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The problem of needle crystal and its stability in dendritic growth is considered. The analytical 
theory for steady-state growth4 is extended to the case of a nonstationary perturbation. It 
is shown that, as in the two-dimensional ( 2 0 )  case, in the discrete spectrum of steady-state 
solutions only the unique solution, which corresponds to the highest velocity, is stable 
against the tip splitting perturbations. The instability spectrum for the solutions with lower 
velocities is enriched compared to 2 0  due to angular modes. The most unstable modes correspond 
to the eigensolutions which are localized near the extremum of the anisotropy of surface 
energy in the azimuthal direction. O 1995 American Institute of Physics. 

1. INTRODUCTION 2. VELOCITY SELECTION 

The pattern selection in dendritic crystal growth was 
considered first by 1vantsov.l The interest in this problem 
was revived later with the important discovery that the 
unique solution from the continuous family of solutions 
found by Ivantsov is physically selected by effects of aniso- 
tropic surface ten~ion .~  Mathematically, the selection mecha- 
nism is provided by a singular perturbation of the initial 
integral equation by differential terms that come from the 
curvature of the liquid-crystal interface. These results were 
obtained primarily for 2 0  dendrite. The solution of the 3 0  
problem turned out to be more intricate since, for a realistic 
crystal anisotropy, the shape of a dendrite deviates from a 
paraboloidal shape and the mathematical structure of the 
theory becomes more involved. A numerical approach to the 
nonaxisymmetric problem was presented by Kessler and 
Levine? who pointed out the following aspect of the prob- 
lem. In the 2 0  case or in the axisymmetric case the selection 
of the growth velocity follows from the solvability condition 
of smoothness of the dendrite tip. In the 3 0  nonaxisymmet- 
ric case a solvability condition must be satisfied for each of 
the azimuthal harmonics. Kessler and Levine made several 
approximations and performed only a two-mode calculation, 
but the crucial point of their analysis is that they found 
enough degrees of freedom to satisfy all solvability condi- 
tions. 

Recently, an analytic theory of three-dimensional den- 
dritic growth has been developed by Ben Amar and ~ r e n e r . ~  
In the framework of asymptotics beyond all orders, they de- 
rived the inner equation in the complex plane for the nonaxi- 
symmetric shape correction to the Ivantsov paraboloid. The 
solvability condition for this equation provides selection of 
both the velocity of the dendrite and the interface shape. 
Below, we reexamine this approach in order to elucidate 
some points of the derivation and extend it to include a non- 
stationary perturbation. 

The Stephan problem for dendritic growth consists in 
solving the stationary heat-diffusion equation 

where D is the diffusivity coefficient, v is the stationary 
growth velocity in the z direction, with the boundary condi- 
tion 

where Tliq and T,,,, are the temperature profiles of the liquid 
and crystal, respectively, c is the specific heat, L is the latent 
heat, n is a unit vector normal to the interface, and v, is the 
normal velocity. The temperature at the interface should be 
equal to the melting point. It is convenient to introduce the 
dimensionless field, 

where T ,  is the temperature far ahead of the dendrite. The 
shape of a dendrite is given by z= l(r), where r=(x,y). At 
the tip the dendrite is close to a paraboloid, 

Rescaling all the lengths by p, we can solve Eq. (1) with the 
boundary condition (2), obtaining the temperature distribu- 
tion 

where p ~ v p l 2 D  is the Peclet number, G is the Green's 
function, 

and 
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Ignoring the surface energy, the temperature of the interface 
should be constant, 

where T ,  is the equilibrium melting point. 
Among solutions with circular symmetry, only the pa- 

raboloid {= - r2 /2  provides a constant A throughout the in- 
terface, with a unique relation between the undercooling A 
and the Peclet number p: l  

where E l ( p )  is the exponential integral function. 
However, a solution of the form 

lo= - r 2 / 2 +  2 Amrm cos mcp, 
m 

where cp is the azimuthal angle in the x,y  plane, retains a 
constant A throughout the interface, when the Green's func- 
tion in (5) is expanded to linear terms in Am's. We believe 
that Eq. (10) provides a satisfactory solution of the Stephan 
problem with a vanishing surface energy even for finite Am's, 
which should be found from a solvability solution with al- 
lowance for the surface energy.3.4 

