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We derive the Ginzburg-Landau expansion for superconductors whose gap function is odd in 
k- kF. We show that for "odd" pairing there is an additional dependence of the 
expansion coefficients on the pairing coupling constant, which leads to a corresponding 
dependence of the physical characteristics of the superconductor. In contrast to the ordinary case, 
nonmagnetic impurities have a strong influence on the basic properties of an "odd" 
superconductor, and the nature of this influence differs considerably from the behavior predicted 
by the traditional theory of "dirty" superconductors. For one thing, this behavior manifests 
itself in the anomalous slope of the temperature dependence of the upper critical field Hc2 near 
T, . The field Hc2 is studied over the entire temperature range. O 1995 American Institute 
of Physics. 

1. INTRODUCTION 

Mila and  brah hams' recently suggested an interesting 
model of a superconducting state with an energy gap that is 
an odd function of the parameter k- kF (i.e., the quasiparticle 
energy 5=vF(lkl -kF) measured from the Fermi level). In 
this case, as can easily be verified, superconductivity in the 
BCS approximation is also possible for an arbitrarily strong 
repulsion between electrons. The state occurs when there is 
strong repulsion, when ordinary ("even") superconductivity 
is suppressed and the pairing interaction is strong (the corre- 
sponding coupling constant exceeds a certain critical value).' 
Naturally, this model is attractive from the viewpoint of ex- 
plaining superconductivity in highly correlated systems, al- 
though it is now clear that it can hardly be considered a 
realistic model for explaining high-T, superconductivity in 
metal oxides, if only because of the isotropic nature of pair- 
ing inherent in the model (experiments have established that 
high-T, superconductivity is anisotropic in the conducting 
plane and corresponds to d or anisotropic s pairs). Mila's and 
Abrahams's model1 is also interesting by itself as a model of 
a new "exotic" superconducting state whose properties may 
differ considerably from those of common superconductors. 
In view of this it would be interesting to study a broad spec- 
trum of such properties, which would make it possible to 
formulate the experimental criteria for searching for the 
anomalous "odd7' superconductivity. A certain amount of 
work has already been done along this line,2-5 although most 
studies were done with a view to comparing the new prop- 
erties with those of high-T, superconducting systems. The 
literature contains no discussion of the traditional problems 
of superconductivity theory as applied to the scheme of 
"odd" pairing of the type considered here. 

The purpose of this paper is to carry out a microscopic 
derivation of the Ginzburg-Landau expansion in the odd 
pairing model and use the expansion to analyze some of the 
main characteristics of a superconductor near T, . In addition 
we fully analyze the problem of the upper critical field Hc2 
(we will see that an "odd" superconductor is practically al- 

ways a string type-I1 superconductor). In the process several 
anomalies manifest themselves, and these can be used in an 
experimental search for systems with odd pairing. At the 
same time, the results arrived at lead to additional arguments 
against using the model for explaining the properties of high- 
T, superconductivity in metal oxides. 

We recall that the model is based on demonstration of 
the fact' that the weak-binding equation in the BCS theory, 

d t l %  ~ 2 ( & ' )  
Xtanh 2T 

can have a nontrivial solution A(6) = - A(- 6) (i.e., odd in 
k - kF , with 6= u F(k- kF)), provided that V((,(') has an 
attractive term even in the presence of an (infinitely) strong 
point repulsion (here N(0) is the density of states at the 
Fermi level). clearly,' for an odd A(() the repulsive part of 
the interaction in Eq. (1) simply vanishes and the attractive 
term V2((,rf) can ensure pairing with nontrivial properties: 
the gap function A(() vanishes at the Fermi surface, which 
leads to gapless superconductivity. It should be emphasized 
that we are speaking of an isotropic model in which the gap 
vanishes everywhere at the Fermi surface, which distin- 
guishes this model from anisotropic pairing, say, of the 
d-type. 

Thus, in what follows we assume that the interaction in 
Eq. (1) consists of two terms (EF is the Fermi energy), 
v(5,6')=vi(6,6')+v2(595'), 
where 

is the point repulsion of electrons, and V2(5,e1) is the effec- 
tive pairing interaction (attraction), which is finite for 
161,16' 1 < 0, and 16- 5' 1 < W, (the latter restriction is very 
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important), with wc4EF acting as a characteristic frequency 
of bosons whose exchange gives rise to pairing. The pairing 
"potential" V2(5,5') can be represented by different model 
functions.' In this paper we consider the following model 
intera~tion:~'~ 

Then the integral equation for the gap is reduced to a tran- 
scendental equation and can easily be solved.334. All the main 
features of the model, also characteristic of other types of 
model pairing potential,' are retained. 

