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It is shown that the magneto-elastic resonance in disordered ferromagnets with fluctuating 
magnetostriction parameter can be used to observe the disorder-induced crossing resonance 
predicted in a recent paper by the authors." The possibilities of measuring the rms 
fluctuation and the correlation radius of the magnetostriction inhomogeneity parameter in 
amorphous ferromagnetic alloys with zero-mean magnetostriction by observing the dispersion laws 
and the damping of elastic and spin waves are investigated. O 1995 American Institute of 
Physics. 

1. INTRODUCTION 

Amorphous ferromagnets are an example of a wide class 
of randomly inhomogeneous condensed media. For a theo- 
retical description of such systems a long list of approaches 
have been developed, differing in the degree of detail of the 
disorder model as well as the degree of complexity of the 
implemented mathematical apparatus (see, e.g., Refs. 1 and 
2). Some peculiarities of the physical phenomena caused by 
disorder can be quite completely described already on the 
phenomenological level. In such an approach all of the main 
characteristics of the material, such as, for example, the ex- 
change parameter, anisotropy, magnetostriction, etc. are 
modeled by random (continuous or discrete) functions of the 
coordinates. The statistical characteristics of these random 
functions (mainly, the rms fluctuation and the correlation ra- 
dius) figure in the theory as phenomenological parameters 
awaiting subsequent experimental determination. Taking this 
approach, we have studied the influence of inhomogeneities 
of various parameters on the dispersion laws and the attenu- 
ation of spin,334 elastic? and e l e ~ t r o m a ~ n e t i c ~ . ~  waves; and 
also on the state8 and low-temperature dependence of the 
magnetization9 of ferromagnets. 

In recent years amorphous magnetic materials with zero- 
mean magnetostriction constant have attracted special 
attention.'' The present paper is dedicated to a study of the 
peculiarities of the magneto-elastic resonance in such sys- 
tems. Interest in this problem is connected with two circum- 
stances. First, for these materials, spatial inhomogeneities of 
the magnetostriction parameter play a fundamental role, 
where the main quantities characterizing the magnetostric- 
tive properties of the material are the rms fluctuation and the 
correlation radius of these inhomogeneities. However, the 
methods that are available today to study such materials do 
not allow one to directly determine these quantities. We will 
show that a study of the dispersion laws and damping of 
magneto-elastic excitations can provide a direct method of 
measuring both of these characteristics. 

Second, magneto-elastic oscillations in ferromagnets 
with almost zero-mean magnetostriction constant are a con- 
crete physical realization of the model of disorder-induced 
crossing resonances that we considered in a recent paper.1' In 

that paper we considered a simple model of linear-coupled 
scalar waves with random interaction parameters and showed 
that degeneracy removal in such a situation possesses a num- 
ber of important properties in comparison with the well- 
known phenomenon of level repulsion in ordered systems. In 
the present paper we investigate to what extent the magneto- 
elastic resonance in randomly inhomogeneous ferromagnets 
can be described within the framework of the proposed 
model and consider under what conditions disorder-induced 
crossing-resonance effects, predicted in Ref. 11, can be ex- 
perimentally detected in experiments studying the magneto- 
elastic resonance in randomly inhomogeneous ferromagnets. 

2. FORMULATION OF THE MODEL AND DERIVATION OF 
THE DISPERSION RELATIONS 

In order to emphasize the most important features of the 
phenomenon under study, let us consider the simple model of 
an isotropic ferromagnet whose energy density is 

Here the first and second terms are the exchange and Zeeman 
energies, the third term describes the elastic energy, and fi- 
nally, the last term accounts for the magneto-elastic coupling. 
The magneto-elastic interaction parameter P(x) is assumed 
to be an inhomogeneous random function of the coordinates, 
whereas the remaining parameters of the system are the ex- 
change parameter a, the magnetization Mo,  the density of 
the medium G, and the elastic force constants d i jk i  are as- 
sumed to be uniform. In addition, we neglect the magnetic- 
dipole interaction and the ponderomotive forces. Writing the 
equations of motion for the magnetic and elastic subsystems 
in the standard way, we obtain in the linear approximation 
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Equations (2)  are written in the coordinate system whose z 
axis is oriented in the equilibrium direction of the magneti- 
zation, parallel to the external magnetic field H. Here we 
have omitted terms describing the static deformation, taking 
the displacements u to be reckoned from the true equilibrium 
positions. 

