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Using the lln expansion, analytical formulas for wave functions (and in particular for the 
asymptotic coefficients clp at zero) in an arbitrary potential V(r) are obtained, valid in both the 
classically permitted and sub-barrier regions. Comparison with the exact solutions and 
numerical calculations for power and short-range potentials shows that the region of applicability 
of the formulas can be stretched to small quantum numbers n-1 (for states with p=O and 
1, where p is the number of nodes in the radial wave function). With increasing p the accuracy 
of the formulas decreases, but in this case the WKB method may be applied, and as a 
result rG(0) for states with arbitrary quantum numbers can be calculated. When using WKB, a 
generalization of the turning-point matching conditions for quasiclassical wave functions 
is essential. O 1994 American Institute of Physics. 

1. INTRODUCTION 

At the present time the 11N expansion is widely used in 
theoretical physics (see, e.g., Refs. 1-20). In quantum me- 
chanics and in atomic physics it is useful in obtaining the 
energies of both discrete4-' and quasistationary9-12 levels. 
The attractive features of the method are its close relation to 
classical mechanics and its applicability to many- 
dimensional nonseparable problems11-13 and to the many- 
body problem.11314,15 It should also be noted that, for poten- 
tials commonly found in physics, the first two or three terms 
of this expansion suffice to determine energy eigenvalues 
reasonably accurately even in the case of small quantum 
numbers n-1 (see Refs. 9-12 for examples). 

There are several versions of the 11N expansion differ- 
ing in the choice of the parameter N, the "shifted" 1 /N 
expansion being an We will be concerned with 
the version which has been suggested in Ref. 9 and applies to 
both discrete and quasistationary states. In this case N=n = 1 
+p + 1,  where p =0,1,2 ,... is the radial quantum number 
(also frequently denoted by n,) and 1 is the orbital angular 
momentum, it being understood that p is fixed and l+m. 
Therefore in what follows we will speak of the l l n  expan- 
sion (in the case of the Coulomb field n is the principal 
quantum number of the state). 

In the present work the l l n  expansion method is applied 
to the calculation of wave functions. Over most of the range 
within which the motion of the particle is finite, this poses no 
problems of principle since higher l l n  corrections to $(') 

X(r) are in fact anharmonic ones, for which effective calcu- 
lation methods have been d e ~ e l o ~ e d . ' ~ ~ ~ ~ ~ ~ '  

On the other hand, there are many problems in which the 
wave function deep under the barrier and, in particular, the 
asymptotic coefficients for r+O and r+m, are important: 

where K =  ( - 2mE) 1'2/fi. The values of @(0) (or more pre- 
cisely the lclPl2) give the probability of finding particles 
close together and are particularly important parameters for 
systems having interactions involving two very different ra- 
dii (for example, the nuclear and Coulomb interactions). 
Thus, they are crucial in calculating the decay widths of 
charmonium21 and b o t t ~ m o n i u m ~ ~  or in finding the finite- 
nucleus Lamb shift correction. Examples from another area 
of physics include the nuclear fusion reaction rate for the 
mesomolecules d d p  and d t p  (see Refs. 23 and 24), and the 
probability of muon attachment to an a particle in the course 
of a nuclear reaction.25 

For level shifts in short-range atomic systems (such as 
the hadron atoms pp, e, ~ a ,  etc.), there is a perturbation 
formula in the scattering length, 

where als) is the I-scattering length at a short-range 
("strong") potential V,(r), and where the coefficient clp cor- 
responds to the wave function in the long-range potential 
V(r), i.e. with no account for the perturbation from the po- 
tential V,. If the potential is V(r)= - l l r ,  the coefficients 
clp are given by Eq. (25), and the above formula1) recovers 
the well-known results of Ref. 26 (for 1 = 0)  and Refs. 27 and 
28 (for any I). 

The asymptotic form of the wave function at infinity2) is 
needed in the calculation of the effective radius r!,) (see Ref. 
33) used in the low energy scattering theory;34 in the treat- 
ment of the long-range interaction in atomic systems; in the 
theory of atomic and ionic i ~ n i z a t i o n , ~ ~  etc. Examples of this 
kind could be multiplied easily. 

