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A generalized form of the Gruneisen function for condensed media has been proposed. The 
function found, together with Slater's relation, makes it possible to write expressions for the 
pressure and energy on the zero-temperature isotherm in the form of polynomials in 
powers of the compression. It has been demonstrated in the example of metals that the analytical 
relations derived are in qualitative and quantitative agreement with the widely accepted 
results at both small (of the order of gigapascals) and large (of the order of terapascals) 
pressures. O 1995 American Institute of Physics. 

It is well known (see, for example, Ref. 1) that determi- 
nation of the dependence of the Gruneisen parameter y on 
the volume V is one of the central problems in writing the 
equation of state of a solid. This problem has been the sub- 
ject of a large number of studies, particularly studies which 
relied on the laws of shock-wave ~ o m ~ r e s s i o n , ~ - ~  in which 
the Griineisen parameter was measured with at least a two- 
fold change in the volume of the solid. However, in this case 
the dependence of y on V could be specified only in tabular 
form. At the same time, a general analytic expression of the 
Gruneisen parameter as a function of the volume, which 
holds true over a broad range of compressions, can be re- 
vealed on the basis of the laws of shock-wave propagation in 
monolithic materials at different initial temperatures. 

Now we shall establish the form of the Griineisen func- 
tion y(V). Let a material with a volume expansion coeffi- 
cient p obey a Mie-Gruneisen equation of state in the form 
P - Px= (E - Ex) ylV, where P and E are the pressure and 
the specific internal energy, Px and Ex  are the same quanti- 
ties on the zero-temperature isotherm at a volume V, and 
y=flV) is the Griineisen parameter, which is a function of 
only the volume V. We consider the relation between two 
shock adiabats of this material at different initial tempera- 
tures. 

Let the shock adiabat P? for the initial values Vo and To 
of the specific volume and the temperature be known (see 
curve 1 in Fig. 1). Then the shock adiabat for the same ma- 
terial with an initial specific volume V, = Vo[l 
+ p(Tl  - To)] and an initial temperature T ,  will be specified 
by curve 2, along which the pressure equals 

where T , = ~ - V / V ~ ,  ?72=1-V1V1, and E: and E: are the 
initial values of the internal energy of the material at the 
points (To, Vo) and (To, V,), respectively. The derivation of 
Eq. (1) and its form are similar to those for the shock adiabat 
of a metastable phase of quartz in Ref. 5. 

We note that at the point v= vm= 1 - V1/VO 
= - P(Tl - To) (i.e., at V= V, , see Fig. 1) the value of the 
pressure on shock adiabat 1 has a certain magnitude P:, 

while the value of P; at this point is equal to zero. Let the 
shock adiabat for a material with an initial temperature To be 
assigned in the form of a linear relation between the shock- 
wave velocity D and the mass velocity u, i.e., D =  C,+S,u, 
where C, and So are constants. Then the value of P: is 
specified as 

Taking this into account and setting the numerator in (1) 
equal to zero, we obtain an expression for y(vm):  

Now let TI differ slightly from To, i.e., let T1=To. In 
this case the amplitudes of the shock waves P: are small. 
However, it is a well known fact that shock waves of small 
amplitude propagate with the (adiabatic) velocity of sound 
c . ~  This may formally signify that at low pressures the co- 
efficient So in the relation D = Co+Sou decreases, vanishing 
in the limit of acoustic waves, and that the shock-wave ve- 
locity together with the coefficient Co  tends to the velocity of 
sound C. On this basis, without distinguishing between the 
longitudinal and transverse velocities of sound, we assume 
that at small 7, in (2) So=O and C o =  C.  

We note that in (2) 

where 

E ,  is the thermal energy. For metals Cv= CvI+ Cv,, i.e., it is 
the sum of the lattice (CvI) and electronic (C,) contribu- 
tions. Taking into account the assumptions made and assum- 
ing that V, is the variable V, we write (2) at small 7, (i.e., at 
small deviations V from V,) in the form 
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FIG. 1. Schematic arrangement of the shock adiabats of the same material at 
different initial temperatures, viz., To (curve 1 )  and T ,  (curve 2), and the 
zero-temperature isotherm (curve 3); P is the pressure, V is the specific 
volume, V ,  is the specific volume under normal initial conditions, Voo is the 
specific volume at T=O K increased due to the zero-point vibrations, and 
Vo, is the specific volume of the unstretched material at T=O K. 