Our problem now is to obtain a closed system of equa- 
tions for the displacements u averaged over the realizations 
of the random function P(x) .  The condition for the existence 
of nontrivial solutions of these equations determines the dis- 
persion relations for the various modes of the system. It is 
convenient to represent the magneto-elastic interaction pa- 
rameter here in the form 

where ( P )  is the mean value of this parameter, which we 
will assume to be equal to zero, y is its rms fluctuation, and 
p(x) is a normalized random function whose stochastic prop- 
erties are characterized by its correlation function 

Carrying out the spatiotemporal Fourier transformation of 
Eqs. (2 )  and taking into account definition (3), we obtain the 
following system of integral equations: 

- - - yM"X; Isin' 4 cos ok 
4G 

Here rn, = mx+ im, are the right- and left-polarized trans- 
verse components of the magnetization, u, = uxf iu, are the 
corresponding combinations of the elastic displacements, and 
q* =qx+ iq, , p(q) is the Fourier transform of the random 
function introduced in Eq. (3).  The angles Bk and *k define 
the directions of the wave vector k relative to the equilibrium 
magnetization M and in the plane perpendicular to M, re- 
spectively. In addition, we have introduced generic disper- 
sion laws for the spin waves ck= W ~ + L Y ~ M , ~ ~ ,  wo=gH, 
and for the transverse w, = v,k and longitudinal wl = v ,k elas- 
tic waves, respectively. 

In what follows, we limit ourselves to a consideration of 
the simplest case, namely that of waves propagating in the 
direction of equilibrium magnetization ( Ok = dk=  0). In this 
case, as in a usual homogeneous magneto-elastic resonance, 
only transverse elastic waves of the same polarization inter- 
act with the spin waves. However, in the situation under 
consideration this interaction is realized only as a result of 
the integral terms introduced in Eqs. (5). The physical sense 
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of these terms is that they describe the interaction of a co- 
herent wave of one kind with fluctuation (scattered) waves of 
another kind. Thus, in the system under consideration the 
coherent components of the elastic and spin waves do not 
interact. This situation describes any disorder-induced cross- 
ing resonances" and is the main reason for the unusual prop- 
erties of such systems. 

After averaging over the realizations of the function p(x) 
out to terms in (this corresponds to allowing for the first 
nonvanishing correction in the expansion of the correspond- 
ing mass operators), we arrive at the following relations for 
the unknown frequency w: 

where S(k-q) is the Fourier transform of the correlation 
function (4). The first of these equations describes excita- 
tions characterized by a nonzero value of the mean amplitude 
of the elastic displacements, while the mean value of the 
amplitude of the oscillations of the magnetization in this case 
is zero. In other words, one can say that the given equation 
corresponds to a quasi-elastic mode that is a coherent elastic 
wave accompanied by a "cloud" of scattered spin waves. For 
Eq. (7) the situation is reversed-the excitations described 
by that equation are characterized by magnetization fluctua- 
tions with nonzero mean and zero-mean elastic displace- 
ments. For this reason we can say, in the same sense as 
above, that this equation describes a quasi-spin mode con- 
sisting of a coherent spin wave and fluctuating elastic waves. 
Occasionally for simplicity we will refer to these modes as a 
coherent elastic wave or a coherent spin wave, depending on 
context. Questions associated with the limits of applicability 
of the current approximation are discussed in our recent 
paper," where the corresponding inequalities can be found. 

