) = ( ~ I ~ I ~ - I ~ ) ~ ,  
t3 exp i ( f l l  + ~ 1 2 )  H , ~ ( O , F ~ ) = { U ~ ' ~ ) ) { U ~ ( -  2f11 + . r r ) ~ p " ) R ) .  

8.  

For the six four-parameter solutions of the equations of 
state, we present below only the relations between the com- 
ponents of the order parameter and the symmetry of the cor- 
responding phases: 

11. e3=0,  H ~ ~ ( o , F ~ ) = { u ~ ( ~ T ) c $ ~ ~ ~ ) ) ;  

12. f 1 1 = f 1 2 ,  H ~ ~ ( o , F ~ ) = { u $ ~ ~ ~ ) ) ;  

13. R1=f12=f13, H 1 3 ( 0 , F 2 ) = { U I ( - 2 f 1 1 ) R ) ,  

14.  f l I y f l 2 = f l 3 -  7~12,  

H 1 4 ( 0 , F 2 ) = { U 1 ( - 2 f l l +  .rr)c(Pol)R); 

15. 51=t2, 2 f 1 3 = f l l + f 1 2 ,  

H ~ ~ ( o , F ~ ) = { u ~ ( - ~ ~ ~  - f 1 2 ) U ~ ' " R ) ;  

16. 2f13=fll+f12+.rr,  

~ ~ ~ ( ~ , ~ ~ ) = { ~ ~ ( - f l ~ - f l ~ + . r r ) ~ $ ~ ~ ~ ) ~ ) .  (31) 

51 exp i f l1 14=-2127 I3=I5=I,=I7=I,=O, 
5 2  exp i ( f l l  + 7~12)  
0 H ~ ( o , F ~ ) = { u ~ ( ~ ) c ~ ~ ~ ) ) { u ~ ( - ~ ~ ~ ~ ) u $ ~ ~ ~ ) R ) ;  

FIG. 3. Three-dimensional section & ( I ,  , I ,  , I , )  of the phase diagram in the 
eight-dimensional orbit space 8, (24). Only regions occupied by five phases, 
in which a second-order transition is possible directly from the normal state, 
are indicated. All of these phases occupy one-dimensional subspaces in 2,. 
The surfaces whose intersection determines the region of existence of these 
phases (25)-(29) in 2, are also indicated. 

For the lowest-symmetry ordered superconducting 
phase, for which there are no relations between the compo- 
nents of the order parameter, H ( 0 , F 2 )  = {E). 

For the order parameters describing superconducting 
phases whose components form a basis for Fl, (Oh) ,  
F2g(Oh), Flu(Oh), F2u(0h), F1(0), F ~ ( T d ) ,  and F2(Td)9 
the symmetry groups of the ordered phases can be easily 
determined by multiplying Hi from Eqs. (25)-(31) by the 
corresponding kernel of the homomorphism with the substi- 
tution of operations described in Sec. 3.1. To determine 
which of these phases can have ferro- or antiferromagnetic 
structure, it is sufficient to look at their symmetry. The pres- 
ence of the operation R or U ( a ) R  indicates that no magnetic 
structure is possible.31 If the operation R is present in com- 
bination with the crystallographic elements, then an antifer- 
romagnetic density of ordered moments is possible. 

3.3. For the case of nontrivial pairing, in which the su- 
perconducting state is described by a three-component order 
parameter, and the crystal class is Th or T in accordance with 
the fact that the symmetry of the order parameter is described 
by E2(a) ,  only nine phases with different symmetry and (ac- 
cording to Ref. 30) fundamentally different structure are pos- 
sible. These phases are characterized by the following rela- 
tions between the components of the order parameter and the 
symmetry of the phases Hi(T ,H):  
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To determine the symmetry of the phases H,(Th ,E,) and 
H,(Th ,E,), the corresponding groups H,(T,F) must be mul- 
tiplied by the corresponding kernel of the homomorphism 
IK(Th ,E,)={I), IK(Th ,E,)={U,(.rr)I). The correspon- 
dence between the symmetries of phases 1-4 from (32) and 
phases 1-3, and 5 from E1(w) is obvious. 

