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The dependence of the hybridization matrix elements between conduction electrons and localized 
d(f) states on many-electron quantum numbers of atomic configurations is investigated. 
The corresponding anisotropic s -d(f)  exchange interaction is derived. The electron Green's 
functions for one-impurity and periodic Anderson model are calculated, and expressions 
for the Kondo temperature, with allowance for the many-electron term structure, are obtained. 
Experimental data on the Kondo effect for transition metal impurities are 
discussed. O 1995 American Institute of Physics. 

1. INTRODUCTION 

Since   on do's' explanation of the logarithmic anomaly 
in the electrical resistivity of diluted transition metal alloys 
on the basis of the s - d exchange model, the problem of the 
Kondo effect (resonance scattering of conduction electrons 
by localized magnetic moments) has attracted the interest of 
many researchers. The Kondo effect plays an important role 
not only in diluted d systems, but also in a number of 4 f and 
5 f compounds. Some of them (heavy-fermion systems, 
"Kondo lattices") exhibit anomalous electronic and mag- 
netic properties. The unusual "Kondo" state, which is char- 
acterized by quenched magnetic moments and strongly en- 
hanced electronic specific heat and paramagnetic 
susceptibility, occurs below a characteristic Kondo tempera- 
ture T K ,  which corresponds to the divergence of the pertur- 
bation series. 

The Kondo problem is very difficult and leads to elegant 
mathematics. The one-impurity s - d model was solved with 
use of the numerical and analytical renormalization group 
method? and by Andrei and Wiegmann (see Ref. 3) with use 

cients, led to the reduction of T K  in the middle of the 3d 
series, which agreed with the experimental data. At the same 
time, the agreement was not quite satisfactory. 

In the present paper we investigate the Kondo problem, 
beginning with the Anderson model with real atomic con- 
figurations, both for the single impurity and lattice cases. 
This model enables one to take into account the energy split- 
ting of d(f)-levels in the energy denominators. It reduces to 
the s - d  exchange model used in Ref. 6 only when this 
splitting is disregarded.* In Sec. 2, we formulate the model 
and derive the dependence of the effective hybridization ma- 
trix elements on many-electron quantum numbers. In Sec. 3, 
we analyze the corresponding anisotropic s -d(f) exchange 
interaction. In Sec. 4, we calculate the electron Green's func- 
tion in the degenerate Anderson model, and estimate the hy- 
bridization gap and the Kondo temperature. The experimen- 
tal results are discussed in Sec. 5. In Appendix I we calculate 
the Kondo temperature from perturbation theory in a simple 
s - d exchange model without intraconfiguration splitting. 

of the exact analytical Bethe ansatz approach. These results 2. DEGENERATE ANDERSON MODEL AND 
were obtained on the basis of simple theoretical models HYBR~D~ZAT~ON PARAMETERS 
which ignore atomic orbital momenta and are apparently in- 
sufficient to describe quantitatively the real electronic struc- Disregarding spin-orbit coupling, which is a good ap- 
ture of most Kondo impurities. proximation for transition metals and their compounds, we 

Experimental data on the Kondo temperature for the write the Anderson-lattice Hamiltonian in the form 
whole series of d impurities in copper and gold, which were 
obtained from various physical properties, are presented in 
Ref. 4. The dependence on the d-electron number demon- H=H,+ C tkclUcku+ 2 ( ~ w m ~ l c a w m g + ~ . ~ . ) ,  (1) 

ku km u 
strates a sharp minimum in the middle of the series. Such a 
dependence was qualitatively explained by using the results 
of ~chrieffer.' However, as discussed in Ref. 6, the theoreti- 
cal model used in Ref. 5 may be justified only in the case of 
a low-symmetry crystal field or very strong Jahn-Teller ef- 
fect, which fully eliminates scattering by orbital degrees of 
freedom. The latter play an important role for transition 
metal ions (see, e.g., Ref. 7). An estimate of the Kondo tem- 
perature for real atomic configurations was attempted in Ref. 
6 with use of the irreducible tensor operator approach in the 
s - d model with orbital degrees of freedom. An account of 
the LS term and the crystalline electric field (CEF) splitting, 
which arises from summation of the Clebsh-Gordan coeffi- 

where H o  is the Hamiltonian of intrasite interaction between 
localized d(f)  electrons, a&,, and c& are the creation op- 
erators for localized and conduction electrons, respectively; 1 
is the orbital quantum number, t, is the band energy, 

is the matrix element of hybridization. A symmetry analysis 
of hybridization mixing in various situations is performed in 
the  review^.^-'^ To simplify the model, we describe the 
states of conduction electrons by plane waves. Using the 
expansion in spherical harmonics 
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where jl(x) is the spherical Bessel function, we obtain 

where 

r * d r ~ ~ ( r ) v ( r ) j [ ( k r ) ,  (4) 

Rl(r) is the radial wave function, and v(r )  is a spherically 
symmetric potential of the given site. 