Further progress requires us to choose a specific form of 
the function S(k) and calculate the corresponding integrals. 
We will stick with the commonly used form of this function 

which corresponds to an exponential correlation function 
with correlation radius r ,  = k, '. In order to avoid calculating 
the cumbersome integrals in Eq. (7), we consideration that 
equation only in the approximation w,= wl  (the scalar pho- 
non approximation), which has no appreciable effect on the 
results relating to the properties of coherent spin waves. Tak- 
ing this approximation into account, Eq. (7) can be rewritten 
in the form 
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Calculating the corresponding integrals in Eqs. (6) and (9) 
using the form of S(k) given in Eq. (8), we obtain dispersion 
relations for the coherent elastic and spin waves: 

1) the elastic wave 

2) the spin wave 

Here we have introduced the dimensionless parameter 

characterizing the magnitude of the magneto-elastic interac- 
tion. The first equality expresses J in terms of the rms fluc- 
tuation of the magneto-elastic parameter P; the second, in 
terms of the rms fluctuation of the magnetostriction param- 
eter A,. We have also introduced the notation 

and w,+,=gMo. The parameters K ,  and K~ characterize the 
relaxation properties of the fluctuating spin and elastic 
waves, respectively. 

Following Ref. 11, we rewrite the dispersion relation 
(10) for the elastic waves in the form 

where 

Here we have introduced the crossing-resonance frequency 
w, ,  defined by the equation 

Equation (14) has two solutions, the physical meaning 
and behavior of which are determined, according to Ref. 11, 
by a relation between the parameters A and T, at the reso- 
nance point. If A,<T, , , ,  then one of the solutions is the 
dispersion law of the weakly damped elastic wave, modified 
in the vicinity of the point defined by Eq. (16). Here the 
magnitude of the modification is of the order of & In this 
case, the second solution does not correspond to any propa- 
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FIG. 1. Qualitative behavior of the solutions of the dispersion relation for 
the coherent elastic mode in the case of a closed gap. 

gating mode, but is a short-lived oscillation whose wave vec- 
tor is poorly defined, and, consequently, it cannot be charac- 
terized by a dispersion law. The behavior of the solutions 
considered in the opposite case Ar>Tr, ,  is illustrated in Fig. 
1. The solid curve depicts the solution that far from reso- 
nance corresponds to the dispersion law of the elastic waves. 
It was shown in Ref. 11 that in this case in the vicinity of the 
resonance the second solution of Eq. (15) can be considered 
within the framework of the current approximation, and also 
corresponds to some propagating mode (the dashed curve in 
Fig. 2). As one moves away from the resonance point, the 
rate of damping of this mode increases, so that finally it 
becomes poorly defined. These two solutions describe a 
new-stochastic-type of magneto-elastic oscillation. Its 
distinguishing feature is that on both branches of the forego- 
ing dispersion curve the amplitude of only the elastic oscil- 
lations is different from zero, i.e., both of these branches 
correspond to the same quasi-elastic type of oscillation, as 
explained above. 

The gap A arising in the case under consideration be- 

FIG. 2. Two branches of the solution of the dispersion relation of the quasi- 
elastic mode for a closed gap. 

tween the solutions of Eq. (11) at the resonance point is 
equal to 

A = JZ, (17) 

where 

It should be noted, however, that in the case under consider- 
ation the term K~ in the definition of the resonance frequency 
[Eq. (16)] should be omitted, since taking it into account 
exceeds the accuracy of the method. 