We briefly outline the contents of the work. In Sec. 2 
analytical formulas (9) and (10) are presented for the asymp- 
totic coefficient at zero, valid for states with p = 0 and 1 in 
an arbitrary smooth potential V(r). Section 3 discusses their 
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accuracy for the cases of power and short-range potentials. It 
is shown that even for small angular momentum 1 the formu- 
las give (G(0) with sufficient accuracy for most physical prob- 
lems. The conclusion (Sec. 4) gives a comparison between 
the l l n  expansion and the WKB approximation corrected for 
the small r region. In Appendix A, higher corrections and the 
associated divergence of the l l n  expansion are discussed 
using exactly solvable potentials as examples. In Appendix 
B, a generalization of the turning point matching conditions 
for quasiclassical wave functions is obtained, markedly im- 
proves on WKB accuracy for small 1. 

2. ASYMPTOTIC COEFFICIENT AT ZERO 

We write the interaction potential as 

where v(x) is a dimensionless function determining the 
shape of the potential; from now on we take h = m = R = 1 .  
We express the energy E and the effective potential (incor- 
porating the centrifugal energy) in the form 

(n = l + p +  1 )  and expand the Schrodinger equation in terms 
of the parameter 1 In: 

For n-+a the particle is localized near the classical equilib- 
rium point ro  (the effective potential minimum position), 
which gives9 

To next order in l l n  the expressions (4) near the point ro  
reduce to the Schrodinger equation for a harmonic oscillator 
of frequency nw, where 

Introducing the variable 

which remains of order unity as n+m, to a first approxima- 
tion we have 

The basic idea of the subsequent calculations is as fol- 
lows. For ( within the main localization region of the par- 
ticle, the anharmonic corrections of order n-112(,n-112t3, 
and n - ' t4  in the potential are treated as perturbations (the 
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same region determines, up to and including terms of order 
l l n ,  the normalization of the wave function). In the sub- 
barrier region, the WKB wave function, including the first- 
order correction in the quasiclassical parameter,3h is em- 
ployed, with l l n  playing the role of the formal expansion 
parameter ti. These two expressions overlap in the region 
1 G (Gn lI2. Their matching yields the required formula3) for 
the asymptotic coefficient at zero, 

accurate to terms - l l n 2  (upper indices, 0 or 1, indicate the 
number of terms retained in the l l n  expansion).  ere^) 

where 

s = 4 p ( p +  1) ,  ~ ~ ( r ) = r - ~ - r i ~ +  w, 

and the quantities w, ro, and Qo(r) have been defined above. 
We have introduced the dimensionless quantities 

the first two of which are associated with the anharmonic 
corrections (n -112aw-3'2 5 and n in the effective 
potential in (3) near the equilibrium point ro, and 
~ = n ( r ~ l r ~ ) ~ ,  where r,=(nw)-'I2 is the amplitude of the 
zero-point oscillations of the particle near the equilibrium 
point.5) Finally, thecoefficients ki in Eq. (14) are determined 
by matching the quasiclassical wave function (with correc- 
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TABLE I. Coefficients ki  in Eq. (14). 

tions of order l l n )  with the anharmonic oscillator wave 
function; their numerical values for p = 0 and 1 are given in 
Table I. Note that while for an arbitrary p the structure of Eq. 
(14) remains, to find the coefficients ki requires more in- 
volved  calculation^.^) 

Equations (9)-(15) determine the value of (CI(0) in ex- 
plicit analytical form for an arbitrary smooth potential V(r). 
Although somewhat unwieldy, calculation of the clp requires 
only single integrals and can easily be carried out numeri- 
cally. We emphasize that although the integrands in J 1  and 
J 2  contain power-law-singular terms as r-+r,, these latter 
completely cancel and so the integrals do converge (as a 
result of the regularization procedure). For the Coulomb po- 
tential and for the harmonic oscillator, the integrals in (12) 
are all done analytically; see Eqs. (23) and (26) below. 

Note that expressions (9) and (10) are asymptotically 
exact for Z-tm (and the number of nodes p fixed). In appli- 
cations, however, one often encounters states with small 
quantum numbers, for which the accuracy of the above for- 
mulas is not a priori obvious. In order to elucidate this ques- 
tion, we now turn to specific examples. 

3. ACCURACY OF ASYMPTOTIC FORMULAS 

We consider the power-law attractive potentials7) 

decrease in changing from N = 4 (anharmonic oscillator) to 
N =  - 1 (Coulomb potential) is explained by the "swelling" 
of the bound state: 

and short-range potentials, for which we take as prototypes 
the Yukawa and exponential potentials lP11l 

p = l  
v ( r ) =  -e-r/r ,-e-r .  

