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We present explicit expressions for the angular factors of radiative and collisional transitions in 
complex atoms and ions. LS, jj, and jl coupling are all considered. The formulae derived 
here are amenable to a simple interepretation, and are given in a form suitable for application to 
kinetic problems. These expressions automatically incorporate the summation and averaging 
appropriate to transitions between "effective levels." O 1995 American Institute of Physics. 

1. INTRODUCTION over the total angular momentum, etc. We present below a 
comprehensive expression that automatically subsumes all 

Interest in the study of collisional and radiative transi- possible summation schemes over angular quantum numbers. 
tions in complex atoms and ions has grown of late, both from 
the standpoint of a fundamental description of multiparticle 
systems and in terms of applications to laboratory and astro- 
physical plasmas (see, e.g., Ref. 1). 

Probabilities and cross sections can be cast in terms of 
sums of products of radial and angular components. The ra- 
dial part has normally received most of the attention, and a 
multitude of variational and other methods have been devel- 
oped in the process (see, e.g., Refs. 2-4). In the present 
paper, we address the angular part. At the heart of the method 
for finding the latter are the angular coefficients of the tran- 
sition amplitudes for some type of "pure" coupling scheme; 
more often than not, one chooses LS coupling. In principle, 
the angular coefficients can be expressed in terms of Racah 
coefficients or w i p e r  j-symbols,4 but they must be rederived 
in each individual instance. Here we present a simple and 
physically transparent method for writing such expressions 
in terms of M-functions. These functions5 can be written in 
terms of Wigner 9j  symbols, and make it possible-as will 
be shown below-to write out the angular transition factor 
for the various types of coupling ( LS, jj, jl) essentially by 
inspection (i.e., based solely on "general considerations"). 

Plasma level populations and line intensities are gov- 
erned by the equations of balance, which incorporate colli- 
sion rates and radiative transition probabilities. If all of the 
levels in complex atoms or ions are specified by a complete 
set of quantum numbers-right on up to the total angular 
momentum J-then there will be an inordinate number of 
such levels. One way to reduce the number of levels without 
increasing the errors is to identify blocks of similarly popu- 
lated levels (i.e., levels whose statistical weight ratios are 
similar) and replace them with "effective levels." 

One can derive the angular factors for transitions be- 
tween effective levels using general expressions that include 
summation (or averaging) over the various systems of initial- 
and final-state quantum numbers, but there are dozens of 
possibilities. Among these expressions are, for instance, 
those in which one of the levels is specified by a complete 
set of quantum numbers (in other words, it is not an "effec- 
tive level"), while the other is summed over the total angular 
momentum, or over the total orbital momentum but not the 
total spin. Likewise, both levels might need to be summed 

2. M-FUNCTIONS AND Q-FACTORS 

In the system of angular quantum numbers describing an 
atom, let there be a triple j ( j3 ,  j 2 ,  j l )  such that the angular 
momentum jl corresponds to the sum of j3 and j,. An in- 
teraction characterized by the triple of multipole orders 
(q,k,v) sends j into j' ( j i  , j; , j;). To describe this process, 
we define the M-function: 

where 

[ j ,  2 . . . j ] [ (  2 j + l ) ( 2 j 2 + l ) . . . ( 2 j + l ) ] 2 ,  (2) 

and the expression in braces is the Wigner 9 j  symbol. 
The properties of the M-functions follow from the cor- 

responding properties of the 9j  symbols; specifically, 

If one of the multipole orders is zero, the M-function can be 
expressed in terms of a 6j  symbol. We will also need the 
following relations: 
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When the only difference between the first and second triples 
is that the latter is primed, we omit it for brevity: 

The Q-factors are angular multipliers that enable one to 
express the squares of matrix elements (or their sums), which 
determine the transition probabilities (or cross sections) in 
complex atoms, in terms of the corresponding quantities for 
a one-electron atom. 

We begin by considering the Q-factors for one-electron 
transitions. Let the atom be described in the LS coupling 
scheme by a set of angular quantum numbers y 
(SJclSLJ), where S ,L , J  represents the spin, orbital, and 
total angular momentum, 1 is the orbital momentum of the 
electron making the transition, and Sc,Lc represents the spin 
and orbital momentum of the atomic core. The probability 
Wk of an electric radiative transition of multipole order k, for 
example, can then be written in the form 

where w is the corresponding transition probability for a one- 
electron atom. For the case at hand, the expression for Q k  
can be found, for example, in the book by ~ o b e l ' m a n . ~  In 
terms of M-functions, 

where g (  y) = [J]' is the statistical weight of the state y, and 
s =  112 and g , = [ ~ l ] ~  are the spin and statistical weight of 
the optical electron. Equation (8) gives the transition prob- 
ability between fine-structure components. For transitions 
between terms, i.e., probabilities summed over J' and aver- 
aged over J ,  we can replace the J-dependent last M-function 
with the value 1, by virtue of (3). Finally, then, the statistical 
weight is g (  y) = [sL]~. For transitions between levels, 
y =  (ScLclSL), the Q-factor is 

Equations (8) and (8a) apply to transitions that do not 
involve shells containing equivalent electrons. When one of 
the states (the final state, for instance) actually does, both (8) 
and (8a) must be multiplied by the number of equivalent 
electrons m and the square of the fractional parentage coef- 
ficient ~z~~ . 

