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The author investigates the influence of a gravitational field on certain dynamic processes in a 
material with near-critical state parameters: namely, the propagation of perturbations of 
the boundary between phases, the appearance of internal waves, and the kinetics by which the 
system reaches thermodynamic equilibrium. It is shown that the presence of gravitation 
is a decisive factor in these processes in the critical region. O 1995 American Institute of Physics. 

1. INTRODUCTION 

The experimental study of critical states of matter in- 
volves two fundamentally different kinds of difficulties. On 
one hand, the anomalous behavior of the properties of the 
medium requires operation of the measurement apparatus at 
the limits of its sensitivity; on the other hand, the reliability 
of the results is determined not by the accuracy with which 
the experiment is carried out, but rather by the physical state 
of the system under study. In a real experiment, a given 
process is always investigated in the presence of various 
types of perturbations; matter whose state parameters are 
close to critical is always sensitive to these. This fact, which 
is a consequence of the large susceptibility of the system, 
implies that even perturbations connected with the measure- 
ment process can turn out to be nonnegligible.' 

For the physical processes discussed in this paper, per- 
turbing factors such as gravitational field play a decisive 
role. The presence of this field not only strongly distorts the 
processes occurring in the medium, it also causes new phe- 
nomena to appear. 

The influence of the gravitational field is unusually 
strong because of the anomalously high compressibility of 
matter in the vicinity of a critical point. The density of the 
medium begins to depend significantly on the vertical coor- 
dinate, which distorts the experimental measurements; in ad- 
dition, it changes the state of the object under study to some 
extent. 

2. PROPAGATION OF PERTURBATIONS OF THE 
INTERPHASE BOUNDARY BETWEEN LIQUID AND VAPOR 

Near a critical point on the saturation curve, the differ- 
ence in the liquid and vapor densities p,-p, is determined 
by the equation for the coexistence curve2 

begins to make itself felt (the coefficient of isothermal com- 
pressibility k T ~ ( d p l d P ) T ~  1 E 1 - Y ,  with the universal critical 
exponent3 y==1.2), and the previously uniform phases be- 
come stratified with respect to density. As the critical tem- 
perature is approached, the stratification of the liquid and 
vapor first takes the form of a discontinuity in the density at 
the boundary between phases. As the temperature is further 
increased, the boundary is transformed into a meniscus, i.e., 
an abrupt but finite region over which the density changes. 

Borisov et aL4 carried out experimental and theoretical 
studies of the propagation of perturbations of the interphase 
boundary as a function of temperature. 

The material (Freon-13, or CClF,, with critical param- 
eters pC=3.96.1o6 Pa, pc=0.58 g/cm3, and Tc=302.02 K) 
was placed in a horizontal tube of length 3 m and inner 
diameter 5.7 cm. A perturbation of the boundary was gener- 
ated mechanically, followed by observation of its propaga- 
tion and evolution. 

There are two regimes of propagation, depending on 
how close the system is to the critical point (Fig. I). For 
E>E,, the propagation dynamics obey the Korteweg-deVries 
equation with weak dispersion and weak nonlinearity (the 
data from 1 and 2 are for different initial amplitudes of the 
perturbation h: I is for hld-0.12, 2 for hld-0.08, where d 
is the diameter of the tube). If Eq. (1) is used for the differ- 
ence in densities, all the coefficients of the Korteweg- 
deVries equation depend on E . ~  For &<.so the wave processes 
deviate strongly from those of the two-layer model, and can- 
not be described without taking into account the distribution 
of density with respect to height. 

Thus, the so-called gravitational effect, which begins to 
show up as a factor that affects the medium for E < E ~ ,  must 
be taken into account in all of the measurements. 

PI-P" T c - T P  =g - 
3. INTERNAL WAVES 

- PC Tc 1 '  (1) 
In the immediate vicinity of the critical point, the gravi- 

where pc , T, are the critical density and temperature, T is the tational field distorts the system so much that the class of 
ambient temperature of the medium, p is a universal critical observable phenomena is enlarged. For example, it becomes 
exponent, and B is a coefficient. Thus, there are two layers possible for internal waves to exist, i.e., oscillations of liquid 
with uniform density. However, this picture is not always particles that are displaced from their positions of equilib- 
correct. For B<E,, (where &=(TC-T)IT,, and ~ ~ - 3 . 1 0 - ~ ) ,  rium under the action of the gravitational and Archimedean 
the anomalous increase in compressibility of the material forces. 
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ticles oscillate in accordance with Eq. (3) along the rays 
(dark regions), while the phase velocity (direction of k) is 
perpendicular to the particle motion. 