In agreement with the general results of Ref. 16, because 
of the crystal fields which destroy the C, symmetry in the 
group 0 and give rise to additional nonlinear interactions 
between the components of the order parameter, phases 4 
and 8 from (28) and (30) combine in symmetry to form 
phase 4 from (32), and are no longer fundamentally different, 
though they can correspond to different isostructural 
phases.30 

Phases 6 and 7 from (30) and phase 11 from (31) com- 
bine into the phase 6 from (32). In exactly the same way, 
phases 9 and 13 from (30) and (31) acquire the symmetry of 
phase 7 from (32), and phases 10 and 14 from (30) and (31) 
transform into phase 8 from (32). The remaining phases 12 
and 15-17 from (31) give isostructural minima3' in the 
lowest-symmetry phase 9 from (32). 

4. STRUCTURE OF BOSE CONDENSATES IN THE 
SUPERCONDUCTING PHASESOFHEXAGONALCRYSTALS 

In the hexagonal symmetry classes the maximum dimen- 
sion of the multidimensional irreducible representations is 2. 
In the case of nontrivial pairing, the order parameters of 
interest to us are therefore of dimension 4. From the stand- 
point of the abstract symmetry, the hexagonal classes contain 
two types of four-dimensional order parameters, which de- 
scribe Bose condensates in the case of nontrivial pairing. For 
all two-dimensional representations of the classes D6,, D6 ,  
D3d, C 6,, D3h, C,,, and D3,  the symmetry of the order 
parameters is characterized D,(m) (4). The corresponding 
homomorphism kernels are 

Matrices 1, 3, and 4 in all of the hexagonal classes listed 
above correspond to the same operations: c:', R, and U,(a). 
The operation o-" corresponds to the generator of D ,(w), de- 
termined by the second matrix, in the groups D,,, C,,, D3d, 
and C,,, and the operation U, plays this role in the groups 
D,, D3h, and D 3  (see Ref. 12). 

For the symmetry classes C,,, C,, C3h, S6, and C,, the 
symmetry of the four-component superconducting order pa- 
rameter is characterized by the group L =Dz(w). We recall 
that the second matrix of Eq. (4) is missing from the genera- 
tors of this group. The homomorphism kernels of the corre- 
sponding representations have the form 

1K(c3h ?E(i))= IK(D3h ?E(i))- (34) 

The elements of Y(G,) corresponding to the elements of 
D2(w) are also obvious from the preceding description. 

Since the abstract symmetry (that is, of the group L )  of 
the multicomponent order parameters describing the Bose 
condensate in hexagonal crystals is identical to the symmetry 
of the order parameters (4) for Bose condensates in cubic 
crystals, the entire rational basis of invariants is the same. 
The Landau potentials have the same form and, accordingly, 
the number and form of the solutions of the equations of 
state are the same. Likewise, the stability conditions for the 
same phase in the space of coefficients of the Landau poten- 
tial are also the same. For this reason, we shall not present 
any calculations in this section. The interested reader can 
easily construct, using Eqs. (5)-(13) and the corresponding 
elements of Y(Gk) and L as well as the kernels of the rep- 
resentations (33)-(34), a complete table of all elements of 
the symmetry groups and the characteristic physical proper- 
ties. 

5. STRUCTURE OF BOSE CONDENSATES IN THE 
SUPERCONDUCTING PHASES OF TETRAGONAL 
CRYSTALS 

In the tetragonal crystal classes, just as in the hexagonal 
classes, the maximum dimension of multidimensional repre- 
sentations is 2. Therefore, in multidimensional representa- 
tions of tetragonal classes, the order parameter has four com- 
ponents. The symmetry of the order parameter is determined 
by L = D,(w) and L = D4(w), which are characterized by 32 
and, correspondingly, 16 different matrices which are func- 
tions of the parameter a. The group D3(w) is determined by 
five generators. In the notation adopted for E1(m), the gen- 
erators of D3(w) have the form 
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The group D3(m) describes the symmetry of Bose conden- 
sates in the crystal classes D4h, D,, C4,, and D2d. The group 
D,(m)CD,(m) describes the symmetry of the order param- 
eters in the classes C4h, C4, and S4.  The generators of D4(m) 
are identical to (35), if the matrices corresponding to 1, and 
l3 E D3(m) are omitted. In the groups Y(Gc) with Gc = 

