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We build a perturbation theory that can be considered a quantum analog of a classical 
superconvergent perturbation theory. The theory is recursive in form and can easily be 
implemented numerically. Its efficacy is demonstrated using the example of an anharmonic 
oscillator with nonlinearities of the form x2 and x8. 63 1995 American Institute of Physics. 

1. INTRODUCTION 
The exact solutions of a quantum problem provide ex- 

haustive information about the quantum system. Such solu- 
tions, however, can be found only in exceptional cases. At 
the same time there exists a broad class of problems in which 
the Hamiltonian operator H differs little in a certain sense 
from an operator H0 corresponding to an exactly integrable 
problem. This fact makes it possible to obtain an approxi- 
mate solution of the initial equation, which is the essence of 
perturbation theory. In this paper we consider the problem of 
building a perturbation theory in its classical formulation. 

Suppose that we wish to find the set of eigenfunctions 
{ @ i )  belonging to the Hilbert space L 2  and the corresponding 
spectrum of the problem 

Here E is a small parameter and H' is a self-adjoint operator. 
We assume that we already know the solution of the unper- 
turbed problem 

For the sake of simplicity, we assume below that all of 
the eigenvalues E i  and E P  of problems (1) and (2) belong to 
the discrete spectrum. 

For a perturbation theory to be formulated properly, cer- 
tain conditions must be met. One is that the family of opera- 
tors H = H ( E )  of the problem (1) must be analytic. Here we 
do not give the exact definitions, referring the reader to the 
literat~re, '-~ and we assume that all conditions of analyticity 
of H(E)  are met. The validity of this assumption has been 
established for all of the examples considered below.3 

As is well known, conventional perturbation theory, 
which expands the eigenfunctions 

and eigenvalues 

in powers of a small parameter E, is often inapplicable be- 
cause the appropriate asymptotic series prove to be diver- 
gent. For instance, the series (3) for the Schrodinger equation 
with an anharmonic-oscillator potential, 

has a vanishing radius of convergence in E (see Ref. 4). 
Hence there has been sustained interest in the idea of build- 
ing various perturbation-theory variants that might give 
"reasonable" answers to the questions posed here. Nowa- 
days there are many such variants (see, e.g., Ref. 5) ,  which 
have usually been adapted to the solution of specific prob- 
lems. Among all of the perturbation theories, two of the most 
general methods of solving the problem (1) approximately 
can be singled out: 

1. Bore1 summation of divergent series of the type (3). 
Here it is assumed that all of the coefficients Elk)  for a given 
level number i are known. 

2. The Pad6 approximant method, in which a finite num- 
ber of terms of a divergent asymptotic power series in E are 
used to build a convergent sequence of rational functions in 
E. 

Note that in addition to being extremely complicated in 
practical terms, these two perturbation-theory methods have 
one more important drawback: they do not make it possible 
to obtain the wave functions of the problem (I), which also 
play an important role in studying physical systems. Also, 
despite their broad applicability, the methods are not univer- 
sal. For instance, it has been established that the Padi ap- 
proximant method does not work when the perturbation of 
the harmonic oscillator Hamiltonian H 0  is H' =x8. 

The goal of the present investigation is to build a pertur- 
bation theory that, on the one hand, is as universal and 
simple to apply as conventional perturbation theory and, on 
the other, enables one to considerably broaden the class of 
perturbing potentials. We display the merits of our perturba- 
tion theory by using the example of H ' = x 4  and H'=x8, 
where H' is the perturbation to the harmonic oscillator 
Hamiltonian. 

2. PERTURBATION THEORY IN CLASSICAL MECHANICS 
AND THE AVERAGING PROCEDURE 

We consider a 2s-dimensional Hamiltonian system 

with a Hamiltonian H, which is the sum of an unperturbed 
Hamiltonian HO corresponding to an exactly integrable 
probHlem and a perturbing small addition EH'. Here and in 
what follows we assume that H describes the finite motion of 
the Hamiltonian system. 
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In the simplest case we can try to construct a solution of 
the system (5) as a power series in the small parameter E,  
i.e., x ( t ) = ~ , = $ ( ~ ) ( t ) ~ " ,  where x(O)(t) is the trajectory of 
the unperturbed Hamiltonian system, x(')(t) is the solution 
of the linearized system in the neighborhood of x(O)(t), etc. 
It is well known that such a solution becomes invalid by 
times t of order E - l because of the presence in dn) (n > 0) 
of secular terms x(")mtk ( k a  I ) . ~  In particular, x(')mt for 
the anharmonic oscillator. It can be shown that in the quan- 
tum case, the expansion (3) of the energy spectrum in powers 
of the small parameter E diverges. 