In the case of jj coupling (actinide compounds) we must 
replace in (1) Im u-'j,u, where j=Z+ 112 is the total elec- 
tron momentum, and ,u is its projection. 

In the case of strong interaction H ,  it is convenient to 
use the representation of the many-electron (ME) Hubbard x 
operators,""* which reduces H ,  to the diagonal form: 

One-electron operators are expressed in terms of the X op- 
erators as follows: 

where C are the Clebsch-Gordan coefficients, and G are the 
Racah fractional parentage coefficients. The latter quantities 
satisfy the orthogonality relations 

SLa a" C G ~ ~ ~ ~ ~ ~ G : ~ ~ , ~ , = s ~ ~ , , ,  
{S'L'a'} 

(7) 
n 2  [sI[LIG~~;.,~,G:~,',,, 

SL a 

where a are the additional quantum numbers which distin- 
guish different ME terms with the same values of S and L 
(we omit a for simplicity where possible), and [A] = 2A + 1. 

Retaining the two lowest terms for the configurations dn 
and dn- ' ,  T,={SL), and T,-I ={SIL') and defining the 
new electron operators 

we represent the Hamiltonian (1) in the form 

H = H o +  C { t k ~ ~ ~ ~ ~ k l r n u ~  Gdk) 
klm o 

x ( ~ & ~ ~ d k l r n u + H . ~ . ) ) .  

Here 

H O =  A 2 d ~ m o d k l m o +  C O ~ S ~ ,  
k lm u 

(we have passed to the grand canonical ensemble by intro- 
ducing the chemical potential 5) and the effective hybridiza- 
tion parameters are given by 

For rare-earth compounds, where strong spin-orbit coupling 
should be taken into account in the Russel-Saunders 
scheme, we may restrict the analysis to two lower multiplets 
of the 4f ion, r , = S L J  and T , - l=SIL ' J ' .  Changing in (1) 
and (6) to the J representation with use of 

and summing the product of the Clebsh-Gordan coefficients 
with use of a 9 j  symbol 

we derive the Hamiltonian, which is formally similar to the 
Hamiltonian in the case of jj coupling, 

where we have introduced new electron operators 

and the effective hybridization parameters are 

Thus hybridization effects in ME systems depend 
strongly on ME quantum numbers S,L,J, and therefore on 
the atomic number. Such a dependence in the rare-earth ele- 
ment series was discussed in Ref. 13. Experimental study of 
this correlation, which is similar to de Gennes correlation for 
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the s -  f exchange parameter and magnetic ordering tem- 
perature, is of great interest. It seems to be promising to trace 
corresponding ME effects in spectroscopic measurements. 
Below we discuss the Kondo effect. 

3. THE EFFECTIVE s -d ( f )  EXCHANGE MODEL 

In the case where [A[ is large in comparison with the 
width of the d(f) level we may exclude the hybridization 
term from the Hamiltonians (9) and (14) by a canonical 
transformation to obtain, respectively, 

X C ~ , C ~ I ~ ~ ~ C L ) .  (I7t)) 

For A<O (A>O) the filling of the level is n (n - 1) and 
only the first (second) term in the square brackets in (17) 
should be retained. 

The Hamiltonians (17) describe the exchange interaction 
of the conduction electrons with d(f) electrons. It should be 
noted that in the case under consideration the interaction is 
strongly anisotropic because of the spherical harmonics 
which are contained in (8) and (15). This should result in a 
strong anisotropy of indirect RKKY-type f - f interaction, 
which may be derived in the second order in the s - f ex- 
change. Such an anisotropy is observed in several rare-earth 
and actinide compounds. 

Using the identities of the type 

we can decompose the Hamiltonians (17) into sums of terms 
corresponding to the interaction of conduction electrons with 
different multipole components of the orbital and spin (or 
total momentum) degrees of freedom. 

