
Cylindrical faceting of crystals in equilibrium with a moving superfluid liquid 
A. F. Andreev 

RL. Kapitsa Institute for Physical Problems, Russian Academy of Sciences, 11 7973 Moscow, Russia 
(Submitted 30 June 1994) 
Zh. Eksp. Teor. Fiz. 106, 1219-1227 (October 1994) 

General relations for surface thermodynamic functions characterizing the interface between a 
helium crystal and a moving superfluid liquid are developed. It is shown that atomically 
smooth crystal facets in the presence of motion are unstable to the formation of pairs of steps 
perpendicular to the liquid velocity. Equilibrium crystal faceting at low temperatures is 
cylindrical in character. The facet shape and the angular dependence of the crystal surface stiffness 
are found. O 1994 American Institute of Physics. 

Helium crystals at low temperatures may be in thermo- 
dynamic equilibrium with a superfluid liquid moving parallel 
to the crystal surface. As is shown below, the relative motion 
of the liquid and the crystal modifies the thermodynamic 
characteristics and structure of the equilibrium crystal sur- 
face. The contribution of the motion to the surface energy or, 
in other words, the surface part of the kinetic energy of the 
system, is completely determined by specifying the two- 
dimensional tensor of the surface normal component density. 
This quantity, as a characteristic of the superfluid liquid-solid 
interface, was introduced earlier' and calculated for a ran- 
domly rough surface. 

In the present work, the surface normal density is found 
for crystal surfaces differing from the atomically smooth ba- 
sis facet in having a small concentration of steps on them. 
The singularity in the concentration dependence of the sur- 
face normal density turns out to be so strong that, for an 
arbitrarily low liquid velocity, the atomically smooth facet is 
unstable with respect to the spontaneous formation of pairs 
of steps perpendicular to the relative liquid velocity. The 
physical reason for the instability is the large negative kinetic 
energy of a single step of perpendicular orientation. At the 
same time, the energy of the steps directed parallel to the 
velocity is positive and equals its stationary value. A direct 
consequence of this instability is that low-temperature crystal 
faceting must have a very unusual character. The intersection 
of the crystal surface and a plane parallel to the velocity is a 
regular curve having no rectilinear portions. Below we find 
the actual form of such a curve and the corresponding angu- 
lar dependence of the crystal surface stiffness. At the same 
time, the intersection with a plane perpendicular to the ve- 
locity has the same form as for no motion, i.e., it does con- 
tain a straight portion at low temperatures. 

Thus, the faceting of a crystal in equilibrium with a 
moving superfluid liquid becomes cylindrical in character. It 
is interesting to note that this type of faceting was treated 
earlie? thermodynamically for low-symmetry facets, which 
is what any facet becomes if there is a preferred direction of 
the relative liquid velocity. 

It should be emphasized that in the general case the de- 
pendence of the kinetic energy of a crystal-liquid flow sys- 
tem on the shape of the crystal is a bulk effect. The surface 

kinetic energy contributes little to the shape-dependent part 
of the total kinetic energy. However, in our case, which is 
concerned with surface structure changes (the appearance of 
a stepped superstructure) near certain special orientations, 
with no marked changes in the global macroscopic crystal 
shape, it is precisely the surface kinetic energy which plays 
the dominant role. In a similar way, the effect of liquid mo- 
tion on other, say strictional, surface  structure^^-^ may be 
described. 

1. GENERAL THERMODYNAMIC RELATIONS 

Consider the helium crystal-superfluid interface at low 
temperatures, when the bulk normal component may be ne- 
glected. In thermodynamic equilibrium the difference be- 
tween the crystal velocity v, and the superfluid velocity vl is 
parallel to the interface. The phase boundary can always be 
chosen so that there is no surface The surface mo- 
mentum p,, which is also parallel to the interface, is then 
invariant under a Galilean transformation. The surface nor- 
mal density vffp is defined1 as the coefficient of proportion- 
ality between the Galilean invariants p, and v, - v l :  

Psa= v a p ( ~ c - ~ ~ ) P  (1) 

where the indices a and p may assume two values in the 
interface plane. 