The frequencies of coupled oscillations in the vicinity of 
the resonance are given by the same expression as the fre- 
quencies of ordinary magneto-elastic oscillations in a homo- 
geneous medium12 with allowance for the fact that the gap A 
now is defined by expression (17), which takes account of 
the presence of an effective relaxation in the system. This 
circumstance leads to the result that in the case under con- 
sideration the oscillations possess finite lifetimes, which are 
characterized by the corresponding relaxation parameters 5, , 
where the "+" sign corresponds to the upper branch of the 
dispersion curve and the " - " sign corresponds to the lower. 
In the vicinity of the resonance, this parameter is given by 

The rate of relaxation of 5, depends both on the wave num- 
ber k and the magnitude of the external magnetic field H .  
These two dependences, with their second argument fixed, 
are similar, and in the vicinity of the resonance have the form 
of a decaying (for the lower branch) and a growing (for the 
upper branch) linear function with separation from the reso- 
nance point in either direction. If we vary the magnetic field 
and the wave number in such a way that the system remains 
at the crossing resonance, then the resonance value of the 
relaxation parameter (identical for the two solutions of the 
dispersion relation) depends on the magnetic field in the fol- 
lowing way: 

To conclude this section, let us discuss the conditions 
under which it is possible to observe the appearance of the 
gap (17) in the dispersion curve of the coherent elastic 
waves. The condition for the existence of a gap follows from 
Eq. (17): 

which bounds the maximum value of wr (and, consequently, 
the magnitude of the magnetic field H )  at which the gap 
exists. Relation (21) contains both parameters that have 
roughly the same values for most materials investigated 
(such as G-10 g/cm3, u -3. lo5 cmls, a-10-'~ cm2) and 
parameters that can very significantly, depending on chemi- 
cal composition, conditions of preparation, etc. (such as 
~ , - 1 0 ~ - 1 0 ~  G,  ~ ~ , - 1 0 - ~ - 1 0 - ~ ,  rc- 10-~-10-~ cm). Es- 
timates show that for cobalt-rich ferromagnetic alloys with 
almost zero-mean magnetostriction, for which A A , - ~ o - ~  
(Ref. 9), condition (21) can be satisfied only for r , ~ 1 0 - ~  
cm. The actual value of r, in these materials is unknown; 
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eracy removal effect is manifested due to random interaction 
(Fig. 2) at the same time that the dispersion curve of the 
second wave undergoes only an insignificant modification in 
the vicinity of the resonance (Fig. 3). 

3. DISPERSION CURVES AND AlTENUATlON OF ELASTIC 
AND SPIN WAVES IN THE CASE OF A CLOSED GAP 

In this section we consider in more detail the properties 
of elastic and spin waves in the case A,<T,, which, as 

> follows from the foregoing estimates, is realized in standard 
I 
k ,  k amorphous ferromagnets with zero-mean magnetostriction. 

The main task before us is to single out those aspects of the 
dispersion and relaxation properties of elastic and spin waves 
whose experimental observation should allow us to deter- 

FIG. 3. Qualitative form of the modification of the spin-wave dispersion mine the main characteristics of the inhomogene- 
law. ities of the magnetostriction parameter in such materials, i.e., 

the rms fluctuation and the correlation radius. 

however, it seems unlikely that these materials have such In the situation under consideration, as was already 

high values of this parameter, and we are led to the conclu- pointed out, only those solutions of the dispersion relations 

sion that such materials cannot be used to observe the effect (10) and (11) have physical meaning which transform into 

under discussion. To this end, it is necessary to create special generic elastic- and spin-wave dispersion laws as the inter- 

alloys with large values of the magnetostriction and action parameter tends to zero. Solving Eq. (10) with the 

specially create large-scale inhomogeneities in them. Such help of perturbation theory, we find a dispersion law and 

values of the magnetostriction parameter are typical of pure the waves, in the form 
ferromagnets, so creation of materials with the required 
properties is a completely solvable problem. 