The transition temperature of the superconductor is de- 
termined by the linearized equation 

It can easily be verified4 that the temperature T, of the tran- 
sition to the odd state is determined from the equation 

where g = N(0) V is the dimensionless pairing coupling con- 
stant. In this model the pairing coupling constant has a criti- 
cal value: odd pairing appears only for g>g,= 1.213 even 
without point repulsion U. Actually, the ordinary "even" 
pairing dominates in the presence of a weak repulsive inter- 
action, and the temperature of the respective transition is 
higher than the temperature of the transition to the odd-gap 
state. As the repulsion grows, the situation changes, and at 
large values of g "odd" pairing becomes preferable.4 In what 
follows we assume that the system occupies a certain region 
on the phase diagram in the variables g and p=N(O)U, 
where only odd pairing is stable. 

The gap function in the odd-pairing model considered 
here has the form4 

and the temperature dependence of A. (T) is determined by 
the following equation: 

The temperature dependence of A. (T) resembles the one in 
the BCS theory but the two are not identi~al.~ 

Normal (nonmagnetic) impurities strongly suppress odd 
pairing.334 In this case the transition temperature is deter- 
mined by the equation 

where y is the rate of electron scattering by impurities ran- 
domly distributed in space. Superconductivity disappears at 
y- Tco , where Tco is the transition temperature without 
scattering and is determined by Eq. (4). The critical scatter- 
ing rate y, corresponding to destruction of superconductivity 
is determined from the following 

For g -- g, this implies the dependence y, - (g - g,) 4 0, 
which reflects the narrowing of the superconductivity region 
on the phase diagram in variables T, and y. In this sense 
destruction of superconductivity proceeds even faster than if 
we were to introduce magnetic impurities into a common 
superconductor. 

In comparison to an approach of the BCS type, the 
Ginzburg-Landau theory makes it possible, at least in prin- 
ciple, to describe a broader set of physical properties at the 
expense of narrowing the temperature range to T- T, . This 
makes the microscopic derivation of the Ginzburg-Landau 
expansion coefficients very important, because knowing 
them immediately leads to several useful conclusions. 

2. THE GINZBURG-LANDAU EXPANSION 

2.1. The case of a pure superconductor 

As is the common practice, we select the gap function 
(6) as the order parameter in powers of which the Ginzburg- 
Landau expansion is done. We also assume that generally the 
amplitude Ao(T) is a slowly varying function of the spatial 
coordinates. Correspondingly, in the momentum space there 
emerges a Fourier component of the order parameter, 

and the Ginzburg-Landau expansion for the difference of 
free energies of a superconducting and normal states for 
small values of q has the form 

Our problem consists is to find the microscopic expressions 
for the coefficients A ,  B, and C. 

The Ginzburg-Landau expansion can easily be found by 
examining the diagrams shown in Fig. 1. It is reduced to the 
ordinary loop expansion for the free energy of an electron in 
the fluctuation field of the order parameter of the form (10). 
The only point requiring explanation is the need to subtract 
the second diagram in Fig. 1: this procedure, as one can 
easily verify, ensures that the coefficient A in Eq. (11) van- 
ishes at the transition point T= T, . All calculations are done 
in the standard manner, with allowance for the fact that the 
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4 0 P + F  
FIG. 1. The diagrammatic represen- 

s i n s  
A4 2 tation of the Ginzhurg-Landau ex- 

F,--F,= pansion. The wavy lines correspond 

4 4 to the fluctuations of the order pa- 
rameter (10). and the solid lines to 

#- 
~ ,. 

q -a \ the Matsubara Green's functions of -P+T, -p, L A the electron. The diagram (b) is cal- 

b 
culated at T =  T ,  . 

a c 

temperature T is close to the transition temperature Tc ; some As is known, the Ginzburg-Landau equations determine 
details are given in Appendix 1. As a result the Ginzburg- two characteristic lengths, the coherence length and the 
Landau expansion coefficients can be written as follows: magnetic- field penetration depth.6 

The coherence length at a given temperature, @T), 
A = A o K A ,  B = B o K B ,  C = C o K c ,  (I2) serves as the characteristic scale of variations in the order 

where by A o ,  B o ,  and Co  we denote the standard expres- parameter A,  i.e., is actually the "size" of the Cooper pair: 
sions for the expansion coefficients in the ordinary theory of 
"even" superconductors,6 

C 
t 2 ( ~ ) =  - - . 