The usual approach in classical mechanics to eliminating 
secular terms is to employ various versions of the averaging 
method, which entails finding equations for "slow" variables 
that provide a correct description of the behavior of systems 
over long time intervak6 In the canonical formalism, the 
phases act as the "fast" variables. The averaging method 
consists in replacing variables so that the phase dependence 
of the Hamiltonian in the new variables is retained only by 
the leading terms in the small parameters. 

Nevertheless, such procedures do not generally make it 
possible to find, or prove the existence of, solutions of the 
original problem. One way to accelerate the convergence of 
perturbation expansions is to employ a method that consists 
in redefining at each iteration the "unperturbed" (i.e., depen- 
dent only on the action variables) Hamiltonian, incorporating 
the corrections found in the preceding iterations. This variant 
of perturbation theory has been used to prove the 
Kolmogorov-Arnol'd-Moser (KAM) theorem, and is often 
called the KAM perturbation theory. Following Ref. 7, we 
now provide a brief overview. 

We denote the action-angle variables for the unper- 
turbed Hamiltonian H&H0(I) by (I, cp). Then 

H = H ~ ( Z )  + EH' ( I ,~~ ,E) .  

The next step is to carry out a change of variables that is 
symplectically close to the identity, (Z,lp)-i(J,$), so that in 
the new variables the terms in the Hamiltonian of order E are 
phase-independent. Such a change of variables is specified 
by the generating function 

where S(J,cp) is a 2r-periodic function of the variable cp 
and a solution of the equation 

Here (H') is the average over the period: 

Taking Eq. (6) into account, we can write the Hamil- 
tonian H in terms of the new variables: 

~HO(J) dS(J,cp) 
-HO(J)-E------- 

dJ  dlp 

The expression in square brackets is phase-dependent and 
quadratic in small quantities. Hence, in terms of the variables 
( J ,  $)), the Hamiltonian H has the form: 

On the right-hand side of the last equation we must express 
cp in terms of cjl and J using the formulas for changing vari- 
ables. 

In terms of the new variables, the Hamiltonian H has the 
same appearance as in terms of the old, but now the phases 
are present in the terms of order c2. After N such changes of 
variable, the phase dependence remains solely in terms of 
order E ~ ~ .  This phenomenon is also known as superconver- 
gence. 

An important fact is worth noting. The canonical trans- 
formation described above exists if there exists a periodic 
solution of Eq. (6), which is equivalent to the absence of 
resonances, i.e., for fixed values of the variable J and for all 
integers (kl , ..., k,), 

In what follows we assume that no resonances are present. 
Actually, even in the absence of resonances, due to the 

effect of small denominators (with the function S assumuing 
exceptionally high values), the rate of convergence of the 
KAM perturbation theory may be somewhat lower. 

As we have shown above, the KAM perturbation theory 
consists in constructing a canonical transformation in which 
the term that depends on the new phases is of higher order in 
the small parameters. Here the "regular" (phase- 
independent) part of the Hamiltonian is the average of the 
Hamiltonian over the "old" phases. The important feature of 
the KAM perturbation theory is that the Hamiltonian is rep- 
resented by the sum of the "regular" part and a small phase- 
dependent term. 

The basic problem of transferring the methods of classi- 
cal mechanics to quantum theory is the lack of an algorithm 
for setting up the quantum "action-angle'' variables explic- 
itly. Shapovalov and ~hirokov' have attempted to resolve 
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this problem by applying approximate symmetries. However, 
the method they suggest is only applicable to a fairly narrow 
class of perturbing potentials. 

Let us attempt to reformulate the perturbation theory al- 
gorithm discussed above in such a way as to make it possible 
to transfer this superconvergent perturbation theory to the 
quantum case. For this we recall the well-known theorem of 
averages. 