For a small effect of the surface energy, the interface 
shape is only weakly perturbed, 

~ ( r ) = ~ ~ ( r ) + ~ 1 ( r ) 7  ( I 1 )  

where { lG{o .  The left-hand side of Eq. (5)  should be cor- 
rected by the Gibbs-Thomson shift of the melting point due 
to the finite curvature of the interface, 

where do is a microscopic length which specifies the scale of 
the surface energy. The expression for A,({) will be dis- 
cussed below. Equation (5),  taken at z={ (r ) ,  after lineariza- 
tion of its right-hand side, is written as 

where u=do /pp  is a small parameter of our problem. 
We consider separately the local term, which is propor- 

tional to {(r) ,  and the integral term. The coefficient of ( , ( r )  
can be calculated, in general,2 from the following consider- 
ations. From Eq. (5)  it follows that 

The derivative dA/dz at the interface can be calculated from 
the boundary condition (2),  

where 8 is the angle between the normal and the z  axis. 
Equation (15) reflects the fact that, for a vanishing surface 
energy, the temperature inside the crystal is constant. The 

coefficient of l l ( r )  in Eq. (13) is given by the principal value 
of the corresponding integral, which in turn, should be cal- 
culated as half of the sum of Eqs. (14) and (15). We thus 
obtain 

This expression, which is considered as a function of the 
complex variable, is singular when 

but this singularity is canceled by a contribution from the 
integral term. The latter cannot be calculated in general. 
However, it can be calculated near the singular point (or a 
line of singular points), defined by Eq. (18). To further sim- 
plify our task, we consider the limit of a small Peclet num- 
ber, p+O. In this regime we obtain 

dG 
- - V.P. l l ( r l )  - d2r1  

2 r  I dz 

It is well known that, for the point r  which is displaced to the 
neighborhood vicinity of the singular point (18), the leading 
terms coming from this integral have a local form? i.e., they 
are proportional to { , ( r )  and its derivatives. To calculate Eq. 
(19) in the singular region, we assume that there is a large 
difference of scales in the coordinate dependences of { , ( r )  in 
the lateral and transverse directions to the singular line. In- 
troducing a fast variable u and a smooth variable v ,  we first 
ignore the dependence of 5, on v ,  c l =  C1(u).  Substituting 
into Eq. (19) the expansions 

and 

after integration over v we obtain 

- V.P. I l1 (r1) [Lo(r ) -  Lo(rl)l d2r1 
2 r  R 

where the contour integral around the point u l = u  has its 
origin in the contour representation of the principal value 
integral. We have retained the local contribution and dropped 
out the integral term which turns out to be small for small a. 
Finally, we obtain 

- V.P. I C, ( r1 ) [ l 0 ( r )  - l o ( r l ) l  d2r1  
2 r  R 
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This expression cancels the pole in Eq. (17) since in the 
singular point we have 

The resulting equation is 

A natural fast variable in the singular region is 

where 

With allowance for the identity 

we obtain 

where p is the angle between the vectors V10 and VIVCO1. 
To write an explicit expression for A,(C), we need to 

specify the expression for the surface energy. For a cubic 
crystal the simplest anisotropy of the surface energy is given 
by the expression 

y(8 ,$ )=1+4~[cos4  @+sin4 8(cos4 $+sin4 $)I 

= 1 + 4c(cos4 8+ (314) sin4 8 

+(1 /4)  sin4 8 cos 4$), (30) 

where 0 and 4 are the spherical angles made by the normal 
to the interface. The general expression for A&) is rather 
~ o m ~ l i c a t e d . ~  In the singular region, where tan 0% I V to/ = i ,  
it simplifies to4 