A  (19) 

(13) In ordinary superconductors 

where to= 0.18vF/Tc . In our case we have 
and all the features of the odd-pairing model are contained in 
the dimensionless combinations KA , K g ,  and Kc : 

t 2 U )  - Kc -- 
~ ~ C S ( T )  K~ ' 

(22) 

5 2 The dependence of this ratio on g is shown in Fig. 3. 
wc /Tc  

K A =  I, dx For the magnetic-field penetration depth in an ordinary 
2 cosh2(x/2) ' (I6) superconductor we have 

1 4  

n = O  

(18) 

These dimensionless quantities are functions of Tc/wc,  
which in turn depends in a known manner374 on the dimen- 
sionless pairing coupling constant g. The corresponding 
functions KA , K g ,  and K c  on g are shown in Fig. 2. Thus, 
in contrast to the ordinary case, where the Ginzburg-Landau 
expansion coefficients depend on the pairing coupling con- 

0 2 4 6 g g 1 O  

stant only through the respective dependence of the transi- 
tion temperature Tc 9 there emerges an nOnmOnO- FIG. 2. The coefficients K ,  , K,, and Kc as functions of the coupling 
tonic dependence on the coupling constant. constant g .  
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FIG. 3. The dimensionless coherence length as a function of the coupling FIG. 5. The relative Ginzburg-Landau parameter as a function of the cou- 
constant g.  pling constant g .  

where h ~ = r n c 2 / 4 m e 2  determines the penetration depth at 
K=--- c 

T=O. Generally we have the following expression for the \ix 
5(T) 4eC 

penetration depth in terms of the Ginzburg-Landau expan- 
sion coefficients: 

Then in our model 

Figure 4 shows the dependence of this ratio on the pairing 
coupling constant. The fact that A+co as g+g, is physically 
understandable and related to the disappearance of odd pair- 
ing. 

Let us examine the Ginzburg-Landau parameter 

FIG. 4. The dimensionless magnetic-field penetration depth as a function of 
the coupling constant g .  

As is known, the type of superconductor depends on the 
value of the parameter K:  superconductor^ with K <  I/& be- 
long to type I and those with ~ > 1 / &  to type 11. Accord- 
ingly, in the odd-pairing model considered here we have 

where 

is the Ginzburg-Landau parameter for the ordinary case. 
Figure 5 shows K / K ~ ~ ~  as a function of g.  The diagram 
clearly demonstrates that for all reasonable values of g (near 
g,) an odd superconductor is sure to be a strong type-I1 
superconductor. In this connection we recall that the asymp- 
totic behavior of large g B g ,  is unphysical, because actually 
all our reasoning is based on weak-binding equations of the 
BCS type (I), while the transition to the tight-binding range 
requires4 more careful consideration in the spirit of Nozieres 
and ~chmitt- ink.^ No such consideration has been done for 
odd pairing. 

2.2. Effect of "normal" impurities 

We examine a superconductor containing "normal" 
(nonmagnetic) impurities. When deriving the diagrammatic 
Ginzburg-Landau expansion, we must allow for the corre- 
sponding scattering processes, i.e., diagrams of the type 
shown in Figs. 6(a) and (b). Clearly, the contribution of dia- 
grams of the type in Fig. 6(b) is virtually nil because the 
functions at the vertices [the factors sin(@] are odd in 5. 
Thus, for an odd superconductor the loop expansion has the 
form of Figs. 6(c) and (d) (to within second-order terms), 
where the electron lines stand for total averaged Green's 
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FIG. 6. Diagrammatic expansion of the free energy in the presence of im- 
purity scattering. The dashed lines correspond to scattering by impurities. 

functions with allowance for scattering on impurities. "Dif- 
fusion" renormalization caused by diagrams of the type in 
Fig. 6(b), which is a characteristic feature in the ordinary 
theory of "dirty" superconductors,8 does not occur. In this 
sense the structure of all the expressions is closer to that of 
the theory of ordinary "pure" superconductors. Note, how- 
ever, that in the sense of the ordinary criterion t 0 4 1 ,  where 
1 is the mean free path, the "dirty" limit is entirely inacces- 
sible because, as noted above, such a superconducting state 
is destroyed by impurity scattering even at y- Tc (Refs. 3 
and 4). Below we discuss the essential changes in the coef- 
ficients A and C brought on by impurity scattering. The de- 
tails of the calculations can be found in Appendix 1. 

