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Magnetic vortices localized by the lattice's pinning potential in type I1 superconductors are used 
to study the repulsive interaction of quasiparticles on the kinetics of magnetic vortex 
creep. A microscopic model is developed in which the interaction of the quasiparticles (vortices) 
is allowed for in addition to their thermal activation through the pinning-potential barriers. 
When the localization of magnetic vortices is strong and their number density low, allowing for 
the repulsive interaction between vortices leads to a considerable increase in magnetic 
vortex diffusion, a situation ignored in previous models of magnetic flux creep. A kinetic equation 
describing the dynamics of magnetic flux creep under these conditions is derived. Finally, 
numerical and analytic solutions of the equation that describes the kinetics of magnetic flux creep 
are given. These solutions illustrate the variation of creep kinetics due to vortex 
interaction. 0 1995 American Institute of Physics. 

1. INTRODUCTION 

The kinetics of quasiparticles localized in a spatially in- 
homogeneous crystal lattice potential is an interesting and 
important problem in solid state physics. Its practical impor- 
tance becomes obvious when the properties of polycrystal- 
line bulk samples, films, and any other disordered systems 
are studied. The quasiparticles may be quite different: for 
example, they may be electrons if we are interested in hop- 
ping conductivity, or localized spins if we are studying spin 
tunneling. In hard type I1 superconductors, the quasiparticles 
may be magnetic vortices of the Abrikosov or Josephson 
type. Under strong localization, the quasiparticles are in 
wells of the effective potential produced by crystal lattice 
inhomogeneities, and may hop from one local minimum of 
this potential to another. Note that in addition to the height of 
the barriers and their separation, the interaction between qua- 
siparticles may also be important. 

In this paper we discuss this problem as it applies to the 
interaction of magnetic (e.g., Abrikosov) vortices hopping 
between wells of the pinning potential. We show that allow- 
ing for the repulsive interaction between vortices in the event 
of strong localization of magnetic vortices in pinning- 
potential wells may lead to a considerable increase in mag- 
netic flux diffusion; this was not previously taken into ac- 
count in studies of one-particle models of hopping creep in 
superconductors.'-4 We examine a microscopic model of 
vortex hopping that allows for vortex interaction and obtain a 
kinetic equation for describing variations in magnetic vortex 
number density. Since in this approach magnetic vortices are 
considered to be interacting quasiparticles, the results may 
have consequences for other types of quasiparticles in solids. 

A highly important problem of superconductivity theory 
involves the conditions for the emergence of resistive states 
in superconductors, and their properties, which arise due to 
various external perturbations such as optical and microwave 
radiation, magnetic and electric fields, or a transport current. 
At present there are several approaches to the problem of 

nonequilibrium superconductivity. The first among these is 
the study of quasi-one-dimensional situations, in which re- 
sistive states result from heating of the system of 
quasiparticles.556 Another mechanism in which a resistive 
state emerges as a result of a transport current flowing 
through a quasi-one-dimensional structure is the mechanism 
of phase-slip centew7 But when resistive states are studied 
in two-dimensional superconducting films and bulk super- 
conductor samples (in particular, in spatially inhomogeneous 
high-T, superconductivity films), dissipative mechanisms re- 
lated to the motion of magnetic vortices begin to 
d~minate ."~"~~ Hence a detailed study of the kinetics of the 
hopping creep of vortices, including the interaction of mag- 
netic vortices, is essential for a description of the properties 
of nonequilibrium resistive states in superconductors (see 
also Ref. 9), and is highly important both theoretically and in 
interpreting the experimental data. 

There are various approaches to describing magnetic 
flux creep in superconductors (see, e.g., Ref. 10). A popular 
model is that of one-particle magnetic flux creep.'-43" This 
examines the one-particle independent motion of each vortex 
due to transport current forces, and ignores vortex interac- 
tion. A vortex is identified with a quasiparticle localized in a 
pinning-potential well. Here a mean magnetic vortex flux 
arises, for instance, when there is a transport current. Be- 
cause of the Lorentz force on a vortex,' the probability of a 
vortex hopping over the pinning-potential barrier depends on 
direction. This is a tight-binding approximation: the vortices 
are localized in the pinning-potential wells. No allowance is 
made for the interaction between vortices, however. 