where a= 15s and 8 is the small anisotropy parameter in Eq. 
(30). From this expression it follows that typically 
t = 1 + ilVCO1 t~ all2. We assume and verify it later that C1aa, 
dC1ld t~  all2,  and d2 ~ ~ l d t ~ x  1.  Near the point where 
(v[J2= - 1, we obtain 

with 

The parameter q accounts both for the length scale on the 
curved interface z= CO(r) and for a finite angle between the 
lines lo(r)=const and IV&,(r)l=const. In the same way as 
Eq. (32), we can rewrite Eq. (31) in terms of the variable t, 
and after substituting it into Eq. (25) we obtain 

After substituting t = &'I2 T and 5, = - Euflq, where &=(a /  
4)(7+cos 4+), we obtain the final equation 

where 

This result differs from that in Ref. 4 by cos2 /3 in the de- 
nominator, which gives a small correction for small Am's. 
The difference comes from the fact that the integral term has 
been linearized in Ref. 4 around the Ivantsov paraboloid, 
while here we have linearized it around the nonaxisymmetric 
solution (10). 

Equation (35) is identical to the solvability equation in 
the 2 0  case5 and generates a discrete spectrum of X, if one 
requires that its solution be finite on the rays arg FO, 
2 4 ~ 1 7 .  

In contrast to the 2 0  case, the parameter A is not a 
combination of constants, but should be calculated as a func- 
tion of the smooth variable on the singular line (18). On the 
other hand, it should be equal to the eigenvalue in Eq. (35). 
This condition represents the 3 0  self-consistency equation 
for the determination of u and the shape of the dendrite by 
choosing appropriate values of the coefficients4 A,. This 
problem of the shape selection apparently contains no small 
parameter. However, from the relation &= (a/4)(7+cos 4 4 )  
we realize that the azimuthal anisotropy of & is numerically 
small, so that 117 can be effectively exploited as a small 
parameter. In the linear approximation with respect to this 
small parameter, we can satisfy the solvability condition by 
the correction A ,r4 cos(4cp) with A = 1/96. In this approxi- 
mation no correction to the growth velocity compared to the 
axisymmetric approach is obtained: 

where p(Ao) is given by Eq. (9). 
An important aspect of Eq. (10) is that the shift vector 

r m  cosrnq5 grows at a faster rate than the underlying 
Ivantsov solution. This means that only the tip region, where 
the anisotropy correction is still small, can be described by 
the approximation used by us. This is the crucial difference 
between the 3 0  nonaxisymmetric case and the 2 0  case. In 
the latter case the small anisotropy implies that the shape of 
the selected needle crystal is close to the Ivantsov parabola 
everywhere; in the former case the strong deviations from 
the Ivantsov paraboloid appear for any anisotropy. The de- 
scription of the dendritic tail and the matching of the non- 
axisymmetric shape (10) in the tip region to the asymptotic 
shape in the tail region is given by ~ r e n e r . ~  
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3. INSTABILITY SPECTRUM 

In the 2 0  dendritic growth the solution with the smallest 
value of A, A=A, (with the highest velocity), is stable against 
small perturbations. For larger A j  the dendritic growth be- 
comes unstable, where the exact number of unstable modes 
is equal to j.7-9 In the 3 0  growth the situation is more com- 
plicated because of the larger number of degrees of freedom. 
To demonstrate this point we derive an equation for the time- 
dependent perturbations with higher accuracy than above. 