.v 
Figures 1 and 2 give the values of the quantities 

0 - (0)IC 
-1 
0 PI,- c,, ,,- 1 ,  p!;)=c~;)1clp- 1 

a correction a l l n  ensures quite a satisfactory accuracy for 
the coefficients cg, especially for 1 3  1. 

We emphasize that the coefficients themselves change by FIG. 1. Accuracy of the l / n  expansion for fl0) with power potentials: a) 
nodeless states, p = 0; b) p = 1. Dashed lines correspond to the asymptotic 

many of magnitude, as seen Fig. 2. Their de- form (lo), solid curves are constructed from (9), i.e., by including the cor- 
crease with 1 is due to the centrifugal barrier, whereas the rection -l/n. The curves are marked by the values of the exponent N. 

SL for the power potentials, where the clp are the exact asymp- 
totic coefficients at zero obtained by numerical integration of lo-' 
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the Schriidinger equation, and where the c;j9') are the ap- 
proximate forms (9) and (10). From the figures it is seen that - 
for nodeless states (including the ground state) even the "ze- 
roth" approximation (10) is accurate to a few percent. At the 
same time, for the states with p = 1 the accuracy of this lo4 : 
approximation is clearly not sufficient. This is because the 
coefficients d (p )  increase dramatically with increasing p 

- I  

0 

I 

b 2 

(see the Appendix). Nevertheless, for one-node states (p = 1)  104 - a c 
0 5 10 



1%' whereas 1 /n expansion formulas become more accurate with 
increasing I. Here y = 2/(N+ 2), v =  3(N- 2)/4(N+ 2), 
and the parameter 

*.- a + - J o  + ,u ln ( y / e )  
+*---- 

lo-' -------- ------ 
&------+- --------* is a rather insensitive function of the exponent N, varying 

) from a=4 /e=1 .472  for N=-I  to o=e/2=1.359  for 
N B l .  The asymptotic form (20) is nontrivial but follows 
readily from Eqs. (9) and (10). 

In general, with increasing angular momentum 1 the val- 
ues of the I P l p l  decrease monotonically mlln and ml/n2 for 
the approximations (10) and (9), respectively. Sometimes, 
though, nonmonotonic behavior shows up (see curves with 

/-a- 
'6 r 

p = 0 for the harmonic and anharmonic oscillators). This has 
6 : 
8 I 3 ,  to do with the fact that the first two corrections in the expan- 

, , , , p = 9 sion 
f 

cancel, the necessary condition for this being that the first 
FIG. 2. Same as in Fig. 1, for the anharmonic oscillator (N=4). coefficient be small. In the case of a harmonic oscillator 

d,= - 2 . 1 7 . 1 0 - ~ ,  d 3 = l . 2 2 . 1 ~ p 3  forp-0  (see Appen- 

As seen from Table 11, the coefficients clp fall off especially 
sharply (for 1%- 1)  in the case of the Coulomb potential. This 
is explained by the fact that in this case E n =  
- 1/2n2+0 for n+m, and the penetrability of the centrifu- 
gal barrier for such slow particles is of order D p e x p  
( - 41 In 1)-[(21)!1-~; accordingly, clp X D : ' ~ ~  1/(21)!. 

For large I, the numerical calculation of the asymptotic 
coefficients runs into difficulties since they fall off 
factorially,') 

~ ~ ~ ~ a ~ l " + ~ ~ ~ / ( y ~ ) ! ,  (20) 

. . 

dix A), so that Id214d3y Accordingly,  has a minimum at 
n =  - d3/d2.=5.6, in perfect agreement with Fig. la. 

For the short-range potentials the situation is similar ex- 
cept for the shallow level case g=glp, where glp is the value 
of the coupling constant when the lp  level appears (the nu- 
merical values of the gl, are given in Table 111). This is 
illustrated in Table IV for states with p = 0 and in Fig. 3 for 
p = 1. The correction l l n  improves the accuracy of the 
asymptotics considerably, especially in the case p = 1,  and 
for g/g1,22 ensures accuracy to within at least a few per- 
cent for the clp for all 1, including I= 0. 

TABLE 11. Coefficients at zero for power potentials. 