D,, and D 2  these matrices correspond to the operations 4 U$''O) and u201'). For Gc= C,,, a(1oo) and a(''') of E Y(Gc) 
correspond to the operations I, and I,. The operations 
1, E D3,, correspond in Y(Gc) with G c = D 4 h ,  C,, , D,, and 
C4h to the operation c:, and with Gc=D2d Or S4 to the 
operations U 1 ( r )  U y  E Y(Gc). 

In accordance with (35), for L = D,(m) the entire rational 
basis of invariants, which are functions of the components of 
the order parameter, consists of three polynomials. They are 
given below in cylindrical coordinates in the space of the 
components of the order parameter: 

I1=6:+6;, 1~=,$6;, 1~=2575; cos 2 ~ .  (36) 

For L =D,(m), a polynomial of the Cartesian coordinates of 
the order parameter of degree 6 is added to the basis (36), 
and can be written in the form 

where q=Ol  - a 2 .  Correspondingly, for L = D,(m), seven 
ordered (superconducting) phases are possible. They are 
characterized for Y(D,,E) by the following relations be- 
tween the components of the order parameter and the sym- 
metry of the Bose condensate: 

Here, the kernel of the homomorphism is IK(D,,E) 
={Ul(~)C;}.  For D4h 

We note also that 

To determine the symmetry of the phases in these cases, 
which are not described here, the changes in Hi(Gc) de- 
scribed at the beginning of the section must be made in Eqs. 
(38). 

For the group D,(m), only four states of the Bose con- 
densate which have different symmetry are possible. They 
are characterized by the same relations between the compo- 
nents of the order parameter as phases 1, 2, 3, and 7 from 
Eqs. (38). 

In the present paper we confine our attention only to the 
brief description, presented above, of the symmetry of these 
phases, and we shall postpone the discussion of physical 
properties predicted on the basis of the symmetry until we 
describe specific phase transitions. 

6. MAGNETOELECTRIC EFFECT IN "MAGNETIC" 
SUPERCONDUCTING SYMMETRY CLASSES OF 
TETRAGONAL CRYSTALS 

In the preceding sections, our discussion of the symme- 
try of the superconducting classes corresponding to Bose 
condensates with nontrivial pairing completely ignored the 
question of nonuniform states. This question was first studied 
in detail by Anderson and ~ o r e l , ~  with respect to the struc- 
ture of phases. The crux of the matter is that the sym- 
metry of some superconducting phases does not forbid the 
existence of a characteristic magnetic or antiferromagnetic 
moment in the Bose condensate, irrespective of the chemical 
composition of the crystal matrix. In particular, it follows 
from such symmetry of the uniform state that a constant 
surface current in the thermodynamic equilibrium state 
should exist in the corresponding superconductors. This 
question was discussed in detail by Volovik and ~ o r ' k o v , ~  
who presented estimates showing that the internal magnetic 
field of the Bose condensate can be so strong that the uni- 
form state of the Bose condensate with such symmetry will 
be unstable: A state with vortices will arise. In general, the 
question of the equilibrium state of a Bose condensate whose 
symmetry group admits a magnetic moment can be solved 
only taking into account Maxwell's equations.3) However, 
the absence of a globally uniform, thermodynamic equilib- 
rium state does not mean that the answer obtained on the 
basis of the Landau theory, which takes only uniform states 
into account, becomes completely meaningless. The above- 
described symmetry of the Bose condensates determines 
their local properties in physically small, "almost" uniform 
regions. We note that it is on this level that all calculations of 
the properties of ordinary superconductors, in which the 
crystal matrix is characterized by ferro- and antiferromag- 
netic order, are 

We now discuss the symmetry of one interaction, spe- 
cific to weakly nonuniform magnetically active supercon- 
ducting states, on the basis of similar qualitative consider- 
ations. The point is that in almost all magnetically active 
superconducting phases, the symmetry admits bilinear inter- 
actions between the electric and magnetic fields.31332 