By analogy with the usual s-d(f) exchange model,' 
perturbation theory expansion for the models (17) yields 
logarithmic corrections to various physical quantities, which 
indicates reconstruction of the system's state at low tempera- 
tures. In particular, such a correction to electron self-energy 
and resistivity occurs in the third order in the effective s  - f 
exchange parameter, I - v 2 / ~ .  Unfortunately, the compli- 
cated tensor structure of the Hamiltonians (17) prevents in- 
troducing the unique energy scale for the infrared diver- 

gences (the Kondo temperature). However, the calculation of 
T K  may be performed in the case where the energy of the 
d(f) level A does not depend on the ME term and is deter- 
mined by the number of electrons only (see Appendix I). 

4. CALCULATION OF ELECTRON GREEN'S FUNCTIONS. 
THE KONDO TEMPERATURE 

We consider the anticommutator retarded Green's func- 
tion of localized d electrons in the nonmagnetic phase (the 
problem of ferromagnetic ordering in the Anderson model 
with strong correlations was investigated in Ref. 14). The 
simplest decoupling for the model (1) in the ME representa- 
tion (6) yields (cf. Ref. 14) 

\ 

where the averages 

do not depend on the momentum projections. The corre- 
sponding energy spectrum contains a system of subbands, 
which are separated by hybridization gaps (or pseudogaps) 
surrounded by density-of-states peaks. In the model with 
strong correlations (9) we obtain the following expression 
for the spectrum: 

where 

We see that the width of the hybridization (pseudo)gap de- 
pends appreciably on ME occupation numbers (in particular, 
on the position of the d level). 

The approximation (19) ignores the spin-flip processes, 
which result in the Kondo effect and can change substan- 
tially the structure of the electron spectrum near the Fermi 
level. The Kondo anomalies can be taken into account by 
performing a more accurate calculation of the Green's func- 
tion. For brevity we consider model (14). In model (9) we 
see that [J] --i[S][L] and ij-+fil. 

It is convenient to use the operators, which are averaged 
over angles of the vector k: 

so that the operators ckjm satisfy the Fermi commutation re- 
lations. Following to the consideration of the SU(N) Ander- 
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son model in the retarded Green's function method,'' which 
uses the idea of the 1/N expansion: we write the equation of 
motion 

where we have carried out a decoupling for the term which 
describes the processes without changing m,  

We ignore for simplicity the above-discussed influence of the 
hybridization gap, which is possible provided that the latter 
lies far below the Fermi level (note that the corresponding 
contributions are formally small in the inverse degeneracy of 
the f level, 1/N). Carrying out decouplings in the equations 
for the Green's function on the right-hand side of (24), we 
obtain 

where nk'(~&m~kjm)'n(tk) are the Fermi distribution 
functions. Substituting (26) into (24), averaging over the 
angles, and using the orthogonality relations for the Clebsh- 
Gordan coefficients, we find 

Here we have applied the approximation which is usual at 
considering logarithmic Kondo divergences 

where D is on the order of the conduction band width, E is 
referred to the Fermi level, and p is the bare density of states 
of the c electrons at E F .  

At J>J1 the Green's function (26) has the pole, which is 
exponentially close to the Fermi level 

Near this pole we can expand 

z 
((fkjmlf&m))E5 n 7  

where the residue of the Green's function, which determines 
the inverse effective mass, is 

Thus the pole (29) determines the characteristic low-energy 
scale-the Kondo temperature. 

5. DISCUSSION 

Although derived in a rather complicated way, Eq. (29) 
has a simple physical meaning: we have in the exponent the 
ratio of degeneracies of the multiplets T, and T,-,. 

The usual Kondo effect corresponds to the total compen- 
sation of the magnetic moment (Jf = 0). At J' >J the pole 
(29) is absent (the strong coupling regime does not occur) 
since the model under consideration is mapped by a canoni- 
cal transformation into a Coqblin-Schrieffer model with a 
positive exchange parameter (see Sec. 3). 

