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A general analytical solution is found for the coupled nonlinear Schrodinger equations which 
correspond to vector solitons linearly polarized at every point. An analytical expression 
is found for the energy threshold for the existence of vector solitons. It is shown that periodic 
trains of vector solitons can develop with a repetition frequency that depends on the 
magnitude of the birefringence and the group velocity dispersion of the fiber lightguide. 
Quantitative estimates show that the generation of vector solitons by a fiber-optical laser is a 
realistic possibility. O 1995 American Institute of Physics. 

I. INTRODUCTION 

This paper is devoted to the study of the soliton propa- 
gation regime of short light pulses in a birefringent fiber 
lightguide. Recently considerable interest has developed in 
connection with the problem of the propagation of soliton- 
like pulses in birefringent optical fibers due to the consider- 
able scientific importance of this problem'-8 and also to the 
prospect for practical application of phenomena associated 
with the propagation of soliton-like pulses in birefringent 
 fiber^.','^ 

The propagation of optical pulses in a birefringent fiber 
lightguide is described by two coupled nonlinear Schro- 
dinger (NLS) equations.'-" This system of equations has two 
characteristic soliton solutions: solitons polarized along the 
principal axes of the fiber. The propagation velocity of these 
solitons is equal to the group velocity for radiation polarized 
along the corresponding principal axis of the fiber, evaluated 
at the carrier frequency. Thus, if the central frequencies of 
these orthogonal solitons are identical, they have different 
propagation speeds due to the birefringence and can interact 
only briefly, when they overlap spatially. A number of papers 
have been devoted to the study of the interaction of such 
orthogonally polarized solitons and related  effect^.^"^ 

It is well known that two orthogonally polarized solitons 
can form a bound state, and that this bound state has an 
amplitude thresh~ld.',~,',~' The bound state is a two- 
component optical pulse which propagates at a single veloc- 
ity. This bound state means that there is a soliton propagation 
regime for two-component pulses in birefringent fiber light- 
guides, i.e., that vector solitons can propagate.'2 A vector 
soliton propagates along the fiber without changing its shape 
and polarization, but the polarization can vary across the 
pulse. 

In Refs. 12 and 13 particular analytical solutions were 
obtained of the coupled nonlinear Schrodinger equations, 
corresponding to "bright" and "mixed" vector solitons (the 
"bright" component is parallel to the slow axis of the fiber 
and the "dark" component is parallel to the fast axis). But in 
these treatments the carrier frequencies of the components of 

the pulse polarized parallel to the major axes of the fiber 
were taken to be equal, as were the corresponding group 
velocities. 

The treatment of ~ a l o m e d '  took into account the differ- 
ence in the carrier frequencies of the orthogonal components 
of the pulse. The coupled NLS equations were solved using 
perturbation theory1' for the case when the nonlinear equa- 
tions are close to the integrable Manakov form. In the adia- 
batic approximation approximate solutions were found for 
time-independent vector solitons and periodic chains of soli- 
tons, and the interaction of two slightly overlapping vector 
solitons was treated. A variational technique was used to find 
the approximate solution of the coupled NLS equations in 
Ref. 14, using the same assumptions as in Ref. 8. 

In the present work we find the general analytical solu- 
tion for a class of vector solitons which are linearly polarized 
at every point in the pulse, but in which the direction of 
polarization varies from point to point. The resulting exact 
solution contains as a special case the vector solitons de- 
scribed in Refs. 12 and 13. 

This general solution contains an infinite set of vector 
solitons that differ from one another in the parameter S 
which characterizes the shift in time of the two pulses that 
compose the vector soliton; in the final analysis this shift 
determines how the polarization varies across the vector soli- 
ton. The energy of the vector soliton is found to be indepen- 
dent of the parameter 6. 

A characteristic feature of these vector solitons is the 
existence of a lower energy threshold below which there are 
no vector soliton solutions. In this range of energies the only 
soliton that exists is polarized along the slow axis of the 
fiber. 