Note. For given 1 and N, the first row refers to states with p =O and the second, to those 
with p = 1 .  The coefficients clp correspond to the potential V ( r )  = r N / ~ ,  i.e., to g = n - 2  in 
Q. (2). 
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range of applicability usually extends3' to values p - 1. One 
TABLE 111. Coupling constants g,, at the instant the level emerges. therefore expects that the l l n  expansion and WKB com- 

bined should solve the problem of the analytical calculation 
of the wave functions and $(0). Here we will consider this 
question by using the examples of the oscillator and Cou- 
lomb potentials, for which exact solutions are known. 

In the case of the harmonic oscillator, V(r) = r2/2, from 
the exact solution of the Schrodinger equation we obtain 

clp= [ 2 r ( n +  1 / 2 ) / r ( n - 1 ) I ' ~ ( 1 + 3 / 2 ) ] ' ' ~ .  (22) 

The parameters in Eqs. (9) and (10) are 0 = 2, ro = 1, 
a= - 2, and p=5/2,  and the integrals in (12) are evaluated 
in elementary fashion to give 

J,(O)= -71192, J 3 ( 1 ) =  291192. 
Note that in the case g=glp  one can develop a modifi- 

cation of the l / n  expansion specifically for zero-energy The lln expansion takes the form -- 
states by setting ~ = ~ - i n  the ~chr i id in~e;  equation and ex- 114 112 np  p2- 1 /24  
panding the wave function and the coupling constant glp in a 
power series in l l n .  In this way one can obtain a formula 

clP=(:j (sj pjm [ I -  2, 

determining the coefficients c and alp at the instant when (24) 
'P 

the level appears. This question (including the effective- Similarly, for the Coulomb potential V(r)= - l / r  we 
radius calculation) will be treated separately. have 

2'+ 1 
112 

4. QUASICLASSICAL APPROXIMATION FOR &O) 
(25) 

As noted, the accuracy of the l l n  expansion diminishes 
with the number of nodes. In the case p a 2  the approxima- w = l ,  r o = l ,  a = - 1 ,  p = 3 / 2 ,  
tion (9) fails at small values of I .  On the other hand, for 
states with p 2 l  one can employ the WKB method, whose Jo= 1,  J ,=O,  J 2 ( p ) = 0 ,  J 3 ( 0 ) =  1/48,  

TABLE IV. Accuracy of the l l n  expansion for short-range potentials (nodeless states). 

Note. Values of Pj6) are presented [see Eq. (18)]. In cases in which the error 
due to a given approximation exceeds 15%, dashes are indicated. The first 
row refers to the Yukawa potential, the second to the exponential potential. 
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giving 

In these two cases, one can also calculate further terms 
in the lln expansion (see Appendix A). This makes it pos- 
sible to trace the role of higher corrections in the l/n expan- 
sion as the number of nodes increases, and also to show that 
the series in Eqs. (24) and (27) are asymptotic. 

It can be seen just from Eqs. (24) and (27) that the cor- 
rection terms in the l/n expansion increase rapidly with in- 
creasing p ,  so for large p it is natural to change to the WKB 
method. Its application to the asymptotic coefficient clp en- 
counters certain difficulties due to the nonquasiclassical na- 
ture of centrifugal potential for 1-1 at short distances. It is 
commonly that this problem is resolved by in- 
troducing the Langer correction, i.e., by replacing 1(1+ 1)  by 
(1+1/2)'. In the case of the Coulomb and oscillator poten- 
tials this approach leads to exact expressions for the energy 
levels, whereas for the asymptotic coefficients it yields the 
values (B2) and (B3), which we denote by c{,4) 

It turns out, however, that for 1 fixed these formulas are 
not asymptotically exact for p--tm, the Langer transforma- 
tion notwithstanding. For the harmonic oscillator ( N =  2) we 
have 

and in the Coulomb potential case ( N =  - 1) we have 

where vl= lim cj,4)lcIp forp-m. The explanation is the fail- 
ure, in the present case, of the usual36 linearized-V(r) match- 
ing condition for the wave functions on either side of the 
turning point. For the details see Appendix B, which shows 
that the expressions (B2) and (B3) must both be supple- 
mented by the factor (B8). After this, the correct quasiclas- 
sical formulas for the coefficient at zero become 

FIG. 3. Accuracy of the 1111 expan- 
sion for short-range potentials ( p  
= 1) :  a) Yukawa potential; b) expo- 
nential potential. The curves are 
marked by the values of the orbital 
angular momentum I. 