The result of calculation of the Kondo temperature in the 
present approximation is valid for the case of a single mag- 
netic impurity. The quantity (29) then determines the posi- 
tion of the Abrikosov-Suhl resonance and, consequently, the 
characteristic energy and temperature scale for the Kondo 
anomalies in the thermodynamic and transport properties. 
The exponential dependence on the external parameters (in 
particular, on the f-level position A) makes it difficult to 
establish experimentally the reliable correlations of T K  with 
the M E  quantum numbers. However, the expression (29) en- 
ables us to explain the very low values of T K ,  which are 
observed for Tm impurities (these values are not obtained 
within the large-N approach).9 In this case the configurations 
T, and r,-, are magnetic: J= 712 for ~ m ~ +  and J= 6 for 
~ m ~ ' ,  so that the ratio (J-J1)/(2J '+ 1) in (29) is small. 

In a periodic lattice off  moments (anomalous rare-earth 
and actinide compounds), the Green's function of the con- 
duction electrons has the form 

((ckjml~&m))E'[~-tk-fi~(k)((fkjm\f&m))E~-l- (32) 
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As follows from a comparison of (21), (30), and (32), the 
effective hybridization parameter near EF is estimated as 
v * - ( T ~ I ~ ) ' ' ~ .  Thus, instead of the Abrikosov-Suhl reso- 
nance, we have a Kondo gap (or pseudogap), which has a 
width of the order of TK, and corresponding density-of-state 
peaks occur near the Fermi level. Such a picture of the en- 
ergy spectrum is characteristic of heavy-fermion 
~ o r n ~ o u n d s . ~ ~ ~ ~ ~ ~ ~  

For the d  impurities [weak spin-orbit coupling, Hamil- 
tonian (9)] an analog of Eq. (29) has the form 

Note that Eq. (33) satisfies the condition of the particle-hole 
symmetry (n - -+n1=2[1]+  1 -n ,  A+-A) because of the re- 
lation for the fractional parentage coefficients: 

Ignoring the dependence A(LS) we see that all the ME terms 
of the configurations d" and dn-' contribute equally to the 
spin-flip processes, and consequently to the Kondo tempera- 
ture. The coefficients G which are contained in (11) may 
then be summed up in the equations of motion with use of 
the orthogonality relations (7) to obtain 

For the Kondo temperature we find 

i 1 1 
TK=D exp - 

v:(kF) 
2[11+1-2nijlp)7 I = P  (36) 

Note that expression (36) may be represented in the follow- 
ing form, which is similar to (33): 

Here the factor (2[1] + 1 - n)ln is the ratio of the statistical 
weights for the configurations dn and dn- ' :  

2[1]+1-n - 1 
- - 

n (n- 1)!(2[1]-n+ l ) !  

The experimental dependence of the Kondo temperature 
of the transition-metal impurities in copper and gold4 on the 
d-electron number demonstrates a sharp minimum in the 
middle of the series (n=5) .  In the review4 these data were 
interpreted on the basis of the Schrieffer model5 with the 
Hamiltonian 

which is rather artificial (see the Introduction). This model 
yields the n dependence of TK, which is different from (36), 

TK-D exp - - i 2I:lJ- 

The Kondo temperature was calculated by ~ i r s t , ~  with- 
out allowance for the intraconfiguration splittings, from the 
second Born high-temperature estimate for the resistivity in 
the s - d  exchange model. If the coupling parameter is con- 
stant in the 3 d  series, the value of TK turns out to be inde- 
pendent of n. We believe that this result is erroneous, since 
our calculations for the same model within essentially the 
same approximations (see Appendix I) yield the result (A6), 
which differs from (36) by unity in the denominator of the 
exponential function only. Such a difference is typical for the 
calculation of the Kondo temperature in the degenerate 
Anderson model9>l5 and is explained by the fact that this 
approach is justified, strictly speaking, only in the limit of 
large N. Thus, our results, obtained for the ground state of 
the degenerate Anderson model, agree with the results of 
high-temperature perturbation theory in the s - d  exchange 
model. 

The fit of the Kondo temperature to the experimental 
data4 according to (A6), which corresponds to 1 I \  p = 11 16,  is 
shown in Fig. 1. Note that the fit to the Schrieffer formula 
(38) yields the unreasonably large value I I1 = 114. 