Suppose that g is a function of the coordinates of a 2s- 
dimensional Hamiltonian system. The time average of g is 

g =  lim - g(q( t ) , I )  d t ,  
T + m  1 JOT 

where I is a constant and q( t )  is the solution of the Hamil- 
tonian system. The phase average is defined by Eq. (7). The 
theorem of averages states that if the function g is reasonably 
"well-behaved" and that motion takes place on a nondegen- 
erate torus, i.e., conditions (8) are met, then the phase and 
time averages will be equal: g=  (g).  

Schematically the algorithm of a superconvergent pertur- 
bation theory can be represented as follows. Suppose that at 
a certain step the Hamiltonian H has the form 
H = H + sV,where H is the Hamiltonian averaged over time 
(or phase), and V is the remainder (V=O).  We carry out a 
special canonical transformation. We average H over time, 
where the dynamics is determined by the part of the-Hamil- 
tonian H obtained at the previous step. The result is H. If the 
canonical transformation is chosen p~operly, the remainder 
will be second-order in g2, i.e., H=H+.z~V(V = 0).  

In this approach, we make use of canonical transforma- 
tion and time averaging. Both ideas exist in the quantum 
theory. For instance, the analog of a canonical transformation 
in quantum theory is the transformation from one basis of the 
Hilbert space to another: {qi)+{$i). In the process the ma- 
trix Hi, of the operator H in the basis {qi) is transformed 
into the matrix Hi, of the operator H in the basis {$;I. 
Clearly, in the absence of degeneracy, the time averaging 
procedure in quantum mechanics corresponds to specifying 
the diagonal part of the operator in the basis of the Hamilto- 
nian's eigenfunctions. 

Indeed, let X be an operator corresponding to a certain 
observable of a quantum system described by the time- 
independent Schrodinger equation (2), and let X(t)  be its 
representation in the Heisenberg picture. The evolution of the 
operator X(t) is determined by the Heisenberg equation 

By analogy with Eq. (9) we introduce the time average of the 
operator X: 

The condition (8) for the absence of resonances transforms in 
the quantum case into the condition that the spectrum EP of 

the operator H' be nondegenerate. In the basis {qi) of the 
eigenfunctions of H', the solution to problem (10) has the 
form 

Using the fact that the spectrum is nondegenerate, we find 
from Eq. (11) that xkn= Sk,Jnn. The operator x is an inte- 
gral operator that commutes with H'. 

3. THE QUANTUM ANALOG OF A CLASSICAL 
SUPERCONVERGENT PERTURBATION THEORY 

Consider the quantum eigenvalue problem (1). In the 
basis {qi) of the eigenfunctions of the unperturbed Hamil- 
tonian H', the operator H is 

H..= S..E?+&H!. . 
'I 'I 1 'I 

Here Hi j=(q i  ,Hq,) and (cpi ,q , )= Si,, with (. ;) being the 
scalar product in the space L 2 .  

Following the ideas of a superconvergent perturbation 
theory in classical mechanics, we write Hi, in the form of an 
averaged term (which, according to Sec. 2, is the analog of 
the phase-averaged classical Hamiltonian) plus a residual 
term: 

We now carry out the canonical transformation, i.e., go to the 
basis {I)~}: 

$n= C Snjqj. (13) 
j 

We call S the transformation matrix and select it in such a 
way that the residual term in the expansion (12) for 
H,,=($, ,H$,) is of order e2.  At the Nth step, the residual 
is then obviously of order e2N. Setting up such a recursive 
procedure in which the basis {qn) is orthonormalized at each 
step is impossible. Clearly, the requirement that the basis be 
orthonormalized is superfluous, and it is sufficient to require 
the normalization condition ($?) , $LN)) = 1 (here {$LN)) is 
the basis in the space L 2  obtained after the Nth iteration), 
and that 

lim ( $LN) , $jnN)) = Snm . 
N+W 

With these two conditions met, the constructed sets of func- 
tions {$kN)) tend, as N+w, to a complete orthonormalized 
system of eigenfunctions of the operator H .  