In obtaining the derived estimates, we did not take ac- 
count of inhomogeneities of the density of the material or the 
elastic moduli, the exchange parameter, or the magnetization, 
all of which are internal parameters of the elastic and spin 
subsystems, respectively. The influence of these inhomoge- 
neities on the size of the gap and the possibility of its exist- 
ence reduce, for the most part, to the appearance of an addi- 
tional contribution to the effective relaxation parameters T, 
which leads to a decrease in the size of the gap (of course 
given sufficiently weak inhomogeneities, which do not lead 
to the appearance in the vicinity of the resonance of funda- 
mentally new localization effects). The remaining relaxation 
mechanism in the system will play a similar role, and the 
most important contribution will come, as a rule, from the 
relaxation of the spin subsystem. Simple estimates show that 
the quantity T,, which determines the efficiency of the re- 
laxation mechanism considered in this paper, is of an order 
of magnitude typical of spin relaxation, so that taking it into 
account does not have a significant effect on the character of 
the derived estimates. 

As for the dispersion law of the coherent spin waves, a 
similar analysis shows that in this case the appearance of a 
gap is hardly possible for any real materials, and the disper- 
sion law of the spin waves will undergo only a weak modi- 
fication of the type depicted in Fig. 3. 

Thus, it follows from the derived estimates that in spe- 
cially created ferromagnetic alloys possessing large enough 
values of the local magnetostriction parameter, it is possible, 
in principle, to observe one of the most important effects 
predicted in Ref. 11, namely, the situation in which in the 
dispersion law of one of the interacting waves the degen- 

where B(x)  is the unit step function. 
The most interesting effects to emerge from Eqs. (22) 

and (23) are connected with the dependence of the velocity 
and damping of the elastic waves on the magnetic field, 
which enters into these equations in the form of the combi- 
nation vk- gHo.  Therefore, if we neglect the weak 
k-dependence of the generic spin-wave dispersion law for 
sufficiently long waves, it can be seen that the functions 
wp(k) and wp(H) for constant H and k, respectively, are 
identical except for one difference, namely that an increase 
in k corresponds to a decrease in H ,  and vice versa. Thus, the 
first and simplest conclusion that we obtain is that in this 
situation it is possible to measure the modified dispersion 
law of the elastic waves by examining the dependence of 
their frequency on the magnetic field at some fixed wave 
number. A more detailed discussion of the behavior of the 
dispersion curve for various k and H makes sense only when 
considering a specific experimental situation. Therefore, we 
limit ourselves in this paper to an analysis of the simplest 
case of the longest waves, and consider the relative variation 
of the speed of sound 8, in comparison with its generic value 
8, = (v, - v)/v in the limit k+O. From Eq. (22) we find that 
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where H,= a ~ , k ; .  From this expression it is clear that the 
dependence 6,(H) changes over from the law 6,ccconst to 
the law 8, H -  ' at H- H, , which can be called the corre- 
lation field of the fluctuations of the magnetostriction param- 
eter (see the analogous expression for the fluctuations of the 
magnetic anisotropy in Ref. 7). By measuring the value of 
H, we can find the correlation radius of the inhomogeneities 
of the magnetostriction parameter r, - d m .  Taking 
as our estimates of the parameters a and M o  the values 
a-10-l2 cm2 and ~ ~ - 1 0 ~  Hz, we find that to measure val- 
ues of r, of the order of cm requires fields H-lo2 
Oe. The magnitude of the effect can be estimated by using 
the value of the parameter AX, given in Ref. 9. For the same 
values of the parameters as above, we obtain 
~ , -10-~-10-~ .  

It should also be noted that despite that fact that expres- 
sion (24) was obtained using a particular form of S(k),  the 
character of the asymptotic behavior of 6, for H < H ,  and 
H%H, does not depend on the details of the behavior of this 
function. Moreover, in the latter case even the value of the 
coefficient of the term 1/H does not depend on the form of 
the spectral density, which may allow us, in principle, to use 
this asymptotic form to find the absolute value of the param- 
eter 5. In order to demonstrate the truth of the latter assertion, 
we write down the expression for 6, for an arbitrary spectral 
density S(k) : 

It is easy to see that the integral in this expression does not 
depend on the magnetic field for small values of the field and 
behaves like 1/H for large fields, independent of the form of 
the function S ( q )  if, of course, the latter does not fall off too 
slowly at infinity and does not have any singularities at zero. 
In this case it is obvious that the integral remaining for the 
case H S H ,  is simply equal to unity for any normalized 
spectral density. 