The LS and crystal-field splittings were introduced in 
Ref. 6 to improve the agreement with the experimental data. 
The method of irreducible tensor operators did not allow us 
to take into account the splittings in the energy denominators 
which correspond to the Schrieffer-Wolff transformation 
from the Anderson model to the s-d exchange model. In 
contrast with Ref. 6, we have calculated the Kondo tempera- 
ture on the basis of the Anderson model which describes the 
low-energy (low-temperature) behavior. This model allows 
us to take into account the dependence of the energy levels 
on the ME term quantum numbers. This dependence seems 
to be important, since the distance between different terms in 
the free atoms is on the order of several electron volts. Be- 
cause of the separation of the lowest terms for the configu- 
rations dn  and d n - ' ,  the results of our calculations, in con- 
trast with those of Ref. 6, include the fractional parentage 
coefficients. However, direct use of Eq. (33), which yields a 
strongly oscillating dependence TK(n), in contradiction of 
the experimental data, probably overestimates the role of 
many-electron term effects. 

Although the general picture of ion levels (especially in 
a crystal field) is very complicated, from a general point of 
view the presence of the factors (G:?,,)~ is expected to lead 
to a further strengthening of the dependence T,(n). The n 
dependence of the fractional parentage coefficients on the 
average has a minimum in the middle of the d  series. Such a 
dependence, which is due to the total number of ME terms, is 
maximum near n = 5  for combinatorial reasons, and for a 
given n the values of G~ satisfy the sum rules (7). 

We have restricted the discussion to the case of LS  split- 
ting and ignored the crystal-field effects which are very im- 
portant for the d ions and f ions like ce3+. In particular, CF 
results in that L = O  for some d  impurities (e.g., for V and 
Ni). The CF splitting may be taken into account by perform- 
ing more cumbersome calculations with use of the Clebsh- 
Gordan and fractional parentage coefficients for a point 
group (see, e.g., Ref. 17). It can be assumed that such calcu- 
lations should improve the corresponding results of Ref. 6 
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APPENDIX I 

1 0 - ~ 1  
i [i 

Ti V Cr Mn Fe CO Ni 

Impurity 

FIG. 1. Experimental data for the d impurities in copper and gold4 and 
theoretical curves (A6) (solid line) and (39) (dashed line). The s-d ex- 
change parameter is assumed to be independent of n .  

which seem to use, as discussed above, the incorrect zero- 
order approximation. For accurate estimates of TK the influ- 
ence of several groups of degenerate levels (e.g., those cor- 
responding to different atomic or crystal-field split terms) 
should be taken into account (see Ref. 9). However, these 
detailed studies require additional information on the elec- 
tronic structure of Kondo impurities. 

The role of variation of the interconfiguration splitting 
should be also discussed. It was assumed in the estimates of 
Refs. 5 and 6 that the effective s - d  parameters, i.e., the 
values of v ,  A, and p do not depend on the configuration dn.  
It is well known, however, that in the many-electron picture 
these configurations have different stabilities (e.g., the value 
of A should be related to the atomic ionization potentials). In 
particular, the stability of the spherically symmetric configu- 
ration d5 may result in a large value of 1A1, which lowers the 
TK for manganese. 

This work is supported in part by grant from the Ameri- 
can Physical Society. 

Consider the calculation of the Kondo temperature for 
the localized degenerate d level with the configuration d n  
(n < 5), without allowance for the intraconfiguration split- 
ting. The dependence on the quantum numbers of the ME 
terms will then vanish. The Hamiltonian of the one-impurity 
s-d exchange model therefore takes the form (cf. Ref. 6) 

where all the indices in the sets {mi) (mi = 1,2.. . 2 [ l ]  = 1 0  
include the spin and orbital projections) are different; the 
second term in the brackets is subtracted to exclude the po- 
tential scattering, I < O .  The Kondo temperature is deter- 
mined from the pole of the T matrix which is defined by 

We write the equation of motion 

To obtain the Kondo terms in the equation of motion for the 
Green's function (A4), we calculate after some combinator- 
ics the commutator of the operator X({mi ,m '},{mi ,m)) 
with the Hamiltonian. Performing an analog of the Nagaoka 
decoupling (see Ref. I), we derive 
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Solving Eq. (AS), we obtain the estimate for TK from the 
divergence in the "parquet" approximation (which corre- 
sponds to the second Born approximation for resistivity) 

For the second half of the d series n >5 the degeneracy of 
the configuration d" is smaller than that of d n - ' .  We must 
therefore consider the case in which the level d" lies above 
the Fermi level; i.e., A>O (otherwise, the Kondo effect is 
absent). We may then transform to the hole representation 
and reproduce the result (A6) with the replacement n-+2[1 ]  
- n .  
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