Another limiting case is represented by models that as- 
sume strong interaction in the system of vortices, as a result 
of which magnetic vortices form a regular latticeI2 and ex- 
hibit collective creep beha~ior. '~. '~ Here the pinning poten- 
tial is usually considered a perturbation (see also Ref. 15). 
Related papers examine type I1 superconductors with weak 
inhomogeneities, and the interaction between vortices is as- 
sumed stronger than the interaction with pinning centers. 
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Note that there can be no vortex lattice in disordered 
superconductors (e.g., high-T, ceramic and polycrystalline 
samples) in moderate magnetic fields H (H>Hcl ,  where 
H,, is the lower critical field) because the pinning potential 
in such high-T, superconductors is extremely deep and ape- 
riodic (see also Ref. 9). Under such conditions, the location 
of vortices is determined by their interaction with the spa- 
tially inhomogeneous pinning potential. 

The models cited here thus serve as approximations that 
can be used to describe magnetic flux kinetics in supercon- 
ductors. The first model assumes essentially no interaction 
among vortices, and studies the interaction of vortices with 
the pinning potential and transport current. The second, in 
contrast, assumes a strong interaction between vortices, 
while the pinning potential is considered a perturbation. 

Generally, a situation may arise-the one studied 
here-in which, on the one hand, the pinning potential is not 
small and cannot be considered a perturbation, and on the 
other, the interaction between vortices cannot be ignored. We 
set up a microscopic model to describe magnetic flux creep 
in type I1 superconductors. The pinning potential is assumed 
to be fairly strong, so that hopping creep remains a valid 
notion.' But in contrast to Ref. 1 and similar studies, we 
allow for the fact that there can be more than one vortex in a 
pinning-potential well. The interaction of vortices changes 
their mean energy and hence the probability of hopping to 
neighboring wells. We show that the interaction of vortices 
pinned in the potential wells can increase the diffusion of 
magnetic vortices considerably. Even at low vortex number 
densities, the interaction between vortices may have a strong 
influence on magnetic flux kinetics. 

2. MICROSCOPIC MODEL 

We consider magnetic fields H > H c l ,  in which magnetic 
vortices have already penetrated the superconductor. Under 
these conditions, Bean-Livingston surface barriers163" play 
no role in magnetic flux creep kinetics, which is governed 
principally by the interaction between vortices and the inter- 
action of vortices with the transport current and the pinning 
potential. 

We have the following equation for the variation in the 
vortex number density n: 

where (q) is the mean vortex flux. 
To calculate (q) we study the following simple model. 

We assume a pinning potential generated by the inhomoge- 
neities of the crystal lattice, with Go the mean depth of the 
potential wells. Suppose that in the (x,y) plane there exists a 
vortex number density distribution n(x,y,t) whose self- 
consistent variation must be found. Self-consistent means the 
goal is to obtain a kinetic equation for n ,  in whose derivation 
we allow for the interaction between vortices, the interaction 
of vortices with the pinning potential, and the variation of the 
pinning potential caused by variation of the vortex number 
density. We assume this to be a "long-wave" theory, i.e., we 
examine the characteristic variations in the vortex number 

density and the pinning-potential envelope on a scale much 
longer than the mean hopping length 1 of a pinned vortex. 
Here it is necessary to examine a single hop only to calculate 
the mean vortex flux. 