The notation y 0 = ~ c 2 / ~ ,  and the adiabatic bulk compress- 
ibility modulus K ~ = C ~ / V ,  under the initial conditions (Vo, 
To) have been introduced in (3). 

We next assume that the functional form (3) for y is 
valid not only at small q= 1 - V/Vo comparable with the ther- 
mal expansion, but also at values of V which are achieved, 
for example, in powerful shock waves. However, as is 
widely known (see, for example, Refs. 1 and 6), in the limit 
of strong compressions the Griineisen parameter should tend 
to a value of 213. Equation (3) does not satisfy this require- 
ment: when V= 0, it gives a zero value for y. Therefore, we 
"correct" relation (3) so that it would have the correct as- 
ymptote in the limit of large compressions. For this purpose, 
we add 213 to the right-hand side of (3). At the same time, in 
order for this equation to also remain valid under the initial 
conditions, we subtract 213 from the value of yo in the de- 
nominator, i.e., we "force" (3) into the form 

where a = 1 + 2/( yo - 213) - 2Px,lKo. 
Relation (4) is the dependence sought of the Griineisen 

parameter on the volume. 
We note that Eq. (4), the basis equation for the present 

work, contains only general fundamental characteristics of 
the material and, therefore, claims to provide general results 
for condensed media. However, the final conclusion (4) is, of 
course, still heuristic; therefore, its value and validity will be 
determined by how and in what ranges of the thermodynamic 
variables it characterizes experimental data. As will be 
shown below in the case of metals, in this sense relation (4) 
provides satisfactory results. 

FIG. 2. Dependence of the Griineisen parameter on the volume calculated 
from Eq. (4) for copper and lead under normal initial conditions ( I )  and 
from the analytical fitting equation in Ref. 8 (2), as well as data from Ref. 7 
(3) and Ref. 9 (4) .  

Let us discuss the reasonableness of Eq. (4) and its cor- 
ollaries in comparison with the results of other investiga- 
tions. We henceforth restrict ourselves to the range of vol- 
umes smaller than a Vou. 

The plot of function (4) has the form of a curve (see Fig. 
2), near which the plots of the dependence of the Griineisen 
parameter on the volume obtained in Refs. 7-9 for 0.5< 
V/Vo<l cluster. The difference between the results of the 
calculation based on Eq. (4) and those obtained in Refs. 7-9, 
for example, for copper and lead, does not exceed 10%. 
Function (4) also gives acceptable results when the zero- 
temperature isotherm of a solid is calculated. For example, 
setting (4) at a zero initial temperature equal to Slater's 
relation" and integrating the equality obtained 

2 x d2pXldx2 
- -- - - - 

2x 2 
-- +- 

3 2 dPxldx x - a  3 

in the region x < a  under appropriate initial conditions, we 
can find expressions for the pressure Px(x) and then for the 
energy Ex(x) along the zero-temperature isotherm: 

where 

(7) 
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Xo= Vo/Vo,, Xo, = Vo,/Voa, V o  is the specific volume under 
normal conditions, 

the specific volume Voo and the bulk compressibility modu- 
lus KO, are taken at T=O and atmospheric pressure, and 
Pt0= -Pxo is the sum of the theoretically calculated (see, 
for example, Ref. 1) thermal lattice and electronic pressures 
at atmospheric pressure and room temperature To.  

In (5)-(7) the notation x has been adopted for the rela- 
tive specific volume x= V/Voa,  where V is the current vol- 
ume and Voa is the volume at which the pressure on the 
zero-temperature isotherm equals zero (see Fig. 1). Accord- 
ingly, the value of a is specified by the expression 
a = 1 + 2/( yo,- 2 /3 ) ,  where, in accordance with (4),  yo, is 
the isothermal Griineisen parameter under the conditions 
V =  Vo, and T=O, since at absolute zero the isentrope is 
simultaneously the isotherm and Pxo equals zero. 