The present treatment takes into account the difference 
in the carrier frequencies of the components of the vector 
soliton polarized along the principal axes of the fiber, but we 
use the condition R T , < ~  (here T, is the duration of the 
pulse), which implies that the carrier frequency shift of the 
orthogonally polarized components is much less than the 
spectral width of the pulse. We discuss the occurrence of 
periodic sequences of vector solitons separated by an interval 
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equal to a multiple of ~ 1 2 R  due to the difference in the 
carrier frequencies of the components of the vector soliton. 

2. FUNDAMENTAL EQUATIONS OF THE THEORY OF 
SOLITONS IN A BIREFRINGENT FIBER LIGHTGUIDE 

We assume that a light pulse with electric field compo- 
nents Ex and Ky directed parallel to the slow (x) and fast (y) 
axes is propagating in a weakly birefringent fiber. We write 
%, and Zy in the form 

where F(x,y) is a function describing the transverse profile 
of the field in the fiber, Ex and E, are complex amplitudes, 
and we have written P=(Px+Py) /2 ,  where PI,, are the 
propagation constants for the x and y components of the 
pulse in the linear approximation. For Ex  and E ,  we use the 
familiar nonlinear Schrodinger equations derived under the 
assumption of slowly varying amplitudes:'5"6 

where a is the group dispersion parameter (a=-&, P2<0), 
y= 2m2/(hAeff) ,  n2=3 .2 .  m2/w (see Ref. 15 and 
A,, is the effective cross-sectional area of an optical mode in 
the fiber, determines by the function F(x,y); we have written 
F(x,y),  ~=.rrlB=.rr(n,-ny)lh, where nx and ny are the 
indices of refraction along the respective axes (nx>ny),  B is 
the length of the polarization beats in the fiber, and we have 
written A p I  = (PIX- Ply) /2 ,  where P;,', P;; are the group 
velocities in the x and y directions at frequency w. In Eqs. 
(2) we have used the time in the moving coordinate frame, 
r= t - P1z, where PI =(Pix+ Ply)/2.  

The solution of Eqs. (2) will be found in the form 

~ h e r e A , , ~ ( ~ )  are complex amplitudes that do not depend on 
z. Here 4 specifies the initial difference in the phase of Ex  
and E,, and q is the wave vector, which is the same for both 
components and depends on the energy of the pulse. The 
parameter R is given by 

Equation (3) describes a two-component pulse propagat- 
ing in a birefringent fiber. The carrier frequencies for the x 
and y components are different; they are given by 
wx = w + R ,  wy = o - a ,  respectively. Condition (4) implies 
that the effect of birefringence is balanced by the dispersion, 
and the components of the pulse propagate a long distance 
without undergoing a relative spatial shift. In this case, when 

phase synchronization holds, the four-photon parametric in- 
teraction between the orthogonally polarized components of 
the pulse may also be very effective. 

Assuming that condition (4) is satisfied and using Eqs. 
(2) and (3), we find the following equations for the complex 
amplitudes AX,,(r): 

Note that Eqs. (5) contain terms that depend explicitly 
on time. Their structure is such that Eqs. (5) are not invariant 
under a shift in the origin of the time by an arbitrary amount. 
However, the system is invariant if r is replaced by r- 7,, 
where the displacement is given by r,= .rrm/2R with rn an 
integer. It follows that Eqs. (5) admit periodic solutions such 
that Ax,y(r)=Ax,y(r- 7,). We anticipate that these solutions 
will consist of weakly overlapping pulses displaced periodi- 
cally in time, i.e., pulses which satisfy the condition 
4 R r p 6  1 ,  where rp is the pulse duration. Because the over- 
lap is weak we can find the envelope for each pulse by re- 
placing exp(-f 4 i a  r )  by exp(_t 4ia7,). This replacement is 
equivalent to neglecting the difference in the group velocities 
corresponding to the two principal axes of the fiber 
lightguide.1'-'3 