We start with the general time-dependent equation, 

where i=d[/dt. Substituting into this equation 

and expanding it linearly in in the regime of a small 
Peclet number, we obtain 

where ~ , ( i )  is considered as a nonlinear differential opera- 
tor. 

  he first term in the right-hand side is calculated in the 
manner described above. The term proportional to La can be 
restored by comparison with Eq. (25). To take into account 
the dependence of la on the smooth variable we can, in first 
approximation, identify the latter with the angle cp. A simple 
estimate shows that the derivatives d26ddcp2 come in both 
from the left-hand side and from the first term on the right- 
hand side of this equation, but the latter is greater by the 
factor a-lR. To calculate this contribution, we need to ex- 
pand in quadratically in cp' - cp, obtaining an integral that 
diverges logarithmically for I r - r ' 1 < r ,  

- V.P. I [ i a ( r ) -  in(r1)I[ lo(r) -  i o ( r f ) l  d2r, 
2%- R 

in(r,cp) dl0 1 =-- + -- - V.P. 
2 dr 2%- 

Similarly to Eq. (22), this integral, which is continued to the 
singular region, contains contributions of a different nature. 
One of them comes from integration along the real axis of r ' 

and can be disregarded. The second one comes from integra- 
tion in the singular region and can be singled out with use of 
the relation 

V.P. ( x - x r ) 1 n l x - x r ( c l / ( x ' ) d x '  I 
+ n i  Jx dy '  J y ,  c l / ( -  i ~ " ) d ~ " .  

The second term also contains a logarithmic divergence and 
can be calculated in close analogy to the 2 0  case.9 Bringing 
together all these results, we obtain the equation 

where the left-hand side is still written in a symbolic form, 
while on the right-hand side the fast variable is introduced, 
r = i (1-  &li2r). Here we introduce the notation w=Oali2, 
g(cp)=(7+cos 4cp)1/2/2. The left-hand side of Eq. (43) can 
easily be obtained by linearization of Eq. (35). The final 
differential equation is rather simple, 

where 

This equation can be treated in the spirit of the adiabatic 
perturbation theory, since its right-hand side is small, while 
the left-hand side contains no derivatives in cp. The differ- 
ence from the familiar approach to the solution of the Schro- 
dinger equation is that the operator on the left-hand side is 
not a self-adjoint operator. From a formal point of view, we 
need to find the spectrum and the eigenfunctions of the equa- 
tion 

and the solutions *,, of the adjoint equation, which have no 
rising exponents along the rays arg(r)= +4*rr/7. This equa- 
tion is exactly the same as in the 2 0  case and it has been 
considered in Ref. 9. The solution with the smallest value of 
A, A=Ao (with the highest velocity) is stable and has no 
unstable modes. For larger A,, growth is unstable. Here the 
exact number of unstable modes is equal to j. Substituting 
t n ( r ,  cp) = cl/"(r)A (cp) into Eq. (44), multiplying the result- 
ing equation by &(r)  from the left, and integrating it in r, 
we obtain the equation for A, 

where the numerical factor k, is given by the ratio 
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Here the contour C goes from the ray arg(r)=-4d7 to the 
ray arg(r)=4d7, circumnavigating the point 7=0 from the 
right. It is easy to verify that the number of the integration 
constant is sufficient to provide convergence of the integrals 
in Eq. (48). Solutions of Eq. (47) have to be periodic in rp, 
A (rp+ 27r) =A (cp). The structure of the instability spectrum 
is quite simple: for k,<O, the function A is concentrated 
near the minimum of g(cp), where rp-7r14 and 

for k,>O, the function A is concentrated near the maximum 
of g(cp), where cp-0 and 

As was mentioned above, w, and k, should be found from 
the solution of Eq. (46), which is exactly the same as in the 
2 0  case. For wBl this equation was solved analytically.9 It 
was found that 

and 

k,= -3w,. 

Because k, is negative, the spectrum w,, is given by Eqs. 
(49), (51), and (52). 

In conclusion, we have demonstrated that the stability 
problem of the needle crystal in the 3 0  dendritic growth is 
very similar to that for 2 0  dendrites: 

1) the only stable solution corresponds to the highest 
velocity of growth; 

2) the jth solution, in order of decrease of the velocity, 
has exactly j unstable modes (for a fixed angular quantum 
number m); 

3) with allowance for the angular degrees of freedom, 
each of these modes splits into a dense spectrum of strongly 
anisotropic unstable modes. 
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