It goes without saying, even apart from what we have 
said so far, that there are other mechanisms for modifying the 
dispersion law of the elastic waves and, especially, of renor- 
malizing their velocity. Such mechanisms are associated, for 
example, with scattering off inhomogeneities in the density 
or the elastic moduli5 If these inhomogeneities are assumed 
to be uncorrelated with the fluctuations of the magneto- 
elastic parameter, then in the current approximation their 
contribution enters into the dispersion law in the form of an 
additive term. By virtue of the fact that the dispersion law 
does not contain any kind of dependence on the magnetic 
field, expression (24) will not change if by the generic quan- 
tity v we understand the speed of sound renormalized to this 
correction. A more substantial role is played in the behavior 
of the damping of the elastic waves by the additional sources 
of modification of the dispersion laws and the relaxation. We 
take account of their influence in a purely phenomenological 
way by introducing the corresponding relaxation parameters 
Tp, i  and T m , i .  It can be taken for granted that these param- 

eters include the relaxation mechanisms associated with scat- 
tering off the inhomogeneities of the remaining parameters 
of the material as well as the remaining relaxation mecha- 
nisms which are internal for each subsystem. Here the first of 
these parameters corresponds to relaxation of the elastic sub- 
system, and the second takes into account internal relaxation 
of the spin excitations. Taking the parameters Tp, i  and 
into account, expression (23) for the damping can be rewrit- 
ten in the form 

The intrinsic elastic relaxation enters into this expression as 
an additive term and does not depend on the magnetic field. 
In addition, it is quite small as a rule, and its dependence on 
the wave number differs significantly from that of the second 
term in expression (25). Thanks to all these circumstances, 
its presence does not hinder us in any significant way from 
separating out the interesting contribution associated with 
scattering off the inhomogeneities of the magnetostriction 
parameter. A more important role is played by the contribu- 
tion associated with the intrinsic magnetic relaxation. It is 
transferred into the elastic subsystem, thanks to the interac- 
tion and leads to the same characteristic resonance depen- 
dence on the wave number as the contribution associated 
with the fluctuations of the interaction constant. Neverthe- 
less, separating it out from the total damping is possible, 
thanks to the characteristic behavior 

ep- J=O(V~-  wo> 

as k-, o,lv. Such behavior leads to a singularity in the over- 
all damping at k =  oO/v ,  the observation of which can allow 
us, in principle, to isolate this interesting contribution. An 
additional circumstance facilitating this task is the depen- 
dence of the position of this singularity on the magnetic field. 
In our subsequent analysis we will be interested only in that 
part of the damping due to scattering of the elastic waves off 
the fluctuations of the magneto-elastic coupling parameter. 
This contribution to the damping takes its largest value at the 
resonance point, defined by Eq. (16), and is given by the 
following expression: 

1 vk t r=~ ak,  d R  ' 

The resonant damping depends on the magnitude of the mag- 
netic field since the resonant wave number k, is a function of 
H .  This dependence experiences a characteristic changeover 
at k,-kc . Therefore, measuring it also provides us with the 
possibility, in principle, of determining the magnitude of r ,  . 
Realization of such a possibility depends on the wavenumber 
region in which the unknown value kc lies, and is limited by 
the attainable values of the magnetic field. In reality, such a 
method can be used to measure correlation radii of the order 
of cm or greater. 