3. LINEARLY POLARIZED VECTOR SOLITONS 

Let us find the shape of the envelopes of the solitons 
located at the points 7,. Assuming that the condition 
4 R r p 6  1 holds we can look for a solution of Eq. (5) in the 
limit +=O. Then Eq. (5) admits a solution in the form of 
solitary waves; in the general case A,(T) and A, (7) are com- 
plex. These complex amplitudes can be written in the form 

Substituting these expressions reduces the equations to a sys- 
tem of two nonlinear second-order equations for the real 
quantities C1,2(r). These have the form of Newton's laws 
for the motion of a mass point in a conservative system with 
a two-dimensional potential (see also Refs. 12 and 17). In the 
present work we performed the calculation for the case of 
linearly polarized modes (E= $=O). Then for the dimension- 
less amplitudes X(T) =A,(T) Jy/4K and y (7) 
= Ay(r ) Jy /4K we find a system of two nonlinear second- 
order equations, 
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where v, = (q* K ) / ~ K ,  e = 7JsKICY. 
The system of equations (6 )  has already been derived in 

Refs. 12 and 13, where several particular solutions were 
found. In the present treatment we have obtained the com- 
plete solution of these equations, which enables us to find the 
entire set of soliton states, including those given in Refs. 12 
and 13. 

In order to find the exact solution of Eqs. (6) ,  it is con- 
venient to use the analogy between these equations and New- 
ton's force laws for a particle with unit mass in the two- 
dimensional potential 

The solution of the equation of motion (6) can be found by 
separation of variables in the elliptic system of coordinates 
p, 5 (-1<p<1, l<(<m): 

x =  J ( ~ ~ - l ) ( l - p ~ ) ,  y = ~ p .  (8) 

In this system of coordinates the Hamiltonian H of the sys- 
tem takes the form 

Here p1 and p2 are the projections of the momentum on the 
5 and p axes, respectively. 

The Hamiltonian (9) can be related to the Hamilton- 
Jacobi equation for the reduced action ~ ~ ( 5 , ~ ) : ' ~  

where E is the particle energy. The variables 5 and p in (10) 
are separated, so the action is an additive function 
S o ( ( , p )  = s , ( ( )  + s 2 ( p ) ,  which allows us to integrate Eq. 
(10): 

Here A is an integration constant which describes a conser- 
vation law associated with the motion in the potential (7). 
Now we determine the full action S = So - E 0 and find the 

general solution of the equation of motion (6),  setting 
dSldE = al  and dSldA = a,, where a and a2 are arbitrary 
constants." Instead of them we can introduce a different set 
to and p,,, the coordinates of the particle at the initial time 
(for /3=0). As a result we find the general solution in the 
form 

where 

(13) 

The full solution of the equations of motion (12) contains 
four arbitrary constants: the positions $ and p,, at the initial 
time, the energy E ,  and the constant A. The latter describes 
the direction of the initial particle velocity. By appropriate 
adjustment of the arbitrary constants we can specify the tra- 
jectories of the motion corresponding to the soliton states. 

First let us consider bright solitons, whose amplitude 
goes to zero in the limit 6 k k m .  In the terminology of clas- 
sical mechanics this corresponds to trajectories which termi- 
nate at the coordinate origin x =  y = 0 ([= 1, p=O). At this 
point the potential (7)  has an extremum corresponding to an 
unstable equilibrium. The condition that a particle trajectory 
terminate at a point x= y =O is that the particle energy E 
vanish there. Elementary analysis of the general solution (12) 
shows that the condition 5=1, p=O in the limit B++m is 

FIG. 1. Examples of the shape of the components of a vector soliton: a) 
6+=8_=0, q / ~ = l O ;  b) 8+=6-=0, q /K=1.25;  C) 8 + = 8 - = 5 , q / ~ = 1 . 2 5 .  
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satisfied for A=O. In the case E = 0 ,  A=O, the integral in Eq. Here 
(12) can be performed by elementary means, as a result of 
which we find rn=0,1, a = v - / v + ,  v J = 1 - t 2 / 2 v + ,  

u= J-. 