Here 

These formulas are free from the shortcoming mentioned 
above: if p Sl and the angular momentum 1 is fixed, then the 
coefficients cif) rapidly approach their exact values, merging 
into them as p + m :  

The values alp in the limiting cases 1=0,1 and 1P1 are 
listed in Table V, from which it follows that the corrected 
quasiclassical formulas (29) and (30) provide accuracy to 
within a few percent for clp even if the number of nodes 
satisfies pa l .  On the other hand, for nodeless states (as well 
as for p = 1 and 1>3) the l/n expansion, which is asymptoti- 
cally exact for large 1 and arbitrary (but fixed) p ,  is prefer- 
able. Thus, using the lln expansion for p= 0 and 1 and the 
WKB method for p a l  provides for clp analytical formulas 
completely covering the range of possible values of quantum 
numbers. 

The approach we have developed may be used in calcu- 
lating wave functions for finite r and in finding asymptotic 
coefficients of practical interest for r+m. 

The authors express their gratitude to S. G. Pozdnyakov 
for carrying out the numerical work. 
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TABLE V. Accuracy of the 1111 expansion and of the WKB method for (G(0). 

Note. The ratios c ~ ~ ) / c l p  and cjf) /clp are presented [quasiclassical values for 
p+m, see Eq. (32)]. 

APPENDIX A where Pk=O for k even. 

Higher order lln expansion corrections for the Coulomb Note that the coefficients in (21) relate in a simple man- 

and oscillator potentials ner to the Pk: 

Let d2= P z - t  P:, d 3 = ~ 3 - f  Pi ,  

d4=P4+ fi2&- $ P;, ... . 
('41) 

('49) 

For the harmonic oscillator this yields the values given in the 
where the pk are coefficients dependent on the radial quan- bulk of the paper, and for the coulomb we have 
tumnumberp~n,.Theycanbefoundexplicitlyincasesfor ( p = 0 ) : d 2 = - 2 . 1 7 0 . 1 0 - 4 , d 3 =  - 1 . 7 6 6 . 1 0 - ~ . I n t h e  
which the exact solutions of the Schrodinger equation are latter case the coefficients d2 and d3 have the same sign, so 
known. For the Coulomb potential we have, for p = 0 ,  the corresponding curve in Fig. l a  is monotonic. We also 

cro=2"n-("+')[(2n-  I ) ! ] - " ~ ,  
display their values for p = 1 : 

d2=1.020( -2) ,  d3=6.210(-3)  for N=2,  

cyo= ( T I I ~ ) - " ~ [  5) '. (A21 d2= -0.245, d3= -0.309 for N= - 1. 

Using the Stirling formula, this gives This agrees with the shape of the curves in Fig. lb. 
Finally, for k+m, 

~ ~ = ~ ~ + ~ / 2 ~ + ' k ( k +  1). ('43) 
pk=const[l - ( -  l ) k ] ~ ( k ) a - k ,  p=O, 

It can be shown" that for an arbitrarv D 
(A101 

, r 
where a =(27i-)-' and ( 4 ~ ) - '  for N =  2 and N =  - 1, respec- 

1 I tively. Thus, the 11n expansion for clp is a divergent (asymp- 
B k + l ( 2 ~ + 1 ) ~ B k + l ( ~ c ~ )  , (A41 totic) series. 

where B,  and B,(x) are the Bernoulli numbers and polyno- 
mials, respectively. In particular, APPENDIX B 

1 1 Quasiclassical wave functions including the Langer 
P 1 = ~ ( 4 2 ~ ' + 1 8 ~ +  11, ~ - - ~ ( 1 0 ~ ~ + 7 ~ + 1 ) ,  correction ' - 3 2  

1 As is well known,36338 the centrifugal potential at 1- 1 
p -- [p2(2p+ 1)'- 112401. 

3-24 (A5)  does not satisfy the quasiclassical condition. Therefore the 
quasiclassical solution yields a wrong wave function behav- 

Similarly, in the harmonic oscillator case ior for r-0, one different from Eq. (1).  However, if one 

1 1 makes the change of variable r=e-x  and transforms to the 
Pk= I Bk+ , ( p  + 112) - I  Bk+ , ( 1 / 2 ) ] ,  (A6)  function w = exnXlP, the Schrodinger equation becomes 

- 1 

[i.e., it retains its form, with energy represented by 

' [ 4 i 0 )  
- (21 + 1)2/8)]. The point r = 0 now moves to x =m and large p -- p 4 - - p  +- . 