We begin our consideration of the properties of spin 
waves with a study of their relaxation characteristics. The 
corresponding damping parameter tm can be found from Eq. 
(11) by perturbation theory and has the form 
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For k e k ,  the quantity 5, tends to a constant value, 

It is interesting to note that this expression can be rewritten 
in the form 

where S(k) is the spectral density of the inhomogeneities of 
the magneto-elastic parameter, introduced in Eq. (8). It is not 
hard to show that in the form (29) the expression for the 
spin-wave damping at k=O is valid for functions S(k) of 
arbitrary form. An analogous situation arises, for example, 
when considering the damping of electromagnetic waves due 
to their random interaction with elastic waves.13 An expres- 
sion analogous to expression (29) is also obtained in the 
limiting case k S  k, : 

where, however, the wave number k serves as the argument 
of the spectral density function, not the quantity wdu. Both 
expressions, (29) and (30), can be used to measure the cor- 
relation radius r ,  ; however, whereas the first of these is more 
suitable for investigating inhomogeneities with characteristic 
dimensions greater than cm (the main limitation here 
are connected with the magnitude of the attainable magnetic 
fields), the second is suitable only in the case k,Sk,, since 
the validity of formula (30 is limited by the condition 
~ k % & ~ .  

4. CONCLUSION 

The present study has pursued two main goals: to inves- 
tigate the possibility of using magneto-elastic resonance in 
random ferromagnets with zero-mean magnetostriction to 
experimentally examine the phenomenon of disorder- 
induced crossing resonances predicted in Ref. 11, and, in 
addition, to elucidate the feasibility of experimental observa- 
tion of the spectral and relaxation characteristics of elastic 
and spin waves in order to obtain information about the main 
stochastic characteristics of the magnetostriction parameter 
in such materials. 

Our estimates show that to observe the effects predicted 
in Ref. 11, it is necessary to create special materials, the 
main requirements on which are to achieve as large a value 
as possible of the local magneotostriction and to make its 
spatial distribution as smooth as possible. For this purpose 
one can use alloys of high-magnetostrictive components, 
which are characterized by identical signs of the magneto- 
striction parameter so that complete compensation should 
take place, on average. In such a case, the more it is possible 

to fulfill the requirements on the local magnetostriction pa- 
rameter, the easier will be the requirements on its spatial 
distribution and conversely, the larger-scale the inhomogene- 
ities it is possible to create, the smaller the local value of this 
parameter can be. From our estimates it follows that the 
problem as posed can be solved if the local magnetostriction 
is of the order of magnitude characteristic of pure ferromag- 
nets of iron or nickel type, and the characteristic dimension 
of the inhomogeneities is of the order of lop6 cm. 

To answer the second question posed in this paper, we 
have carried out a detailed study of the dispersion law and 
damping of elastic and spin waves for the case in which no 
gap appears at the crossing resonance, since in standard 
amorphous ferromagnets with zero-mean magnetostriction 
we are dealing specifically with such a situation. We showed 
that an experimental study of the properties of elastic and 
spin waves in such materials should make it possible in prin- 
ciple to determine both the rms fluctuation and the charac- 
teristic dimension of the inhomogeneities of the magneto- 
striction parameter. One of the most attractive of these 
possibilities is the potential to investigate the dependence of 
the speed of ultrasound on the magnetic field, which has a 
singularity at some characteristic value of H, whose magni- 
tude is determined by the correlation radius of the inhomo- 
geneities. In addition, analogous information can be ex- 
tracted from the dependence of the damping of the elastic 
and spin waves on the magnetic field, and from the 
k-dependence of the damping of the latter in the region of 
wave numbers much greater than k, . Here it is important to 
note that each of these methods is effective over some range 
in the unknown parameter r ,  , so they can be used to comple- 
ment each other. The main difficulty in the study of relax- 
ation characteristics is isolating the interesting effects from 
the total relaxation picture, in which other mechanisms par- 
ticipate as well. In this paper we have discussed this question 
and we conclude that such an isolation is possible in prin- 
ciple. 
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