(14) 
Now, using Eq. (8) to solve (14) for x and y and going over 
to the dimensional time T, we find the final expression for the 
components of a bright vector soliton: 

where 17: = 2(q? ~ ) / a .  In place of the two constants to and a given value of S corresponds to another soliton with pa- 
,q, in (15) we have introduced 8%.  Without loss of generality rameter equal to - S, which transforms into the first under 
we can set S+ = S- = 6, which corresponds to a particular the substitution T-+ - 7. 
choice of the zero of time. Thus, the complete set of solu- The energy of a vector soliton is equal to 
tions contains an arbitrary parameter -co< S<m, correspond- 
ing to the degeneracy of an ordinary soliton in an isotropic W= l-+;(A:+At)d~= - J8K(Y 
fiber (K=O) with respect to the polarization angle. The par- Y 
ticular solution of Eqs. (5) obtained in Ref. 12 is derived 
from (15) for 2S=ln((v+ + v-)l(v+ - v-)). 

It is worth noting some specific properties of these vec- 
x[(;+l]1"+(;-l)112]. (18) 

tor solitons which distinguishthem from ordinary first-order 
solitons. Figure 1 shows the time dependence of the compo- 
nents A, and A, of the vector soliton, corresponding to the 
fast and slow axes of the fiber. These functions were calcu- 
lated using Eqs. (15). From the figure it is clear that, roughly 
speaking, a vector soliton can be represented as a superposi- 
tion of two pulses of equal length 

Here " + " corresponds to A, and " - " corresponds to A, . 
These pulses are shifted in time by AT, which is determined 
by the parameter S i n  Eqs. (15); the separation AT increases 
as a function of S. Thus, the total length of a vector soliton is 
either of order T- or of order Sr i f  AT>T-. In the latter case 
the vector soliton has a well-defined two-hump structure and, 
most importantly, breaks up readily in the presence of weak 
perturbations. 

In contrast to an ordinary soliton, the polarization of a 
vector soliton varies across the pulse. The polarization angle 
6 depends on time according to the relation 

A curious property of these vector solitons is that, gen- 
erally speaking, they are asymmetric with respect to inver- 
sion T-+- 7. At first glance this contradicts the invariance of 
the equations of motion (6) under time inversion. This con- 
tradiction is removed if we note that an arbitrary soliton with 

The pulse energy does not depend on the parameter 8, just as 
the soliton energy in an isotropic fiber does not depend on its 
polarization. 

The parameter q,  as in the case of ordinary solitons, 
determines the power in the pulse. However, in contrast to 
scalar solitons, there is a lower threshold energy Wmin 
= 2 6 1  y, which is reached when q = K holds. When the 
pulse energy is less than Wmin there are no vector soliton 
states. 

For q <  K the nature of the soliton solutions of the equa- 
tions of motion (6) changes radically. In this range of param- 
eters the extremum of the potential U [cf. Eq. (7)] has a 
saddle character. The trajectories of the soliton motion be- 
come purely one-dimensional parallel to the y axis. The 
equations of motion can readily be integrated: 

This solution corresponds to a soliton polarized along the 
slow axis; it goes over to (15) for q =  K (i.e., v-=0, 
v+=1/2). As we approach the critical point q =  K from the 
direction of large values of q the amplitude of the compo- 
nents of the vector soliton polarized along the fast axis de- 
creases and its length increases. 

Now we briefly discuss the case of a mixed soliton 
whose amplitude does not vanish in the limit ~--t-Ca. This 
occurs for trajectories which lies between the extrema of the - 
potential U ,  x = -+ Jv-, y = 0. In elliptic coordinates they 
are p=O, 6 = ? Jn (these points are saddles; motion 
along the fast axis x is stable): and the solution passes 
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through the point of absolute equilibrium x =  0 ,  y = + K. 
This vector soliton has a dark component along the x axis 
(the amplitude remains finite in the limit r+%m) and a 
bright component along the y axis (the amplitude goes to 
zero in the limit T++w). The exact solution for a mixed 
soliton was found in Ref. 13. 

4. DISCUSSION OF RESULTS 

We present some estimates which show that there is a 
realistic possibility of observing vector solitons under ordi- 
nary experimental conditions. 