The Ginzburg-Landau expansion coefficients are again 
represented in the form (12), and impurity scattering leads to 

FIG. 7. The normalized coefficient K: as a function of the impurity scatter- 
ing rate for different values of the coupling constant g :  curve I,  g =  1.22; 
curve 2, g  = 1.24; curve 3, g =  1.3; curve 4,  g =  1.5; curve 5, g  = 2.0; curve 6, 
g =  5.0; and curve 7, g =  10.0. 

FIG. 8. The normalized coefficient KC as a function of the impurity scatter- 
ing rate for different values of the coupling constant g :  curve I,  g =  1.22; 
curve 2,  g =  1.24; curve 3, g =  1.3; curve 4, g =  1.5; curve 5,  g= 2.0; curve 6, 
g =  5.0; and curve 7, g =  10.0. 

renormalization of the dimensionless functions KA and K c ,  
which now acquire the form 

Here Tco is the temperature of the transition without impu- 
rities, Tc is the true temperature of the transition in the im- 
purity system determined by Eq. (8), and y is the rate of 
electron scattering on impurities. In the limit of y 4 0  
Eqs. (29) and (30) naturally transform into Eqs. (16) and 
(18). 

Figures 7 and 8 show the diagrams, obtained by numeri- 
cal methods, of the ratios K ~ I K ,  and K;/Kc as functions of 
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FIG. 9. The slope of the upper critical field H,, vs impurity scattering rate 
curve for different values of the coupling constant g :  curve I,  g =  1.22; 
curve 2, g =  1.24; curve 3, g =  1.3; curve 4, g =  1.5; curve 5, g=2.0;  curve 6, 
g=5 .0;  and curve 7, g=10.0. The field's derivative is normalized to its 
value in the absence of scattering. 

the scattering rate y. The most important dependence 
emerges for the coefficient K: , which rapidly decreases as 
y grows and vanishes as y+ y, . 

The behavior of the Ginzburg-Landau expansion coef- 
ficients A and C determines, as is known, the temperature 
dependence of the upper critical magnetic field near T, (see 
Ref. 6): 

Figure 9 shows IdHC2ldTITc as a function of disorder (the 
scattering rate y). We see that the "slope" of the field de- 
creases rapidly as disorder grows and vanishes as y-+ y,. 
This behavior is the opposite of that in the ordinary theory, 
where in the "pure" limit the slope of Hc2 does not change if 
impurities are added, while in the "dirty" limit it grows with 
y (see Ref. 8). This anomalous behavior can serve as an 
experimental criterion in searching for superconductors with 
"odd" pairing. We note in this connection that high-Tc su- 
perconductivity oxides do not exhibit such behavior and, ap- 
parently, the odd-pairing model is unable to describe the ob- 
served anomalies in Hc2  (Ref. 9). This fact can be considered 
an additional argument against applying models of this type 
to high-Tc superconductivity ~ ~ s t e m s . ~ ' ~  

3. THE UPPER CRITICAL FIELD 

Concerning the above-mentioned anomalies in the be- 
havior of H,, in the odd-pairing model it would be interest- 
ing to do a complete study of the temperature dependence of 
the upper critical field in such systems with allowance for 
impurity scattering. This requires stepping outside the 
Ginzburg-Landau theory and using a microscopic approach, 
i.e., from the standpoint of the picture of Cooper instability 
in an external magnetic field. The problem of Cooper insta- 
bility, which leads to odd pairing in the absence of a field, 
was considered in Ref. 4. Here we use a similar approach. 
We start our analysis immediately with a system with impu- 

40 A 
rities. 

40 - 
H~2(T)=  2 T p ( T ) - -  2, 9 (31) The diagrams that determine scattering and interaction in 

the Cooper channel are shown in Fig. 10. The vertex part of 
where 4,= c r l e  is the quantum of magnetic flux. From this the impurity scattering in the ladder approximation is shown 
we can easily find the slope of the temperature dependence in Fig. 10(a) and the vertex part allowing for pairing inter- 
of Hc2 near T,, i.e., the temperature derivative of the mag- action (represented by a dot on the diagram) in Fig. 10(b). 
netic field: For the latter we have the following integral equation: 

FIG. 10. The diagrams that determine 
Cooper instability in a system with im- 
purities: (a) the vertex part of the impu- 
rity scattering in the Cooper channel; (b) 

+ b the vertex part of the pairing interaction; 
and (c) the response function, whose di- 
vergence determines odd pairing. 