For p,# 0, the energy per unit area of the surface, a, is 
not Galilean-invariant. Its value a(v, ,vl) in an arbitrary ref- 
erence frame relates to its value a1 in the frame fixed in the 
liquid by the Galilean transformation 

and al considered as a function of the surface momentum 
p, satisfies the thermodynamic identity 

which implies the symmetry of the tensor vap.  
In view of Eqs. (1) and (3), for low velocities, 

where v = v, - vl and a. is the surface energy at vl = v, = 0. 
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By substituting (4) into (2) we find the surface part 
a - a .  of the kinetic energy of the system: 

In the general case the tensor components vap need not 
satisfy any thermodynamic inequalities. So the only conclu- 
sion to draw from Eq. (5) is that if in the rest frame of the 
liquid (v l  = 0 )  the surface kinetic energy a - a. is positive, 
then in the crystal rest frame (v ,=  0 )  it is negative, and vice 
versa. 

If a crystal at rest (v ,= 0 )  is in liquid flow vl + 0, the 
equilibrium structure at each point of the surface should sat- 
isfy the condition that the local surface energy 

be minimized for a given v =  - vl ,vl being the local value 
of the tangential velocity of the liquid. It is important to 
emphasize (see above) that the surface structure changes we 
are discussing must not be accompanied by any substantial 
changes in the global macroscopic shape of the crystal. 

As the surface structure is clearly unchanged by the Gal- 
ilean transformation, in an arbitrary reference frame the ex- 
pression 

should be a minimum, where v ,  is the crystal velocity and 
vl is the local liquid velocity. 

It is of interest to explore the condition that (7) be a 
mimimum for a crystal of finite size moving as a whole with 
velocity v ,  in an unbounded liquid in a reference frame in 
which the liquid velocity vanishes at infinity. In this frame, 
the system is characterized by an energy spectrum 
E=E(P), where E and P are the total energy and total mo- 
mentum and dE = v,dP (see Ref. 8). The thermodynamically 
stable states correspond to an energy spectrum satisfying the 
condition that the energy be minimal for a given value of the 
momentum. By applying the Legendre transformation 

we find the thermodynamic potential E',  which in view of 
Eq. (9) is a minimum at a given velocity v , .  Our case, then, 
implies the minimization of the local values Ei of the surface 
part of the potential E' 

where Es= a (v ,  ,vI)  and ps are the local values of the sur- 
face parts of the energy E and the momentum P. By substi- 
tuting (1) and (5) into (10) we obtain an expression identical 
to Eq. (7): E; = a , .  

The sign of the surface kinetic energy can be specified in 
the case (of importance here) in which the dominant role is 
played by a surface superstructure having a period much 
larger than the crystal lattice period. Suppose a crystal, the 
macroscopically flat surface of which has such a superstruc- 
ture, moves parallel to its surface in a liquid which is at rest 
at infinity. The presence of a moving superstructure gener- 
ates a motion in the liquid which propagates into the liquid a 

distance on the order of the structure period. Macroscopi- 
cally (i.e., when all quantities are averaged over regions 
much larger than the structure period), the kinetic energy of 
this motion is the total surface part of the kinetic energy of 
the system in the present case. It is positive and hence the 
surface under study is characterized by a surface normal den- 
sity vUp  satisfying the condition that the quadratic form 
vapv,vp>O be positive definite. According to Eq. (6), the 
surface kinetic energy a, - a. in the crystal rest reference 
frame is then negative. Since it is precisely a, which pos- 
sesses the minimal property at a given velocity, this clearly 
implies that the motion of the liquid favors the formation of 
superstructures and generally of any types of macroscopic 
roughnesses at the surface. 

2. BASIS FACET STRUCTURE 

Suppose that on the initial, atomically smooth basis facet 
a superstructure represented by a system of parallel steps 
forms. For the overall surface orientation to conserve, the 
average concentrations of the positive and negative steps 
must be equal. Suppose also that the total step concentration 
c = n a ,  where n  is the total number of steps per unit length 
and a the lattice period, is small compared to unity. In the 
absence of motion the surface energy a .  per unit area is 

where cur) is the surface energy of the initial smooth facet 
and pa is the energy per unit step length. 

Let the crystal move with velocity v parallel to the flat 
mid-surface and let the liquid at infinity be at rest. The prob- 
lem of calculating the kinetic energy of the motion generated 
in the liquid by a stepped-surface crystal moving in it is 
analogous to the A. Kosevich-Yu. ~ o s e v i c h ~  problem con- 
cerning the kinetic energy of the steps involved in the crystal 
growth process. At distances r from the axis (identical with 
the step) such that a e r + a l c ,  a moving step generates an 
axisymmetric motion in the liquid with velocity v l ( r )  di- 
rected either away from the step axis or toward it, depending 
on the sign of the step. Assuming the velocity v to be small 
compared to the sound speed, the liquid can be considered 
incompressible. From the incompressibility condition we 
find 

where v ,  is the projection of the crystal velocity on the 
x-direction perpendicular to the step direction, so that 