C C 

It can be shown by direct calculation that (8) and (8a) 
retain the same structure under other coupling schemes as 
well. Thus, for jj coupling, where the atom is described by 
the set of quantum numbers y =  (SJJ,,ljJ), where j and 
J, are the total angular momentum of the optical electron 
and the atomic core, respectively, we have 

Likewise, for jl coupling with y =  (SJ2,IKJ) (K  cor- 
responds to the sum of J, and I), 

3. MATRIX ELEMENTS OF BINARY OPERATORS 

Consider a system consisting of an atom (ion) in the 
state a S I L l  and an external electron in the state sl, : 

where ST,LT,JT represents the spin, orbital, and total angular 
momentum of the atom + electron system. In the present 
paper, we use a different order of addition, S+L=J, from 
that used in Ref. 2, L+S=J. This results in a sign change in 
certain amplitude expressions. In the scheme adopted here 
for transitions with no spin flip, the invariant angular mo- 
mentum S sits in the first slot of SLJ.  The corresponding 
angular factor is analogous to the factors for the triples 
LclL and others. 

We consider the off-diagonal matrix element correspond- 
ing to a transition of the external electron I,, and of an 
atomic electron to the state m with angular momentum I, : 

From this point on, we assume that the atomic state has no 
equivalent electrons beyond m.  In terms of the total pro- 
jected system angular momentum, the matrix element of the 
rank-ro operator Tro in the LS coupling scheme is6 

where Y is the radial part, which depends on the radial wave 
functions and the one-electron quantum numbers nmlml,. 
The factor p ( r o r )  is equal to 

We have asumed in (13)-(14) that T can be represented as a 
tensor product, 
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while the binary operator T;(ji) can be represented as a sum 
of tensor products of the operators t?(j) and tZ1(i), and 
likewise q ( j i )  can be represented in terms of t;'(j) and 
tZ1(i). 

For an electrostatic interaction with ro= rs= rl= 0, 
S;L.L;Jk=STLgT, q 2 = q ,  =q,  and k2=kl=  k, the matrix 
element (13) becomes 

where R '  and R" are the direct and exchange integrals (see 
Appendix for more details). The factor BKoK is defined in 
(14). In the more important transition of an electron 1, from 
an inner atomic shell with m = 1, we have BKoK= 1. 

Neither Eqs. (13) and (17) nor the total LS-coupling 
scheme are suitable for transitions between SLJ atomic lev- 
els, for which one must use the Jj scheme: 

r= a(SILIJ),sl , j ,  , J T .  (19) 

A similar derivation yields the appropriate matrix element: 

4. Q-FACTORS FOR ELECTRON-INDUCED EXCITATION 
CROSS SECTIONS 

The effective cross section for the y-y' transition in an 
atom (ion) impacted by an electron can be expressed in terms 
of the S-matrix3 

where I is the identity matrix, a. is the Bohr radius, E is the 
electron energy, and the sum is taken over quantum numbers 
r that do not enter into y. In perturbation theory it is con- 
venient to express the unitary S-matrix in terms of the her- 
mitian K-matrix: 

In this paper we are concerned with transition cross sec- 
tions in atoms impacted by electrons as given by first-order 

perturbation theory in the interaction between the external 
(incident) electron and the atomic electrons. Then 

s(r,rl)-I(r,r1)=2iK(r,r1), 

Here K(T,T1) is given directly by Eqs. (17) and (20) of Sec. 
3. We limit attention to a transition involving an external 
atomic electron 1, (so that B,,= l) ,  and omit the subscript 1 
from the state labels: 

XMqku(SLJ)Mqku(s~,j,)M,,o(Jjd~). 