-0 -0 -0, -0' 

s i n g  2 w c  a s in& 2% = + c 
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where the impurity vertex rpp,(qw) is determined, as noted 
earlier, by the ladder approximation [Fig. 10(a)], and 
V(ppl) is the pairing interaction. Following Ref. 4, we in- 
troduce vertices summed over frequencies, 

@,,t(q)= - TC @,,4Iww1), (35) 
00' 

which satisfy an equation that follows from Eq. (33): 

It is convenient to look for the odd Cooper instability using 
the equation shown in Fig. 10(c), which is actually the func- 
tion of the response to the odd-order-parameter fluctuations 
we are interested in: 

where the loop diagrams represent 

,T 5 ?i- 5p '  
no(q)  = C sin ( 7 rDP. (q)  sin ( - -1 , 

2 0, 

and we have explicitly allowed for the pairing interaction in 
our model Eq. (3). Solving Eq. (37) yields 

It is the divergence of this expression (the zero of the de- 
nominator means the divergence of the response) that deter- 
mines the point of odd Cooper instability. 

While calculating n o ( q )  it is easy to see that because 
the vertices are odd functions of 6 only the first diagram in 
the ladder of Fig. 10(a) contributes to this quantity and that 
the diffusion contribution vanishes. We have 

where R = w + y and O= v d / 2 .  Then the divergence of (40) 
is determined from the equation 

which at q = 0 is reduced to 

from which Eq. (8) can be obtained by standard methods [cf. 
Eq. (471. 

For a system in an external magnetic field H the Cooper- 
pair momentum q is replaced in the ordinary manner by 
q-  (2e/c)A, where A is the vector potential. Then, as be- 
fore, the Cooper instability is determined by Eq. (42), only 
0 is defined as O= vFqo/2, where q ,  is the minimum eigen- 
value of the operator (q- ( 2 e / c ) ~ ) ~ ,  equal, as is known,6 to 
d m ,  and where 4o is the quantum of magnetic flux 
introduced earlier, equal to twice the electron charge. The 
equation emerging in the process determines the upper criti- 
cal field over the entire temperature range. 

The most convenient way to solve such an equation nu- 
merically is to convert the sum over discrete frequencies to 
an integral. Details are given in Appendix 2. As a result, 
instead of (42) there emerges the following equation for 

Hc2: 

Figure 11 shows the results of solving this equation numeri- 
cally, which demonstrate the temperature dependence of 
Hc2 for different degrees of disorder in the system. The 
qualitative picture of the temperature dependence of Hc2 dif- 
fers little from the ordinary, but there is a clear-cut rapid 
decrease in the slope of the Hc2 vs T  curve near T ,  as the 
scattering rate grows. This decrease, as can easily be verified, 
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FIG. 11. The temperature behavior of the upper critical field for systems 
with different degrees of disorder ylT,,. The pairing coupling constant 
g=2, the magnetic field is in units of H ,  = ( ~ I P ) ~ ~ T , , , I U ~  and the tem- 
perature is normalized to T, ,  which is disorder-dependent. Curve I ,  
ylT,,,=0.2; curve 2, ylT,,=0.25; curve 3, ylTCo=0.5; curve 4, 
ylT,,= 0.75; and curve 5, ylTCo= 0.87. 

is described by the equations of the Ginzburg-Landau theory 
obtained earlier. Note that the qualitative shape of the tem- 
perature dependence of Hc2 is very similar over a broad 
range of values of the pairing coupling constant g; hence 
Fig. 11 presents the data for only one value of g. We note 
once more that as the disorder increases the established 
anomalous behavior of Hc2  clearly distinguishes between 
odd pairing and ordinary even pairing and can be used to 
establish experimentally the existence of such "exotic" su- 
perconductors. 

4. CONCLUSION 

We have done a microscopic analysis of the Ginzburg- 
Landau expansion coefficients in the model of pairing that is 
odd in k- kF. We have shown that these coefficients acquire 
a strong dependence on the pairing coupling constant, a de- 
pendence that cannot be reduced to that of T,, characteristic 
of the ordinary "even" case. We have also analyzed the cor- 
responding behavior for the characteristic parameters of the 
Ginzburg-Landau theory. 

In examining the effect of scattering by normal impuri- 
ties, the main theoretical conclusion to be drawn is the ab- 
sence of diffusion renormalization, which leads to dimen- 
sional dependencies of the coefficients characteristic of the 
theory of "pure" superconductors. At the same time, the 
sharp suppression of T, by impurity scattering and the strong 
dependence of the Ginzburg-Landau expansion coefficients 
on disorder cause the behavior of the upper critical field 
HC2 as a function of the degree of order to deviate dramati- 
cally from that in both the "pure" and "dirty" limits of the 
ordinary theory of even pairing. This difference is revealed 
in the sharp decrease in the slope of the H c 2  vs T curve near 

T, as impurity scattering grows, which is of interest as an 
experimental criterion in the search for systems with odd 
pairing. 