We assume a certain vortex number density gradient 
Vn. Since repulsion increases the mean vortex energy (see 
also Ref. I), the average energy level of a vortex in a poten- 
tial well rises with the vortex number density in that well. 
Hence the pinning potential F becomes smaller than the lat- 
tice potential Fo by the value of the interaction energy: 

where (cin,(n)) is the mean interaction energy per vortex. 
We further assume that the vortex number density is low, 

and that the most important interaction is the one between 
vortices within each pinning-potential well. Here we assume 
the vortex interaction range to be small compared to the 
scale I; below we discuss this point in greater detail. We take 
two neighboring pinning-potential wells, 1 and 2. A vortex in 
a well has a uniform probability of hopping in any direction 
in the (x,y) plane at a frequency:' 

where vo is the characteristic frequency of oscillations of the 
pinned vortex. On average, the height of the barrier produced 
by lattice inhomogeneities is the same in all directions. But if 
there is a number density gradient Vn, an average flux 
(q) Z 0 associated with this gradient should obviously arise. 
Let us assume that n, >n2 ,  where n, and n, give the number 
density of vortices in the first and second wells, respectively. 
Then in accordance with Eq. (2), F1 < F 2 ,  where F, and 
F2 are the height of the energy barrier for particles in the first 
and second wells, respectively, and vl > v2, where v1 and 
v2 are the hopping frequencies defined according to Eq. (3), 
with the result that there is an average vortex flux. 

To calculate the average vortex flux in some direction 
(e.g., along the x axis), we must consider two neighboring 
wells (1 and 2) and calculate the average flux that crosses a 
surface between them. 

We first consider a vortex in well 1, and associate the 
origin of the xy coordinate system with that well. Suppose 
that the vortex hops to a certain point A on the circumference 
at radius -112. That hop is associated with a flux whose 
components are 

qx(cp)=nvpp=n vlx= 4 n vl coscp, 

q y ( c p ) = n ~ ~ = n v l y =  nv l  sin cp, (4) 

where u p =  vlx and v y =  vl,, are the x- and y-components 
of the hop velocity. The angle cp between the hop direction 
and the x axis can be entirely arbitrary. Hence, to calculate 
the vortex flux associated with vortices hopping in the posi- 
tive x direction, we must integrate Eqs. (4) over cp from 
- .rr/2 and 1~12: 
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Here the average flux associated with hopping out of well 1 
in the negative x direction is obviously of the same magni- 
tude, q,=q:, but in the opposite direction. The average 
flux of vortices hopping out of one well (say, well 1) is 
therefore 

+ ( q l ) = q x l - q ~ = n l v l l - n l v , I = O .  

The situation is different if we consider the flux through a 
specified surface between wells 1 and 2. To calculate the 
average flux in the x direction, we must subtract the "nega- 
tive" flux qi2 from the second well from the "positive" flux 
q: from the first well: 

Hence, if there is no vortex gradient and n = n2 ,  v1 = v2 and 
(9,) = 0. 

Now let us assume that there is a certain number density 
gradient Vn in the (x,y) plane. We denote the number den- 
sity for well 1 by n l  = n  and the height of the energy barrier 
by F1 =F. Here we consider the "long-wave" theory, as- 
suming that the characteristic scales of number density varia- 
tion in the system of all other quantities are much greater 
than I. Under these conditions, the expressions for the num- 
ber density and the energy-barrier height in the second well 
can be written as Taylor series expansions: 

where F is the average height of the energy barrier. 
We now insert Eqs. (7) and (8) into Eq. (6) and calculate 

the average vortex flux in the x direction to first order in the 
number density gradient (in our case dnldx): 

Since all directions in the plane are equivalent, we can use 
the same reasoning as in (9) to obtain 

As a result we arrive at a formula for the average vortex flux 
to first order in Vn: 

where ex and e, are unit vectors. Note that dFldn<0, as 
follows from Eq. (2) for the repulsive interaction of vortices. 

We compare the derived expression (11) for the vortex 
flux with the formula for the vortex flux qi due to interac- 

tions with the transport current and obtainable within the 
framework of common models of one-particle creep (see, 
e.g., Refs. 1 and 11). 

The drift vortex velocity due to interactions with the 
current is given by1'" 

where vo=lvo ,  j is the local current density, and P is a 
constant. Vortex drift is perpendicular to the current. Let us 
now assume that the current density has components j, and 
j, : Then if a is the angle between current motion and the x 
axls, sina= j, lj and cosa= jxlj. 

Let us find the components (q,), and (q,), of the aver- 
age vortex flux induced by the Lorentz force: 

(q,), =nuy= -nucosa= -nvj,lj . 