Internal waves are one of the consequences of perturbing 
a medium by a gravitational field. Viewed another way, they 
constitute a new method for investigating critical phenom- 
ena. This will be demonstrated in the next section. 

e x  
4. RELAXATION PROCESSES 

FIG. 1. Temperature dependence of the velocity of interphase perturbations. 

A medium in which the density varies with height can be 
characterized5 by its Vaisala-Brunt parameter N :  

N =  [ -  (glp)(dpldz)]1'2, (2) 

where g is the free-fall acceleration, p is the equilibrium 
density distribution with respect to the vertical z ,  and N  is 
the frequency of free oscillations of the liquid particles. For 
small perturbations of the medium with N=const, the fol- 
lowing dispersion relation holds5 (in the two-dimensional 
case) : 

o2 = N2k:l(k? + ki) = N2 cos2 8, (3) 

which connects the frequency w with the horizontal kl and 
vertical k2 components of the wave vector k for a wave 
whose state variables are proportional to 
exp[i(k,x + kzy - ot)] . A fundamental feature of Eq. (3) is 
the fact that the frequency o depends only on the angle 8 that 
the wave vector k=(kl ,k2) makes with the horizontal, and 
does not depend on the fluid height. The liquid particles os- 
cillate along rays that make an angle B with the vertical. 

This interesting phenomenon, which is observed in salt 
water with stratified salinity,6 was first observed in material 
near the critical point by Borisov et ~ 1 . ~  

Figure 2(a) shows a Schlieren photograph of internal 
waves in a material near the critical point. The wave genera- 
tor consisted of a horizontal cylinder 1 (Fig. 2b) whose axis 
was perpendicular to the plane of the figure. The cylinder 
was fastened to a mount 2 and executed horizontal harmonic 
oscillations with a frequency near 0.5 Hz. The liquid par- 

In this section it is demonstrated that the presence of a 
density gradient, which, as mentioned above, is a conse- 
quence of the perturbation of a material by a gravitational 
field, can play a decisive role in the process by which ther- 
modynamic equilibrium is reached near the critical point. 

The unusually intense development of density fluctua- 
tions as the system approaches the critical state is a fact of 
fundamental importances that helps us to understand the rea- 
son for extremal behavior of equilibrium characteristics of 
matter such as the compressibility, thermal expansion, spe- 
cific heat, etc. Although the patterns of behavior of these 
parameters have been rather well investigated within an ex- 
tensive region around the critical point, there have been far 
fewer studies of the kinetic properties of the material, whose 
behavior leads to additional difficulties in carrying out qua- 
sistatic experiments. 

Under ordinary conditions, relaxation of the density in a 
single-component liquid takes place rapidly; however, as the 
critical point is approached, the processes by which the equi- 
librium distribution is established are greatly slowed down. 
L,orentzen9 investigated the time dependence of the density 
distribution by measuring the distance between the images of 
two thin vertical lines cast by light after it had passed 
through the material. They found that when the temperature 
was decreased from T-Tc=0.09 K to T-Tc=0.02 K, the 
density distribution versus height after three hours of thermal 
isolation differed considerably from the same distribution af- 
ter 48 hours of thermal isolation. Under ordinary conditions, 
a local deviation from the equilibrium value is accompanied 
by the appearance of a pressure gradient, which leads to a 
matter flux that rapidly reestablishes equilibrium. The pres- 
ence of randomly located gradients of the fluctuating param- 
eters as the critical point is approached weakens the action of 
artificially created gradients, which slows equilibration. 

In order to explain the slowing of the density relaxation 
time in the vicinity of the critical point, it is assumed that the 

FIG. 2. Internal waves in a material 
with near-critical state parameters. 
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process is diffusive. To a first approximation, the equation 
for the matter flux j has the form 

from which it is clear that the flux arises as a result of the 
presence in the medium of gradients in the temperature VT 
and chemical potential Vp; L l  and L2 are kinetic coeffi- 
cients. In this case, V p  has the following meaning. It is 
assumed1° that at each level z in the material the local chemi- 
cal potential p(z) equals the chemical potential of a system 
with uniform density p (which is different for each z) at the 
temperature T in the absence of gravitation. Consequently, 
p(z, T) = p(p(z),  T) is the equilibrium distribution of chemi- 
cal potential, implying that V p  appears whenever the density 
profile is out of equilibrium. 

Thus, nonequilibrium behavior can arise from the pres- 
ence of gradients in the temperature and chemical potential. 
In the first case (Vp=O) the characteristic time for establish- 
ing equilibrium can be written as  la, where ( is the 
characteristic scale of nonuniformity, and a is the thermal 
conductivity of the material. Since a m (T - (see 
Ref. 2), the equation for the temperature relaxation time 
takes the form 

T ~ M  (T- Tc) - (0.6-0.7) 
9 (5) 

from which it is clear that the process slows down as the 
critical point is approached. 