The practical use of relations (6) and (7) requires knowl- 
edge of only one quantity, viz., Voa, since the value of a can 
then be found as the root of the equation Px(l)=O, which is 
obtained as a result of setting the pressure on the zero- 
temperature isotherm (6) equal to zero at the value of the 
specific volume V =  Voa. 

Let us discuss one of the possible approaches for finding 
Voa. The experimentally determined volume Voo exceeds 
Voa due to the expansion of the crystal lattice caused by the 
zero-point vibrations. As we know, an approximate estimate 
of this effect is given by the formula (see, for example, Ref. 
11) Vo, = Voo(l  - Pno/Ko0), where P,, is the pressure of the 
zero-point vibrations at T = 0 K. However, in view of the fact 
that the expression for Voa is approximate, as well as the fact 
that errors are possible in the experimental value of Voo ,  for 
Voo we shall use Voo= Vok/s ,  where VOk is the published 
value of the specific volume at zero temperature and atmo- 
spheric pressure and l / s  is a correction factor, which must 
be selected so as to most accurately describe the experimen- 
tal data. 

We illustrate the effectiveness of Eqs. (6) and (7). For 
this purpose, we utilize the values of s and the other param- 
eters appearing in (6) and (7) which are presented in Table I 
for aluminum, copper, and lead. 

Figure 3 shows the zero-temperature isotherm Px(V/Vo) 
for aluminum, which was calculated from Eq. (6) with the 
values of the correction factor s= 1.0 (curve 1) and 
s=0.999923 (curve 2), as well as the zero-temperature iso- 
therm (curve 3) obtained on the basis of treatment of the 
shock-wave experiments in Ref. 7. Figure 3 reveals that good 

TABLE I. The densities p,,, p,,, and p, are the reciprocals of the specific 
volumes VOk, Vnu, and Vo; y,, is the Griineisen parameter of the un- 
stretched lattice at zero temperature, which is defined as 
yo, = 2/ (a  - 1) + 213; & is the coefficient in the expression for the elec- 
tronic specific heat; A ,, is the atomic weight. 

agreement with the experimental data can be achieved by 
adjusting s or, equivalently, by adjusting Vo,, since curves 2 
and 3 nearly coincide. At the same time, Fig. 3 indicates that 
for pressures greater than 4 GPa the value of Voa must be 
determined with an accuracy at least of the order of thou- 
sandths of a percent. 

The next figure (Fig. 4) compares the zero-temperature 
isotherms of copper and aluminum calculated from Eq. (6) 
up to V/Vo=0.4 with the results of various investigators. It is 
seen that the results of the present work are in good agree- 
ment with the widely accepted results in Refs. 7, 8, and 12 
for copper and aluminum when Eq. (6) is used with the pa- 
rameters in Table 1. Similar agreement is observed for lead. 
Figure 4 also shows that the calculation of the zero- 
temperature isotherm of aluminum using Eq. (6) is in agree- 

FIG. 3. Influence of the correction factor s on the course of the zero- 
temperature isotherm P,(x)  and the potential energy E,(x) ,  where 
x= V / V ,  . Dashed curves I-s=1.0; solid curves 2-s=0.999923; dot- 
dashed curve 3-zero-temperature isotherm of aluminum from Ref. 7. 
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800 parison is made with the zero-temperature isotherms of this 
metal from Refs. 16 and 17. 

According to an opinion held among specialists, the cor- 
rectness of the calculations in Ref. 16 at large compressions 

600  is not questionable. Therefore, taking the results in Ref. 16 as 
(d a a reliable criterion, we can discuss to what extent the zero- 
0 temperature isotherms calculated from (6) differ from the 
- =  - results obtained in Ref. 16 [see Fig. 5(b)]. 