We have resolved the problem of the behavior of Hc2 
over the entire temperature range by analyzing odd Cooper 
instability in an external magnetic field. Again, a character- 
istic feature of this analysis is the absence of diffusion renor- 
malization of the equations, which is directly related to the 
fact that the order parameter (the gap) is odd in k - kF. The 
results are in full agreement with the conclusions drawn on 
the basis of the Ginzburg-Landau approximation. 
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No. 93-001 of the National Program for Superconductivity 
Studies. The work was also partially supported by Grant No. 
RGLOOO from the Soros Fund and Grant No. 93-02-2066 
from the Russian Fund for Fundamental Studies. 

APPENDIX 1 

Below we give the details of calculations needed in de- 
riving the above expressions for the Ginzburg-Landau ex- 
pansion coefficients. To within terms quadratic in q ,  the ex- 
pression corresponding to the diagram in Fig. l(a) is 

T 
Fig. I(a)=- [A l 2  I dpsin2 

(2.n) , 

5 ( /:diSin2 [ 2) ; tanh 21 

Here G ,(p) = ( i  w - t p )  - ' is the ordinary Matsubara Green's 
function of the electron, and w = (2n + 1 )  TT. What is left is 
to expand the integrand in powers of T- T, and put T= T, in 
the term containing the small quantity q2. Using Eq. (5) for 
T,, we can easily see that the contribution of the diagram in 
Fig. l(b) is 

Fig. l(b)= - /Aql2 I&: dpGW(p)G-. 

which cancels out with the zero-order term in T- T, and q in 
the expression for the diagram in Fig. l(a). As a result we 
arrive at Eqs. (12), (16), and (18) defining the coefficients A 
and C .  

The calculations are done in a similar manner for an 
impurity superconductor, the only difference being that the 
electron Green's function now has the form 

331 JETP 80 (2), February 1995 Kuchinskii et a/. 331 



G ,(p) = [i w - t p +  i y signw)] - ' . Accordingly, e.g., the ex- 
pression for the diagram in Fig. 6(d) contains the sum 

(47) 

and is reduced, if we allow for Eq. (8) for T,, to 

wc d 5  
Fig. 6 (d)=-N(0) l~q12(  o - 5 sin2(%) 2 wc 

N(O) 
X /Irn$ tanh (z) &= - ,1~,1'. (48) 

This contribution cancels out with the zero-order terms in 
T- T, and q2 in the expression for the diagram in Fig. 6(c). 
As a result the Ginzburg-Landau expansion coefficients con- 
tain the true temperature Tc of the transition in the presence 
of impurities. Similarly, one must allow for the scattering 
rate y in the part of the diagram in Fig. 6(c) reflecting con- 
tributions of orders T- T, and q 2 .  All this leads to expres- 
sions for the Ginzburg-Landau expansion coefficients A and 
C written above for the impurity case. 

The simplest way to find the coefficient B is to use the 
expression for the difference in free energies of the super- 
conducting and normal phases at an arbitrary temperature in 
the homogeneous case: 

F,-Fn=N(0) tanh (&) 

where E= d m ,  and A(() is defined in Eqs. (6) and 
(7). Expanding this difference in a power series in A. and 
T- Tc and employing Eq. (5) for T,, we get 

A; 
F,-Fn=N(0) -+N(O) 

g 

Using once more Eq. (5) for T,, we isolate the coefficient A 
found earlier in the term with A;. Then the factor of A:/2 is 
the coefficient B, 

wc d6 
B =  ""1 2 o - t3 s i n 4 ( z )  tanh (L) ~ T J  

from which Eq. (17) follows immediately. 

APPENDIX 2 

Examination of the block llo(q) introduced earlier re- 
veals the need to calculate a sum over frequencies of the 
form 

One can obtain a convenient representation of this sum in 
integral form by employing the well-known expression 

and the integral representation of the logarithmic derivative 
of the gamma function r, 

so that 

Re a>O, Re b>O. 

We then get 

1 
s= -lmdx sin (5) 

m u  0 ~ I T T  

Integration with respect t is elementary, with the result that 
Eq. (42) is reduced to Eq. (44). 
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