The mechanism for mass transfer near the critical point 
in the absence of a temperature gradient was investigated by 
Skripov et al." When the system is in a weakly nonequilib- 
rium state, the following expression is obtained for the mat- 
ter flux: 

where Sp is the deviation of the density at a given place from 
its equilibrium value; Do=(L ,lp2)kr1, which has the dimen- 
sions cm2.s-', is a coefficient of mass transfer analogous to 
the diffusion coefficient. As noted above, kTm(T-TC)-'; 
therefore, we can write for the relaxation time 

In this case the slowing of the system relaxation is also ob- 
vious as the critical point is approached. 

There is a body of work in which relaxation of the den- 
sity takes place according to one of the mechanisms de- 
scribed above. For example, Eremova et al." investigated 
relaxation of nonuniformities in the density of 4 ~ e  by con- 
verting the liquid from the two-phase to the one-phase re- 
gime near the critical point by rapid heating. The density 
measurement was based on the dielectric constant of helium 
placed in the gap of a capacitor with length 1.5 cm, diameter 
2 cm; the size of the gap was 6 . 1 0 ~ ~  cm. The dependence of 
the relaxation time on (T- To) was a power law within the 
limits of the data scatter, with an exponent of 0.5 to 0.75: 

here To is the temperature of the phase transition. The au- 
thors proposed that the process was associated with relax- 

ation of temperature nonuniformities in the medium sur- 
rounding the capacitor and was subject to Eq. (5). 

Skripov et a1.I3 also studied the kinetics of the approach 
to equilibrium of an initially two-phase system that passes 
through a critical point and enters a single-phase state. They 
tracked the relaxation of the density under isothermal condi- 
tions by measuring the intensity of scattered light. Except for 
an initial period during which the system was approaching 
thermal equilibrium, the time dependence of the scattered 
light intensity could be approximated by an exponential 
function. There is a connection between the intensity mea- 
sured in the experiment and the relaxing parameter p-p,. 
The temperature dependence of the relaxation time is well 
described by a power-law function: 

70: (T- TO)-a. 

Values of a obtained experimentally for various materials lie 
in the range 1.0 to 1.05. The authors explained their results 
by invoking the process of density relaxation under isother- 
mal conditions (6). The difference in the exponents a and y 
was larger than the limits of error of the experiment. The 
authors explained this difference by noting that the experi- 
ments were not carried out on a critical isochor. 

It is clear that the processes investigated in these two 
papers lead to quite different approaches to equilibrium. It 
would appear that Eremova et a1.12 eliminated the influence 
of the gravitational field by using a measurement cell with 
small dimensions. 

In this paper we propose a new way to study the kinetics 
of approach to equilibrium near the critical point, in which 
the relaxation of the system density is determined by moni- 
toring the evolution of internal wave propagation. 

Our experiments were performed using a setup that was 
well described in Ref. 7. By using this setup, we were able to 
observe internal waves in a material near a critical point for 
the first time. Our initial results were published in Ref. 14. In 
these experiments, we first filled the working volume with 
material at a temperature below To. We then rapidly heated 
the walls to a temperature T above To (where To is the tran- 
sition temperature to the single-phase state). Throughout the 
rest of the experiment, the temperature of the walls T was 
kept constant as we observed the relaxation of the Vaisala- 
Brunt parameter N in the working volume. This parameter 
was determined from Eq. (3) by choosing the frequency of 
oscillation w of the cylinder and measuring the angle 8 under 
these conditions (Fig. 2). This was possible because the 
times required to measure 8 as a function of w in this experi- 
ment (-10 s) at a given time were much smaller than the 
characteristic time over which the density profile changes 
(-lo4 s). Therefore, we can neglect the change in the density 
profile during a single measurement of N. Since we have the 
relation (2) between the value of N measured in the experi- 
ment and the relaxing parameter, we can determine the den- 
sity profile as a function of time. 

The experiments showed that at the end of the process of 
smearing out the density profile, the function N(t) had the 
form 
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FIG. 3. Dependence of the density gradient of the vapor phase on time and FIG. 4. Dependence of the relaxation time for the density gradient on tem- 
temperature for small departures from equilibrium. perature. 

where t is the time measured from t = 0 ,  at which N=N(O), 
and 7 is the relaxation time. In Fig. 3 we show the functions 
N ( t )  for various thermostatic control temperatures. We used 
the slopes of the straight lines to determine the relaxation 
time as a function of the degree of heating E'=(T- To)lTo. 
It should be noted here that the density of the vapor that 
filled the working volume was below critical in these experi- 
ments, so that when the phase transition temperature To was 
reached, the boundary between the phases moved down- 
wards until only the vapor phase remained in the entire cell. 
That is, the process took place in the vapor phase. 