Thus, suppose that in a basis {qi)  of the space L2 the 
operator H has matrix elements like those in (12) and 

( q .  1 7 c P . ) ~ A . . = S . . +  J 11 11 &ail 9 

a * =  11 a, .  11 and uii=O. 
We introduce matrices a and p and the vector ,u as fol- 

lows: 
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We specify the matrix S of the transformation to the new 
basis as follows: 

S n j = P n f f n j .  (15) 

We then have 
Theorem 1. In the basis {Gn}  defined via Eqs. (13)- 

(15), the operator H has the form 

and 

Proof. By definition, 

A,,= 2 +L:Z c ~ : ~ a ~ ~ ~ ~ ~ =  1.  
i j  i j  

For the off-diagonal elements we obtain 

Since the matrices V i j  and aij are Hermitian, Eqs. (14) imply 
that A,, = 0 ( c 2 )  for n # m .  The hermiticity of A,, follows 
from the definition of A,, . Thus we have proved the validity 
of Eq. (17). For the matrix H,,  we have 

Equations (14) imply that the second term in this expression 
vanishes and hence Eqs. (16) are valid. This completes the 
proof. 

Thus, Theorem 1 provides a recipe for constructing a 
recursive perturbation theory for the eigenvalue problem (1). 
As in classical perturbation theory, here at each step the 
Hamiltonian matrix is the sum of a diagonal matrix, which 
corresponds to specifying the average Hamiltonian H in a 

certain basis, and a small residual term. This representation 
is used to construct a canonical transformation as a result of 
which the new Hamiltonian matrix Hnm and the nonorthogo- 
nality matrix An, have the same form as before, but the 
small parameter E is replaced by c2.  

After N iterations we have 

The functions @ L N ) ,  which are the eigenfunctions of the op- 
erator H with the eigenvalues can now be easily ex- 
pressed, to within E ~ ~ ,  in terms of the wave functions of the 
unperturbed Hamiltonian: 

* i N  rJ 'i r p j .  (18) 
j \ m = ~  1 n j  

We have been unable to prove any theorem on conver- 
gence requirements for the above perturbation theory. The 
usefulness of the perturbation theory developed in this paper, 
we believe, lies in its practical application. All cases in 
which the perturbation theory has been applied have yielded 
good results. The given perturbation theory is recursive in 
form, and can easily be implemented numerically. 

4. DISTINCTIVE FEATURES IN APPLYING THE 
PERTURBATION THEORY. EXAMPLES 

The main drawback of a matrix perturbation theory is 
that no calculations with infinite matrices are allowed. The 
only infinite-dimensional space L 2  with its finite-dimensional 
subspace V with the basis {rpi(i = 0, ..., M - 1) and limit all 
operators to V. This transforms the spectral problem (1) into 
an M-dimensional linear system. But how is the spectrum 
{ E i }  of the operator H in L 2  related to the eigenvalues of the 
corresponding finite-dimensional linear system? The answer 
is given by 

Theorem 2 (the Rayleigh-Ritz technique3). Let H be a 
semibounded self-adjoint operator. Let V be an 
n-dimensional subspace, VCD(H) [D(H) is the domain of 
HI, and let P be the orthogonal projection operator onto V. 
Let H v = P H P .  Let A M -  be the eigenvalues of Hvf  V. If H 
has eigenvalues (counting multiplicity) E o , .  . . ,Ek at the bot- 
tom of the spectrum with E o s .  . . c E k ,  then E m S X m ,  
m=O ,..., min(k, M-1). 

We restrict the operators H ,  H', and to the 
M-dimensional subspace, i.e., we assume that the indices in 
Eqs. (12)-(18) run through the values 0 to M -  1. After a 
fairly large number N ( N - + m )  of convergent iterations, the 
infinite-dimensional matrix Hi, will assume the form 
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TABLE I. 

If we are interested in the ground state, then according to 
Theorem 2 the number A. is an upper bound on the value 
E o  and, as can be shown, X o l E o  as M +w. Two problems 
emerge when the dimensionality M of space V is large. The 
first is that even with a simple computational algorithm one 
is forced to operate with high-dimensional matrices, and the 
computer may lack the necessary resources. The second 
problem is more fundamental: there sometimes exists a criti- 
cal value M,, of the dimensionality of space V above which 
the perturbation theory begins to diverge. We demonstrate 
this phenomenon below. 