Then 

where B is the induction vector, &, is the quantum of flux. 
Substituting Eq. (12) for v, the average vortex flux becomes 

We transform this formula bearing in mind the Maxwell 
equation 

and allowing for the fact that in the chosen geometry the 
induction vector B is simply (O,O,B,). Then B = r ~ + ~ e , .  

where n is the vortex number density. 
The final result is 

c 4; 
=- -n Vn. (15) 4a 

Hence, we can rewrite Eq. (13) as 

Since Eq. (11) was derived to first order in Vn, we must let 
j tend to zero if we want to compare (q) and qj.  We thus 
obtain 

Combining (1) and ( l l ) ,  we obtain an equation for the 
vortex number density: 
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Note that in deriving this equation, we did not assume that 
the term (n/T)(dFldn) is small compared to unity. Also, the 
additional terms obtained in the process of deriving Eq. (18) 
do not originate in the expansion of exp(-FIT) in the inter- 
action energy. The equation obtained for magnetic flux creep 
is nonlinear, and the nonlinearity results from the depen- 
dence of F on n and the fact that we allowed for the inter- 
action of vortices in the pinning-potential wells (the term 
containing dFldn). Equation (19) describes the kinetics of 
magnetic flux creep. 

The higher the value of I dF/dn 1, the greater the contri- 
bution of the vortex interaction mechanism under discussion. 
The greatest effect must occur for superconductors with in- 
homogeneity scales L,-A, where A is the size of a vortex. 
Here the conditions for strong localization of vortices in 
pinning-potential wells are satisfied (if Lp*A, the vortex 
does not fit into the well). The spatial structure of high-T, 
superconductors can be very small-scale (see, e.g., Ref. 18, 
where the inhomogeneity scales L ,  do not exceed 1 pm).  
Also L,-AL , where X L  is the characteristic size of an Abri- 
kosov vortex, which implies that vortex interaction is signifi- 
cant. 

Current experimental studies of high-T, superconductiv- 
ity (see, e.g., Ref. 19) show that sometimes vortex pinning 
on large-scale inhomogeneities may play an important role. 
For instance, Xenikos et al.l9 experimentally studied the 
transport properties of high-T, films whose thickness was 
d- 1000 A. They discovered that the characteristic scale L,  
of the inhomogeneities that significantly affect the pinning of 
vortices is of order d. This coincides in order of magnitude 
with the characteristic scale AL . Note that in polycrystalline 
high-T, samples the characteristic inhomogeneity scales may 

FIG. 1. Diffusion coefficients as a function of 
vortex number density for two values of a [see 
Eqs. (19) and (21)l: (a) a= l ,  and (b) a = 3 .  
Curves marked I represent the diffusion coeffi- 
cient D l  = exp(- lln?, which does not allow for 
vortex interaction, and curves marked 2 repre- 
sent D(n) defined by Eq. (21). 

be even greater. For instance, in their experiments Wang 
et ~ 1 . ~ '  and Routbort et showed that the microstructure 
of polycrystalline Y-Ba-Cu-0 samples and the like con- 
tains a broad spectrum of characteristic inhomogeneity scales 
out to L p -  1-10 pm.  

The changes obtained in the kinetic equation lead to a 
change in the kinetics of magnetic flux; in the presence of 
transport current, they lead to a change in the current- 
voltage characteristic. To illustrate this we examine the pen- 
etration of the superconductor by the magnetic field in the 
one-dimensional case. For the F vs n dependence, we use the 
phenomenological formula1) (see, e.g., Ref. 22) 

where y and a are constants ( a = l - 3 ) ,  and G(T) is the 
"strength" of the pinning potential. 