The kinetic energy of the liquid motion resulting from 
the motion of a single step is 

where co is a constant of order unity and p is the liquid 
density, and where the logarithmic integral is cut off at the 
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lower limit at r -a and at the upper at r - a le .  From this the 
surface energy in the liquid rest reference frame is found to 
be 

corresponding to a single nonzero component in the differ- 
ence vap(c) - vap(0): 

According to Eqs. (7) and (11), the surface energy in the 
crystal- fixed frame, which must be a minimum at a given 
velocity v, has the following form: 

From the minimization condition for (12) we find that the 
steps must be arranged perpendicular to the velocity v and 
that their equilibrium concentration 

is exponentially small at small velocities. 
For given positive- and negative-step concentrations, the 

structures may vary as to the alternation and arrangement of 
the steps. We shall not be concerned here with the problem 
of determining the structure in full. Let us only note the 
following. No periodic structure can be in equilibrium. In 
fact, a surface with a periodic structure of steps has a finite 
width 1, which may be defined by 

1 2 =  lim K(x,y), 
lrl- 

where r=(x,y)  is the two-dimensional radius vector in the 
surface, 

is the correlation function, and z = z(r)  is the equation of the 
surface. The average in Eq. (14) is an ordinary statistical 
average. For any surface of finite width one can introduce a 
notion of a "second-generation" step whose energy is finite 
and which corresponds to a displacement of the surface and 
the superstructure as a whole by one lattice period (see Refs. 
10, 11). For a surface containing second-generation steps 
with concentration c, a formula analogous to Eq. (12) holds, 
which shows clearly the instability of the periodic structures. 
One can therefore argue that as a result of the evolution of 
the instability of an atomically smooth facet we are discuss- 
ing, a nonperiodic structure of steps must arise, for which it 
is impossible to introduce the notion of a step perpendicular 
to the velocity. The equilibrium surface should therefore ex- 
hibit unusual properties. Namely, the effective surface width 
1, longitudinal with respect to the velocity is infinite, 

1?= lim K(x,O)=m 
1x1- 

(even at zero temperature). The surface is atomically rough 
in the longitudinal direction. At the same time the transverse 
width 

1;= lim K(O,y)<w 
1~1'" 

is finite (at least at zero temperature. At finite temperature, 
the faceting may be destroyed by local topological excita- 
tions of the dislocation-loop type, see Ref. 12). The surface 
is atomically smooth in the transverse direction. 

The basis facet properties we have formulated corre- 
spond to the cylindrical crystal faceting previously 
considered2 for low symmetry facets. The cylindrical face- 
ting is the appearance at the crystal surface of singular por- 
tions, of finite size, one of whose two principal radii of cur- 
vature is infinite (in our case, this is the radius of curvature 
of the curve obtained by cutting the surface with the plane 
perpendicular to the velocity). It may also be said that the 
equilibrium basis facet is characterized by effective steps 
longitudinal with respect to the velocity having finite energy, 
and transverse effective steps with zero energy. 

3. SURFACE STIFFNESS 

The above results enable one to predict the equilibrium 
crystal shape near the point where the basis facet appears at 
the crystal surface, and to determine the thermodynamic 
functions of the vicinal facets. Since the surface is cylindri- 
cal, it is of particular interest to find the form of the cylinder 
generatrix, i.e., of the curve which is obtained when the crys- 
tal surface is cut by the xz plane passing through the surface 
normal at the point where the basis facet emerges (2 axis), 
and through the velocity vector v (x axis). Let 
h =dzldx = tan$, where z =z(x) is the equation of the re- 
quired curve and $ the angle between the surface normal at 
point x and the z axis. It will be assumed that B>O(h > 0)  
and x > 0. The shape of the surface z = z(x) for x <  0,  and its 
properties for O<O(h<O), are determined easily by using the 
symmetry of the problem under the transformation x--t -x; 
this symmetry implying, for example, that z(-x)=z(x).  