We start with the simplest nontrivial case, the spectral 
problem (1) with a one-dimensional time-independent Schro- 
dinger operator 

where x E R', and H belongs to a family of operators ana- 
lytic in the neighborhood of E=O. Since we assume that the 
operator H has only a discrete spectrum, the potential U(x) 
is an increasing function at x=  + a .  If the function W(x) 
increases at infinity more slowly than U(x), then obviously 
the matrix elements H,!, decrease with increasing i and j, and 
perturbation theory presents no problems. The dimensional- 
ity of space may be arbitrary (M,,=m). 

A more important and complicated case is that in which 
the perturbing potential W(x) rises more rapidly than the 
unperturbed potential U(x). A characteristic example is the 
Schrodinger equation with the anharmonic potential 

simon9 proves that the family of operators H with an anhar- 
monic oscillator potential is analytic on the real semiaxis 
&>O. 

Let us examine the problem (1) with an anharmonic os- 
cillator potential: U(X) =x2  and W(X) =x4 at ~ = 0 . 2 .  Here 
the conventional perturbation-theory expansion diverges rap- 
idly. Loeffel et aLIO use the Padd approximant method to 
calculate the ground-state energy, and demonstrate the con- 
vergence of the method in this case: 

Here E[N,N] is the ground-state energy calculated via 
[N,N] Padd approximants. These are found using 2N 
Rayleigh-Schrodinger coefficients a , ..., azN : 

M E?) Remark 

Note that calculating the coefficients a ,  ,..., a 2 ~  is an ex- 
tremely involved process, and furthermore the Padd approx- 
imant method does not enable one to obtain the correspond- 
ing eigenfunctions. 

Below we give the results of applying the suggested per- 
turbation theory to this example. Table I shows how the 
value of the ninth iteration for the ground-state energy ~ h ~ )  
varies depending on the dimensionality M=dim V in a 
finite-dimensional approximation. All further iterations intro- 
duce no changes:  EL^)= ~ b g ) ,  N 2 9 .  

For the sake of comparison we give the value 
E o  = 1.118 292 654 367 05 obtained by the method of steep- 
est descent1' as the smallest eigenvalue of a 41-by-41 matrix 
Hi,. 

The results of iterations for M = 20 are listed in Table I1 
(E~O)=E:+EW~~).  

If we take M = 21 or higher, the perturbation theory be- 
gins to diverge. Apparently this is a general situation with 
rapidly increasing potentials. Hence the best approximation 
can be obtained by varying M until the perturbation theory 
diverges. 

The divergence of the perturbation theory for a certain 
value of M greater than M,, does not mean that the given 
theory can never be employed. Since the theory converges 
for MGM,,, it yields least upper bounds. As Table I dem- 
onstrates, every increase in M in our example yields a more 
accurate estimate. Theorem 2 implies that such behavior of 
E !~ )  as a function of M is observed in the general case as 
well. 

As a still more complicated example, consider the poten- 
tial W(x) =x8 at E = 0.2. The Padd approximant method fails 
in this case.lOAn interesting aspect of this example is that the 

TABLE 11. 

N E kN) 
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TABLE 111. 

method of steepest descent applied to a 41-by-41 matrix 
H i j  yielded, with an error S=5 X lo-', an incorrect result, 
E o =  2.069 11, while for a 21-by-21 matrix Eo= 1.4727. The 
shooting method gives E,= 1.241. Below we give the results 
of calculations by the perturbation theory method. 

The perturbation theory converges for M 6 12. The result 
of calculating E ,  at M = 12 is listed in Table 111. 

If we assume that the shooting method yields an accurate 
value of E , ,  the error introduced by the perturbation theory 
calculations in this case is 0.52%. The complexity of this 
example obviously results from the fact that E W  is too 
"large," and in particular, the first correction in conventional 
perturbation theory, E ~ ) = E ; + E W ,  (which is equal to 
~ f )  in our perturbation theory), is almost twice the accurate 
value. 

In conclusion, we note once more that the perturbation 
theory developed in this paper in extremely simple to apply, 
and enables one to calculate, in addition to the ground-state 
energy E , ,  the higher energy levels (albeit with a large error) 
and their corresponding wave functions, which are often in- 
accessible via other perturbation theory approaches. The 
regularity of the perturbation theory considered here has yet 
to be proved, but since this perturbation theory is a concep- 
tual offshoot of the one used in proving the KAM theorem, 
we hope that it will find broad application. 
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