In the partial-wave representation, the y-y' transition 
cross section is 

where 1, and 1: are the orbital angular momenta of the ex- 
ternal electron. Summing over momenta j,j:JT, we obtain 
the partial-wave cross section 

Call the one-electron cross section ukp)(l - 1 '). Then 

Here p= 1 corresponds to the sum of the "direct" and "in- 
terference" parts of the cross section, and p = 2 corresponds 
to the pure "exchange7' part. From (25), (26), and the expres- 
sion for Yqk presented in the Appendix, we have that for 
S,=L,=O, 

In general, the the y-y' transition cross section can be 
written in the form 
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u ( y -  y l ) = E  {QY)u~P)(z-I')}. p = 1 , 2 .  (29) 
k , ~  

The angular factor QY) is 

It has been assumed in these formulae that the atom can 
be described in the LS coupling scheme. The appropriate 
expressions for other coupling schemes are given in Sec. 5. 

5. Q-FACTORS FOR TRANSITIONS BETWEEN EFFECTIVE 
LEVELS 

The formulae for transitions between levels summed 
over the various quantum numbers can be obtained from the 
expressions given above, making use of Eq. (3) with subse- 
quent division by the required statistical weight for the pur- 
pose of averaging. For example, summing over the total an- 
gular momenta J and J' of the initial and final states reduces 
simply to deleting the appropriate M-factor from the product. 
Likewise, summing over J' leads to an additional relation- 
ship between the statistical weights. Since general kinetic 
problems require three different types of summation over the 
momenta of the initial state (J ,  L ,  and S in the case of LS 
coupling), and correspondingly three different types of aver- 
aging over the momenta of the final state, we expect at least 
26 different possibilities. We now show that the factorization 
of the dependence on quantum numbers demonstrated by the 
foregoing formulae for the Q-factors can be supplemented by 
factorization of the constraints, automatically yielding the 
required summation (averaging). 

Let 

and assume that ( J )  = 0 denotes summation over the corre- 
sponding quantum number. Next, define the transition func- 
tion Pqk(SLJ): 

- M;,,(SLJ), if (J)>O and (Jr)>O,  
- (32) 

where the statistical weighting factor w is 

It is easy to see that the sum of Pqk over J and J' is 1. The 
expression for the angular factor, which automatically allows 
for all possible averaging and summation over the angular 
quantum numbers of the optical electron, can be written in 
the form 

For LS coupling, the factor Qqk is 

For jj coupling, Qqk can be obtained by means of the familiar 
transformation formulae 

where j is the angular momentum of the optical electron. 
Similarly, for jl coupling, 

The multipole order k of the interaction specifies the 
range over which the orbital angular momenta can vary; q 
acts like a "spin multipole order." A value of 0 for q or k 
signifies a transition with no change in the corresponding 
angular momentum. The value of k ranges from 11 - 1') to 
I+ 1' , and q takes the values 0 and 1. 

We have q = 0 for radiative transitions or collisional 
transitions with no exchange term (for example, excitation of 
atoms and ions by heavy particles), and the angular factor, 
which automatically takes account of possible summation for 
LS coupling [cf. (8) and (8a)], takes the form 

Analogous formulae for jj and jl coupling follow directly 
from (36) and (37). 

Equation (34) yields an expression for the general angu- 
lar factor Qk in terms of the quantities Qqk, which are sym- 
metric with respect to the initial and final states. Equations 
(35)-(37) show that the Dqk are products of the factors 
Pqk(j3  j2j or ( j3)POm(j3j2j  1), which describe transitions 
among triples of angular momentum j j2j . A single such 
factor corresponds to each such transition. The subscript 0 in 
the second factor corresponds to a conserved momentum 
(one that does not take part in the interaction), rather than to 
an accidentally vanishing value of q or k. 

The sum over all transitions yields the statistical weight 
of the atomic core. One can therefore simply write Qqk as the 
statistical weight of the core multiplied by the product of 
factors Pqk that describe transitions among the appropriate 
triple of momenta. 

Note that just like the indicated prescriptions, Eqs. (36)- 
(38) hold only for transitions in which the momentum cou- 
pling scheme is unaltered. 
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APPENDIX 

We have from (17) that for an electrostatic interaction, 
the radial part is5 

where p  corresponds to the direct interaction and p" to the 
exchange interaction. 

The orbital part is 

Here P  and F are the radial wave functions of the atomic and 
external electrons. Replacing the matrix elements with 3j 
symbols, we can write pk and p; in the form 

pk= ( -  l ) k + l - t l e [ k ] ~ k ,  pi= ( -  l ) k + l + l e [ k ] ~ ; .  (A4) 

The radial integral Rk is 

The exchange integral R; can be expressed in terms of Rk by 
interchanging the functions P I ,  and Flr : 

e 

The spin part p, can be obtained from (A2) at q  = 0 and 
R,= d(q,O). Clearly, then, p,= 2 6(q,0). Similarly, for pi we 
may use (A2) and (A6) with q" = 0, whence q  = 0 or 1 and 
p$'=[qI2. 

Combining the orbital and spin parts then yields Eq. 
(18). 
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