In describing the effect of an electric field, the question 
of the penetration depth of a constant external electric field 
(in particular, the field existing in a ferroelectric state of the 
crystal matrix) into the region of nonuniformity of the Bose 
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condensate is added to the question of the possibility of a 
weakly nonuniform state formed by a constant surface cur- 
rent in the equilibrium state.9 This question was already dis- 
cussed in Ref. 34 for a crystal matrix with a characteristic 
magnetic structure and electric polarization in the case when 
isotropic s-superconductivity arises in the crystal. Here we 
also call attention to the fact that the characteristic symmetry 
of some equilibrium superconducting states admits bilinear 
interactions in the external electric E and magnetic B fields 
(linear magnetoelectric effect3'g3,). 

Since the character of these interactions has not been 
discussed anywhere, we present only the magnetoelectric po- 
tentials for the tetragonal classes. The tetragonal classes were 
chosen as an example because of the possible charge separa- 
tion mechanism in oxide superconductors in a current- 
carrying circuit, as observed in polycrystalline and quasi- 
monocrystalline films35,36 as well as in Y B ~ , C U ~ O , - ~  
ceramic samples.37 

Effects associated with a constant surface current in an 
equilibrium thermodynamic state are difficult to observe di- 
rectly because it is almost always possible to think of a 
mechanism that is specific to a given crystal and is associ- 
ated with the crystal matrix and not with the state of the Bose 
condensate; such a mechanism leads to similar effects. For 
example, magnetic ordering of the Bose condensate should 
result in a higher superconducting transition temperature in 
an external magnetic field or lead to the phenomenon of 
re-entrant superconductivity. Both phenomena have been 
observed:338 but they have been explained only by compen- 
sation effects. Both an increase in the critical current in high- 
temperature superconductors in an electric field39 and mag- 
netoelectric interactions have been observed directly4' in 
recent experiments. The first effect is explained in Ref. 39 by 
surface phenomena and the second effect is associated in 
Ref. 40 with anionic superconductivity. The results presented 
below point out a possible direction of research, in which 
many effects obtained in the compounds Y B ~ , C U ~ O , - ~  can 
be explained on the basis of a unified picture of a supercon- 
ducting state with nontrivial pairing. 

The calculations, together with the excitation spectrum 
in magnetically active phases and the temperature depen- 
dence of the magnetoelectric coefficients, will not be dis- 
cussed here. We present only the part of the thermodynamic 
potential that is bilinear in the electric and magnetic fields. 

For crystalline classes that are subgroups of D4h: D 4 ,  
D,,, and C4u, the superconducting phases exhibiting sym- 
metry that admits an ordered arrangement of the angular mo- 
menta of the pairs forming the Bose condensate correspond 
to numbers 6, 2, and 4. As one can see from the phase dia- 
gram in Fig. 2, phases 6 and 4 adjoin phase 2 along the 
boundary of the second-order transition, and for these phases 
we shall therefore write the potentials that are bilinear in the 
electric and magnetic fields in the order 6-2-4: 

For the subgroups C4h, C4,  and S4, only phase 2 is magneti- 
cally active. Accordingly, 

7. BRIEF DISCUSSION OF THE RESULTS 

Theoretically predicted phase diagram topologies can se- 
riously alter ideas about the character of the change in sym- 
metry accompanying successive phase transitions in heavy- 
fermion superconductors. The necessity of such a revision of 
transition scenarios is discussed in the detailed analysis 
given in Ref. 41, where it is shown that none of the eight 
scenarios of successive transitions in UPt3 considered in the 
literature satisfies all the experimental data. The most re- 
cently published work on this subject4, likewise does not 
explain the phase changes along the H=O axis in the H-T 
phase diagram, taking into account the results obtained by 
Aeppli et a ~ . , ' + ~  using the same arguments discussed in Ref. 
41. 