For the vicinal facets the angle $ is small. The surface 
thermodynamic functions are calculated easily by assuming 
that, apart from the condition 1341, the angle 0 also obeys 
B%c, where c is the equilibrium step concentration at the 
basis facet, Eq. (13). The concentration h of the steps of one 
sign which are necessary for the overall orientation to change 
by an angle 8 with respect to the basis facet is then large 
compared to the concentration of the steps of the opposite 
sign, so these latter may be neglected. The (incompletely 
known) structure of the equilibrium basis facet is not impor- 
tant for 8 9 c .  According to Eq. (12), the contribution ha, of 
the kinetic energy of the steps to the surface energy a, is 

For future convenience, we introduce instead of a,(B) the 
function 

f ( h ) =  Jl+h2aC($). (16) 
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The surface stiffness &( 8) for small 8 may be defined by the 
two equivalent expressions 

In the absence of liquid motion (v=O), the surface stiffness 
of the vicinal facets is due to the long-range step-step inter- 
action and vanishes linearly as h-0: &(h) = 2 yh (see Ref. 
11, p. 47), where y is a positive interaction constant. By 
adding the second derivative of (15) it is found that 

The motion of the liquid with velocity v thus has the 
consequence that as the angle 8 is decreased the surface stiff- 
ness $8) first decreases linearly, then reaches the minimum 
value 

at 8= v (pa14 rr y)'/2, and finally increases inversely as 8. At 
the boundary h-c of the region of applicability of Eq. (18), 
the surface stiffness reaches the exponentially large maxi- 
mum value 

It would be interesting to observe the surface stiffness 
features discussed above by applying the method of Ref. 13 
using the experimental angular dependence of the crystalli- 
zation wave spectrum. 

4. EQUILIBRIUM SURFACE SHAPE 

Integrating Eq. (18) twice and using the second of Eqs. 
(17) we find the surface thermodynamic potential f(h) of the 
vicinal faces, 

Here a. and p are the constants of integration. The former is 
obviously the surface energy of the initial atomically smooth 
face, and the latter the step energy at this face (divided by the 
lattice period a). 

In order to find an equilibrium curve equation z=z(x) 
corresponding to the expression (19) for the surface potential 
f(h), it is convenient2 to introduce, instead of h, the new 
variable 

and to apply the Legendre transformation by introducing a 
new potential 

To within the normalization of the variables, the poten- 
tial f =f(v)  viewed as a function of the variable 7 is the 
same function as z = z(x). Namely, 

where X is a scaling normalization factor determined by the 
specific value of the crystal volume. 

Equations (20) and (21) represent a parametric defini- 
tion, with h the parameter, of the function f = f (v) .  The 
condition for their applicability is given by the inequalities 
1 B h B c, where c is the basis facet step concentration. Using 
Eq. (22) we find the parametric equation for the curve 
z = z(x) 

where g= ylP  and xo= (pa/2.rrp)v2 are dimensionless pa- 
rameters and x o 4  l .  In Eqs. (23) the scaling factor is chosen 
to be 1/P, which corresponds to taking for the unit of length 
the quantity AP, the size of the flat portion of the basis facet 
in the absence of motion (v =O). It is also assumed that the 
z axis points into the crystal and that the origin of the z 
coordinate coincides with the point where the basis facet 
appears at the surface, and thus corresponds to the condition 
z = 0  for h=O. 

On its small-x side the region of applicability of Eqs. 
(23) is bounded by the condition x+xo, which corresponds 
to the condition h B c  above. For x5xo ,  the specific structure 
of the system of steps on the basis facet becomes important. 
The upper boundary of the region of applicability of Eqs. 
(23) lies at x > l  and corresponds to the inequality x 
- 14 1,  which is equivalent to h 4 1.  

If xBxo holds, while we have x< 1 and 1 - xPxo,  then 
from Eq. (23) we find the simple equation 

For x >  1,  but 1 Bx  - 1 Bx,, we obtain 

which corresponds to the known (see Ref. 11, p. 58) crystal 
shape behavior in the absence of liquid motion near the 
boundary of the flat portion. 

In conclusion, the motion of the liquid results in the 
destruction of the atomically smooth state of the surface in 
the transverse (relative to the velocity) direction as well as 
modifying the character of the angular dependence of the 
surface stiffness. Instead of &ah ,  for h sufficiently small Eq. 
(18) suggests &ah-' .  On the other hand, the motion has an 
orienting effect on those steps already in existence, by align- 
ing them perpendicular to the velocity. If in the absence of 
motion the surface was atomically rough and its step concen- 
tration low, then the motion is expected to make the surface 
atomically smooth in the direction perpendicular to the ve- 
locity, thus leading to &xh, . In the longitudinal direction, 
the law &"hi1 mentioned above may operate. The features 
discussed may be of significance in processing 
e ~ ~ e r i m e n t s ' ~ , ' ~  on the angular dependence of stiffness, in 
which motion of the liquid due to heat flow is possible. 

I wish to express my gratitude to G. Frossati, R. Jochem- 
sen, K. Keshishev, and A. Parshin for useful discussions. 
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