The temperature dependence of the relaxation time is 
shown in Fig. 4. Analysis of the results leads us to believe 
that these quantities are related by a power-law function, 

where T~ and S are constants; 6 ranges from 0.9 to 1.0. 
Simultaneously with our observations of the density as it 

relaxed, we studied the evolution of the temperature profile 
with respect to height in the cell. We found the temperature 
relaxation time to be an order of magnitude smaller than the 
density relaxation time in the range of parameters we inves- 
tigated. 

We also investigated the density relaxation near the me- 
niscus (when the density of vapor filling the working volume 
was close to critical). In Fig. 5 we show an overview of the 
setup. The working volume 1, which had internal dimensions 
20X 10x10 cm3, was located in a circulating thermostat 2. 
System 3 provides circulation of water and maintains the 
temperature in the thermostat. The setup also includes a sys- 
tem for filling the working volume with Freon-4, a system 
for measuring the temperature of the water in the thermostat 
5 (at different points), and a system for measuring the tem- 
perature 6 by recording the signal from 15 semiconductor 
microresistors positioned along the height of the working 
volume. The control system 7 serves to switch the electro- 
magnets 8 alternately on and off at the specified frequency, 
which drives the suspended cylinder 9 into oscillation. The 
axis of the cylinder is perpendicular to the plane of the fig- 

ure, with a length of 9.8 cm; this allows us to treat the wave 
processes as two-dimensional (the width of the working vol- 
ume equaled 10 cm). The process was visualized using the 
Schlieren method through windows 10 at the front and back 
walls of the working volume. 

The experiments were carried out as follows. First, the 
Freon, the working volume, and the heat-bath liquid were 
placed in the two-phase state below the phase transition tem- 
perature. Since the average density of the vapor filling the 
working volume was critical in these experiments, the phase 
transition temperature equaled the critical value T,. There- 
fore, E measures the degree of superheating or underheating. 
At the beginning of the experiment, rapid heating by the 
heat-bath liquid occurs. Consequently, the walls of the hous- 
ing of the working volume reach a temperature T that is 
either higher or lower than T, ; this wall temperature is kept 
constant during the entire experiment. At the same time that 
the heating begins, the temperature measurement system is 
connected to the working volume. The experiments show 
that once the apparatus is no longer in contact with the heat 
bath, convective motion rapidly evens out the temperature in 

FIG. 5. Diagram of the experimental setup. 
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FIG. 7. Initial stage of the relaxation process of the density profile for large 
departures from equilibrium. 

sity relaxation process, in a region where the system is far 
from equilibrium, i.e., the immediate vicinity of the menis- 
cus. The large departure of the density from equilibrium in 
the working volume suppresses effects associated with prox- 
imity to the critical temperature; hence, the relaxation time 
during the initial phase does not depend strongly on E. As for 
the nonlinearities, if we include the next nonzero terms of the 
expansion in the expression for the mass flux j, we obtain" 

where 

w is the s~ecific volume. Aw= w- w.. . The value of 
(d3p/dw3), is given in Skripov's book," where we find that 

FIG. 6. Sketch of the evolution of the density profile in the presence of a 
meniscus. D o  and D l  are comparable even for Aw = 0.0 1 w, . 

the volume until it equals the wall temperature T. After a 
time t o ,  the convection disappears; at this time, a uniform 
density profile is established in the material when it is super- 
heated above T,(E<~),  or a step-like profile when it is un- 
derheated (E>O). For t>to  there are no longer any tempera- 
ture gradients in the medium, and the density relaxation 
proceeds to the equilibrium state. A sketch of the changes in 
the density are shown in Fig. 6 (a-E>O, b-E<O). In this 
case the parameter N also reaches its equilibrium value 
NO(&). Experiments carried out at various degrees of depar- 
ture from the critical point show that during the initial period 
the function N ( t )  has the following form (the measurements 
were carried out between 1 and 3 cm above the level of the 
meniscus): 

5. CONCLUSION 

Thus, we have shown the effect of a gravitational field 
on several of the processes that take place in materials with 
near-critical state parameters. We have demonstrated that 
gravitation has a decisive influence on these processes at 
temperatures sufficiently close to the critical point. This in- 
fluence can be so dominant that it amounts to a change in the 
physical state of the material. 

The author is grateful to A. A. Borisov and Al. A. 
Borisov for their collaboration with him in Refs. 4 and 7, and 
for useful discussions. 
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