Although the F vs n dependence can be different, the 
changes obtained in the kinetic equation (18) are important 
even within the framework of simple phenomenological 
ideas about the dependence F= F ( n )  l ln".  It is important 
to note that using a specific form of the F = F ( n )  dependence 
has no effect on the basic result of our work-the kinetic 
equation (18) for magnetic vortices, including their 
interaction-and we employ it here only to illustrate the im- 
portance of allowing for the interaction of magnetic vortices 
in localized states. Establishing the F = F ( n ,  T) dependence 
that allows for the interaction and the strong localization of 
vortices constitutes an interesting problem both theoretically 
and as it applies to the interpretation of the experimental 
data. Here, obviously, the result depends on the type of lat- 

FIG. 2. Plots of n(x,t) as a function of x con- 
structed at different times: t=0.1, 0.5, 1, 2, 4, 6, 
8, 11, 14, 17, 20 (left to right); 
n ( x ~ O , t = O ) = n l ;  n(x=O,r>O)=n,; a = 2 .  (a) 
Numerical solutions of Eq. (20) in the absence 
of vortex interaction (the term with dFldn in the 
factor preceding the exponential is ignored). (b) 
Solutions of the nonlinear equation (20) with 
vortex interaction taken into account; the solu- 
tions are for the same times. 
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FIG. 3. Time dependence of dimensionless magnetic flux, Eq. (24), when 
the magnetic field penetrates the sample, for the nonlinear flux diffusion 
depicted in Fig. 2: (a) without vortex interaction [as in Fig. 2(a)], and (b) 
with allowance for vortex interaction [as in Fig. 2(b)]. 

tice defects generating the pinning potential for magnetic 
vortices (what is important is the shape and size of the 
pinning-potential wells), and in that sense cannot be univer- 
sal. The decreasing F vs n power-law dependence neverthe- 
less seems quite reasonable. For instance, the qualitative rea- 
soning behind the vortex lattice case treated by Yeshurun and 
~ a l o z e m o f f ~ ~  leads precisely to such a power-law depen- 
dence, F = F ( n )  m 1 ln  ", where a = 1 or a = $ (see Ref. 23). 

3. ONE-DIMENSIONAL MODEL 

Transforming to dimensionless variables, xll- ix,  
v0t+t, and ~ [ T / G ( T ) ] " " - + ~ ,  we obtain 

Here the nonlinear diffusion coefficient is given by 

and consists of two terms. The first, D1=exp(-llna), cor- 
responds to diffusion with no vortex interaction. The second 
term preceding the exponential in (21), culnam(nlT) 
X I dFldn 1, corresponds to a situation in which vortex inter- 
action is taken into account. For a> 1, the nonlinear diffu- 
sion coefficient D is a nonmonotonic function of n. D l ( n )  
and D(n)  are plotted for a= 1 and a= 3 in Fig. 1. From Eq. 
(21) and Fig. 1 it is clear that over the full range of number 

density for which hopping magnetic flux creep is significant 
( 0  < n  S I),') because for n 9 1 we have exp(-Flq-1, and 
there is no localization of vortices at pinning centers), vortex 
interaction substantially increases vortex diffusion. At high 
vortex number densities, (nlT) 1 dFldn 1 + 0 (for a> 0 )  and 
D(n)=D,(n) .  Physically this means that potential wells be- 
come shallow in strong magnetic fields, and vortices thus 
easily hop out of the wells, with the result that their interac- 
tion has little effect on diffusion. 

The strong effect of vortex interaction on the kinetics of 
magnetic flux creep in the event of strong vortex localization 
can be understood on the basis of the following qualitative 
arguments, adopting Eq. (3) for the hop frequency. Allowing 
for vortex interaction in the event of strong vortex localiza- 
tion (FIT+ 1 )  leads to a change in the height of the energy 
barrier F .  Since F exhibits exponential behavior, this leads 
to a marked change in v. In calculating the average vortex 
flux, this leads to an additional term in the kinetic equation 
that turns out not to be small. Thus, vortex interaction, which 
was previously ignored in discussing magnetic flux creep, is 
is extremely important in fields H a H , ,  . 