The succession of superconducting phases in 
U1 _,ThxBel3 was explained in a series of papers as a change 
in the one-component superconducting order parameters, 
each of which forms a basis for a one-dimensional represen- 
tation of the crystal class Oh .7322 This analysis did not yield 
a complete description of the experiment. It follows from the 
experiment that only the intermediate phase, which exists for 
0.0175<n<0.05, is magnetically a ~ t i v e . ~ , ~ ~ - ~ '  A break in the 
superconducting transition temperature as a function of the 
concentration is observed at the limits of this concentration 
range, and a second transition to a new superconducting 
phase is observed in the same concentration range.7,44-47 Too 
many assumptions must be made, including that the concen- 
tration dependence of the coefficients of the Landau potential 
is strongly nonlinear, to explain these features of the phase 
diagram of U1-xThxBel, on the basis of the transition sce- 
nario described by two one-component complex order pa- 
rameters. Even in this case, however, one phase-transition 
line in the theory is certainly a line of first-order 
 transition^.^^ 

The most detailed and comprehensive analysis of the 
experimental situation on the basis of a quartic Landau po- 
tential was performed by Luk'yanchuk and ~ i n e e v . ~ ~  They 
showed that no theory based on a Landau potential of low 
degree can explain all experimental results. Of course, this 
confirms that it is necessary to solve the problem discussed 
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in the present paper, just as the question of the phases de- 
scribed by two irreducible representations must be solved in 
greater detail. 

As indicated in Ref. 46, to discuss in detail the theory of 
transitions in U1-,Th,Be,,, all experiments, and in particu- 
lar the NMR data, must be compared. This falls outside the 
scope of the present work, though, as we can see, the results 
presented above open up new possibilities which are ne- 
glected in Ref. 46. 

In addition, we note that the existing theory is incom- 
plete in the case of the scenario with two order parameters. 
In particular, it is necessary to take into account the fact that 
two one-component complex order parameters can describe 
(in the case of strong spin-orbit interactions) six ordered 
phases and not three, as discussed in the literature. Moreover, 
each order parameter chosen for a scenario can describe only 
magnetically passive phases, while four ordered phases, de- 
scribed simultaneously by two nonmagnetic order param- 
eters, can be magnetically active. The phase diagram calcu- 
lated for specific alternatives should help to determine which 
magnetically active phase is most likely to appear in a nar- 
row concentration range. Such a scenario, which includes 
transitions between phases described by two magnetically 
passive one-component order parameters, seems to be more 
likely than all previously discussed scenarios: and it does 
not require the assumption that the concentration dependence 
of the coefficients in the Landau potential be strongly non- 
linear. 

If one order parameter is a one-component parameter 
and the other is a two-component parameter, eleven super- 
conducting phases of differing symmetry are possible. The 
two-dimensional section of the phase diagram in the case of 
such a transition scenario admits the merging of two second- 
order transition lines into one second-order transition line; 
this is very reminiscent of the phase diagram of 
U1 -,ThXBel3 near x=0.0175. An isolated coincidence of this 
type is in itself, of course, insufficient for drawing any con- 
clusions about the transition scenario. This fact shows, how- 
ever, that the list of phases described by a single irreducible 
representation, presented above, opens up new possibilities 
for the theory, since all other variants of symmetry lowering 
are formed by combining the symmetries of the phases listed 
above and in Ref. 9. 
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"of course, these substances and solid solutions based on them do not 
exhaust the list of heavy-fermion compounds with nontrivial carrier pair- 
ing in the superconducting state. They also include many low-symmetry 
crystals:5 the almost cubic crystals URu2Si2 ,6 NdRu,B6, SmRh,B,, and so 
on5 and the almost hexagonal crystal Dy,,,Mo,S,. However, the three sub- 
stances enumerated above are typical, and they have been most completely 
studied experimentally. 

"1n Ref. 9 the superconducting phases arising in the class 0, and corre- 
sponding to the solutions given for the equations of state are specially 
labeled. We do not reproduce them here, because for different groups they 
correspond to a different gauge. For example, in Ref. 9 the same designa- 

tion is given in all cases for superconducting classes induced by the rep- 
resentations that are even and odd under spatial inversion. 

3 ' ~  am grateful to G. M. Vereshkov, who called my attention to the need for 
such an approach. Preliminary calculations show that an external magnetic 
field can eliminate the qualitative differences between some magnetically 
active phases. 
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