We start from the magnitude of the birefringence 
An=n,-n,=10-6. It follows that for a carrier of wave- 
length X=1.5 p m  we have ~ = ( r r A n / h ) = 2  m-'. For this 
carrier wavelength the frequency dispersion is P2=-25 
ps2/km (Ref. 15) and we have n 2 = 3 . 2 .  10- l6  cm2/W. In 
accordance with Eq. (18) the threshold energy of the vector 
soliton, i.e., the energy at q = ~ ,  is equal to Wth 
= (4 A A , ~  m / 2  rrn2), where A ,ff is the effective cross- 
sectional area of the fiber. For Aeff=50 pm2 the threshold 
energy of a vector soliton is equal to Wth=350 pJ. For a 
pulse of length 1-10 ps the corresponding peak power is 
equal to 30-300 W. Note that the peak power in fiber lasers 
which generate solitons reaches hundreds of watts.19 For the 
above values of the parameters the soliton repetition fre- 
quency is A~=rr /2R=24 ps. Thus, both from the standpoint 
of the required power and from that of being able to achieve 
a periodic sequence of pulses, the typical parameters are re- 
alistic for experimental observation of vector solitons and for 
producing them with a fiber laser. 

We note that there are experimental in which 
sequences of short pulses were generated with parameters 
that agreed in order of magnitude with the estimates we have 
given. Unfortunately, in Ref. 20 there are no detailed data 
about the properties of the fibers used and the parameters of 
the resulting pulses were not studied in detail. Consequently, 
it is impossible to make an in-depth comparison between the 
experimental results and the estimates given in our work. In 
Ref. 21 we were unable to determine the parameters of the 
fibers used in the experiment with sufficient accuracy to 
make a rigorous comparison between the experimental and 
calculated values of the sequence of pulses that were gener- 
ated. 

The second question which requires discussion is the 
problem of the stability of these solutions. The stability of 
vector solitons was studied in Refs. 8 and 11. In Ref. 11 it 
was shown that, neglecting the difference in group velocities 
corresponding to the principal axes of the birefringent fiber 
lightguide, a vector soliton is stable if the parameter W'/K 
(where W is the soliton energy) is greater than some thresh- 
old value. This conclusion agrees with our result, since, as 
was shown above, a vector soliton can exist under the con- 
dition W 2 / ~ > 1 6 a l y 2 .  On the other hand, it is difficult to 
assert that the exact threshold value for the parameter W ~ / K  
obtained in our work is the same as that found in Ref. 11, 
since in Ref. 11 it was assumed that the soliton was almost 
isotropic. This corresponds to replacing the coefficients 213 
and 113 on the right-hand sides of Eqs. (5) by 1 and 0, re- 

spectively. Nevertheless, this comparison shows that there is 
some threshold value W above which our solution for the 
vector soliton is stable. 

In Ref. 8 the stability of vector solitons was analyzed, 
taking into account the difference in the group velocities of 
the orthogonal components. It was shown that in the adia- 
batic approximation the stability conditions remain qualita- 
tively unchanged, but if the adiabatic approximation fails the 
vector soliton undergoes radiative decay. However, this 
analysis does not treat the possibility that a train of vector 
solitons exists. In the presence of such a train (as proposed in 
the present work) we can assume that radiative decay of the 
vector solitons is prevented by the exchange of virtual pho- 
tons, so that the total energy stored in the pulses and in the 
radiative background that accompanies them is conserved. 
Under this condition the total configuration (soliton plus 
background) becomes stable. However, this question un- 
doubtedly requires further detailed treatment. 

Thus, in the present work we have derived a more gen- 
eral analytical solution for vector solitons using previously 
well-known approximations. We have found an analytical 
expression for the energy threshold for the existence of these 
solitons. We have shown that a periodic sequence of vector 
solitons can occur with a repetition frequency that depends 
on the magnitude of the birefringence and the group disper- 
sion of the fiber lightguide. Numerical estimates show that 
the production of vector solitons by a fiber laser is a realistic 
possibility. 
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