To illustrate the increase in vortex diffusion due to vor- 
tex interaction, we also present numerical solutions of Eq. 
(20).~) Let us examine Eq. (20) on the ray x>O: 

Hence, the time-independent state for the solutions n(x,t) of 
Eq. (20) is in this case 

Figure 2 depicts the numerical solutions of the nonlinear 
equation (20): plots of n(x,t) at different times. Clearly, vor- 
tex interaction increases magnetic vortex diffusion consider- 
ably. Another illustration of the sharp increase in the rate at 
which magnetic flux penetrates the sample because of vortex 
interaction in this case (see Fig. 2) is Fig. 3, which depicts 
the time dependence of the dimensionless magnetic flux 
6@(t), 

in the following cases: ( I )  without magnetic vortex interac- 
tion, and (2) with allowance for such interaction. 

It is interesting to compare the solutions of the nonlinear 
equation (20) with an analytic solution, which can be ob- 
tained in the limit of small values of the gradient Vn. Let us 
examine the case in which n(x,t)=n l=n2  and linearize Eq. 
(20). For small Vn, Eq. (20) leads to the linear equation 

FIG. 4. Solutions (26) of the linear 
t~(.t.!) n(.r,t) 

!I2-- 0.6 diffusion equation (25) without vor- 
tex interaction (a) and with vortex in- 

0.5 teraction (b). The parameters of the 
problem are the same as in the solu- 

0 .4  0.4 tion of the nonlinear problem, as de- 
picted in Fig. 2 for a = 2. The curves 

'II - 0.3 n l -  0.3 are for the same times as in Fig. 2. 
0.05 0.1 .r 0. I 0 . 2  r 

449 JETP 80 (3), March 1995 G. M. Genkin and A. V. Okornel'kov 449 



with the diffusion coefficient D = D ( n  l )  = ( 1  + a l n  y )  
X exp(-lln;). The solution of Eq. (25) consistent with (22) 
is 

X 
n(x,t)=n2+(nl-n2)erf- &z' 

where 

is the error function. Figure 4 depicts the solution (26) of the 
linear equation (25). Both without vortex interaction [case 
(a)] and with such interaction [case (b)] the pattern is exactly 
the same as for the solutions of nonlinear equations, as de- 
picted in Fig. 2 (the curves were constructed for the same 
times as in Fig. 2). In contrast to the solutions of the nonlin- 
ear equation, n(x) contains no points of inflection in the 
solutions of the linear problem. Note that the scale in the x 
direction has been expanded by a factor of ten compared to 
that of Fig. 2, which depicts the solutions of the nonlinear 
equation. As a result, magnetic flux diffusion in the given 
case of a linear equation is much weaker, i.e., the nonlinear 
equation (18) plays a significant role in the diffusion of mag- 
netic flux in superconductors. The nonlinear nature of diffu- 
sion leads to a change in the spatial profile of magnetic in- 
duction. 

4. CONCLUSION 

When there is strong localization of magnetic vortices on 
pinning centers, the interaction of these vortices is mani- 
fested in the kinetics of magnetic flux. Vortex repulsion in- 
creases the average energy of the vortices and lowers the 
potential barrier for the activation of vortices from pinning- 
potential wells: these changes lead to a considerable modifi- 
cation of creep kinetics. Note that in high-T, superconduct- 
ors, magnetic flux creep cannot be described solely by the 
one-particle model, since collective effects come into play 
(see, e.g., Refs. 3, 4, 10, 13-15, and 24). Hence, it is gener- 
ally important to allow for vortex interaction. 

In the presence of fairly large-scale inhomogeneities in 
the pinning potentia119-21 and in the event of strong vortex 
localization, the collective effects can be described by mod- 

els like those suggested in this paper. Interpretation of ex- 
perimental data is in many cases made more difficult by the 
presence of different inhomogeneity scales, whose spatial 
spectrum can be extremely broad. Establishing the role of 
vortex interaction requires experiments with a well- 
understood pinning structure (for example, films with artifi- 
cially induced inhomogeneities). 

' I ~ h e  singularity at n =  0 is related only to the choice of the approximation 
(19). Actually at n =O the value of F is large but finite. 

*)1n dimensional variables this condition corresponds to n<[G(T)IT]l'm, 
where G ( T )  is the strength of the pinning potential from Eq. (19). 

3 1 ~ h e  characteristic diffusion time for the nonlinear equation (20) can be 
estimated only very approximately because of the sharp exponential de- 
pendence of D on n.  
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