4 0 0  Figure 5(b) reveals that the calculation of zero- 
temperature isotherms using Eq. (6) at pressures exceeding 
10 TPa yields results which are in qualitative agreement with 
the calculations based on the Thomas-Fermi model with the 

200 
corrections in Ref. 16. In fact, the plots of Eq. (6) [Fig. 5(b)] 
have the same form and relative positions as do the plots 
constructed on the basis of the data in Ref. 16. However, at 
pressures above 10 TPa Eq. (6) gives values of the pressure 

0 
which are smaller than those in Ref. 16. For example, at a 

0 . 4  0 .6  0.80 v,vo 1.0 density of 1500 g/cm3 the calculations using (6) give pres- 
sures for Al which are three times smaller, pressures for Cu 
which are four times smaller, and pressures for Pb which are 
11 times smaller than the values in Ref. 16. Thus, an upper 

FIG. 4. Zero-temperature isotherms of P ,  for copper and aluminum up to limit for the proposed zero-temperature isotherms can be 
V/V,=0.4: I )  calculation using Eq. (6); 2) calculation using polynomials 
from Ref. 13; 3)  data from Ref. 7; 4) data from Ref. 8 + d a t a  from Ref. 12 specified on the basis of this figure. Although this limit is 
for covver. W-theoretical data for aluminum from Ref. 14. different for each metal, it is fairly high, i.e., at the level of 

. >  . . - 

pressures of the order of 10 TPa. 
In conclusion, we give a graphic interpretation of the 

ment with the theoretical calculations in Ref. 13 and with the 
recent calculation of this curve in Ref. 14 for the range of 
pressures considered in Fig. 4. 

As for higher pressures, similar calculations using Eq. 
(6) give curves which smoothly join the zero-temperature 
isotherms presented in Refs. 15-18 for the metals under con- 
sideration at 3-10 TPa. This is seen in Fig. 5(a), in which the 
data from the present work, for example, for copper, nearly 
coincide with the results in Ref. 15, and the data for alumi- 
num nearly coincide with the results in Ref. 17 up to 10 TPa. 
The plots of Eq. (6) for copper coincide with the results in 
Ref. 18 up to 2 TPa; in this case the similarity not only of the 
functions, but also of their derivatives should be noted. The 
same situation is also observed for the relative arrangement 
of the zero-temperature isotherms calculated from Eq. (6) 
and the results in Ref. 16 for lead. A significant deviation of 
the results of the calculation using (6), as well as of the data 
in Refs. 15 and 18, is observed only for copper when a com- 

function y(V/V,) according to (4). For this purpose, we note 
that the first term on the right-hand side of (4) is the sum of 
a decreasing infinite geometric progression with the common 
ratio xla under the condition x < a, where x = VJV,. There- 
fore, for x < a  Eq. (4) can be represented identically as 

i.e., the functional dependence of the Griineisen parameter 
on the volume found is the infinite power series (8) in pow- 
ers of the relative specific volume x normalized to a. Thus, 
Eqs. (4) or (8) is a generalization of the widely used linear 
approximation of .)( V). 

Summing up the results of the present for the case of 
metals, we may state that functions (4) and (6) are qualita- 
tively correct and interpret the forces of elastic interaction in 
solids up to pressures of the order of 10 TPa with acceptable 
accuracy. 

FIG. 5. a) Zero-temperature isotherms of P,(p) 
( p  is the density) up to a pressure of 10 TPa for 
aluminum (I-Ref. 15, 2-Ref. 17) for copper 
(3-Ref. 15, 4-Ref. 18, 5-Ref. 16, &Ref. 
17), and for lead (7-Ref. 16); calculations us- 
ing Eq. (6) for aluminum (dotted line), copper 
(dashed line), and lead (dot-dashed line). b) De- 
viation from calculations based on the Thomas- 
Fermi model with corrections16 at pressures of 
the order of lo4 TPa for A1 (I), Cu (2), and 
Pb (3);" calculation using Eq. (6) for A1 (dotted 
line), Cu (dashed line), and Pb (dot-dashed 
line). 
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