3-12 (A7) distances x are quasiclassical for Eq. ( B l )  When applying 

The states with p = 0 satisfy the relation 
the WKB method to this equation it is found that in the 
Bohr-Sommerfeld auantization rule. when converted back to 

(AS)  the original variable r, the Langer correction automatically 

366 JETP 80 (2), Februaty 1995 Karnakov et a/. 366 



appears38939. For the asymptotic coefficients at zero, in the 
case of the oscillator and Coulomb potentials we get 

However, in calculating the sub-barrier wave function, 
and in particular $(O), some refinement is needed. An impor- 
tant feature of the WKB method is matching the quasiclassi- 
cal solution on either side of the turning point by linearly 
expanding the potential. In the case of Eq. (Bl) with 1-1, 
this approach fails and must be refined. 

For this, let us discuss the matching of the quasiclassical 
solutions of the Schrodinger equation for a one-dimensional 
exponential potential V(x) = - ~ , e - " / ~ .  Making the substi- 
tution (m = h = 1)  

we obtain the solution of the Schrodinger equation in terms 
of the Bessel functions as 

(with the boundary condition @+O a s x h m ) .  Using the z B 1  
asymptotics of J,(z), in the region of classical motion we 
obtain (b the turning point) 

The asymptotics of J,(z) as 2-0 (i.e., r+O) leads to a 
quasiclassical expression for the sub-barrier wave function: 

(x>b,  or r<r,), and 

Thus, it is only in the case vB1 [i.e., 1 9 1  for Eq. (Bl)] that 
we obtain the well known result36 C2/C1 = 112. 

Looking at Eq. (B1) near the turning point, one may 
neglect the term Ve-'*w for the oscillator and ~ ~ ~ e - ~ ~ w  for 
the Coulomb potential, which gives 

Using (B8) and (B9) we arrive at Eqs. (29) and (30), which 
are asymptotically exact for p+w and an arbitrary I. 

In conclusion, a similar treatment goes through in a more 
general case when the potential V(r) for r-+O has a power- 
law behavior 

The matching condition (B8) retains its form, and now 

(21+ 1 ) / (2+  a ) ,  - 2 < a < 0 ,  
v=  [ l+ 112, a>O.  

Thus the parameter v involved in the matching condition for 
quasiclassical wave functions on either side of the turning 
point depends on both the exponent in (B10) and the orbital 
angular momentum I. 

')Generalization to an abnormally large scattering length, when the strong 
potential V ,  has a shallow "nuclear" level, can be found in Refs. 29-31, in 
which the rearrangement of the atomic spectrum, or the Zel'dovich 
effect,32"' is discussed. 

' ) ~ o t e  that as opposed to the case r+O this asymptotic form is not univer- 
sal: Eq. (1) holds if the potential falls off faster than l l r 2  as r-+m. For 
potentials with a Coulomb tail, the asymptotic form is altered. 

"A detailed derivation of this formula involves rather lengthy calculations, 
in particular the regularization of divergent quasiclassical integrals. This 
requires special discussion, as does the derivation of wave functions for 
finite r .  

4i~ormula (10) for the zeroth approximation in lln was obtained earlier." 
 ere the following point must be made. In the present work the definition 

of the quantities w and 6 differs from the earlier namely: o 
= h r i 2 ,  6=h1'*z,  the tilde denoting the quantities from Ref. 37. The 
frequency of small oscillations in thc coordinate r is w,=nw, and the 
frequency of those in the variable ( i s  unity. 

 he relative simplicity of the cases p=O and 1 has to do with the fact that 
the Hermitian polynomial in (8) reduces to just one term; this considerably 
simplifies the wave function matching procedure. 

7 i ~ h e  case of N=O corresponds to the logarithmic potential. 
 ere and in what follows, unlike Eq. (2), the factor nZ is incorporated into 

the coupling constant g. Due to scaling, the change in the asymptotic 
coefficient then reduces to multiplication by n-(2'+"'l(Nt"). 
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