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We investigate the properties of resonant reflection of a shear acoustic wave in a hexagonal 
crystal whose surface is coated by an elastically anisotropic film that is thin compared to a 
wavelength and acts to transform the "supersonic" Rayleigh wave into a leaky wave. We 
show that within a narrow interval of angles of incidence corresponding to excitation of this leaky 
wave, the magnitudes of the excitation coefficients for near-surface vibrations increase 
markedly, and the phase of the reflection coefficient changes abruptly. The value of the resonant 
angle of incidence itself, like the width of the resonance interval, is regulated by the 
frequency of the incident wave. O 1995 American Institute of Physics. 

1. INTRODUCTION 

The problem of how thin layers (films) affect the propa- 
gation of surface acoustic waves (Rayleigh waves) has al- 
ways attracted the attention of investigators. However, to our 
knowledge none of the many publications on this topic have 
treated the situation where a thin coating at the crystal sur- 
face mediates the conversion of a Rayleigh wave into a pseu- 
dosurface (leaky) wave, although a number of papers discuss 
the feasibility of such a conversion (see, e.g., Refs. 1-3). In 
this paper we will show that the appearance of the leaky 
(pseudosurface) wave is accompanied by an interesting 
physical effect-resonant reflection of acoustic waves at the 
crystal-film boundary. 

The leaky wave evolves from a "supersonic" Rayleigh 
wave modified by the deposited film. Such a "supersonic" 
Rayleigh wave can occur only in anisotropic media; it differs 
from an ordinary "subsonic" surface wave in that the veloc- 
ity v R  of the "supersonic" wave lies within a range of ve- 
locities where the wave equation in the crystal has both non- 
uniform (near-boundary) solutions and a solution in the form 
of a uniform bulk wave. The additional elastically aniso- 
tropic layer at the surface of the medium can change the 
boundary conditions in such a way that the "supersonic" 
Rayleigh wave ceases to exist-the wave field in the crystal, 
which is made up of nonuniform modes alone, cannot satisfy 
the boundary conditions in the vicinity of vR. However, it 
then turns out that these new boundary conditions can be 
satisfied for velocities close to v R  if a bulk mode is added to 
the nonuniform modes with an energy flux directed into the 
bulk of the crystal. The amplitude of this bulk wave is small 
as long as the thickness of the film is small compared to a 
wavelength. A solution of the boundary value problem of this 
type is referred to as a leaky wave. 

On the one hand, the coupling of surface modes to bulk 
modes via the boundary conditions causes attenuation of the 
leaky wave due to radiation. On the other hand, this coupling 
allows effective excitation of the leaky wave by waves inci- 

dent from within the crystal at angles of incidence such that 
the velocity v of the incident wave along the surface, i.e., 
v = wlk ,  is close to the real part of the velocity of the leaky 
wave (where o is the frequency and k is the tangential pro- 
jection of the wave vector). In this case the reflection be- 
comes resonant and, as we show below, is accompanied by 
an anomalously large increase in the magnitudes of the ex- 
citation coefficients for surface modes, and also an extremely 
abrupt change in the phase of the reflection coefficient over a 
narrow interval of angles of incidence. 

In this paper we develop a theory of resonant reflection 
of elastic waves at a boundary between a crystal and a film 
for the simplest situation: a crystal with hexagonal symme- 
try. 

2. GENERAL RELATIONS 

The propagation of elastic waves in crystals is described 
by the equation 

where Cqjkl are the elastic moduli of the crystal, p is its 
density, uq are the components of the mechanical displace- 
ment vector u(r,t), and r=(x, ,x2 ,x3)  is the radius vector. 

In a medium bounded by a planar surface whose orien- 
tation is given by the unit normal vector n, we will seek a 
solution u(r,t) to the boundary value problem in terms of 
plane waves. Such a solution consists of a linear combination 
of partial solutions ua(r,t) to the wave equation (1): 

31 7 JETP 80 (2), February 1995 1063-7761/95/020317-07$10.00 O 1995 American Institute of Physics 317 



where the 6, are constants determined from the boundary 
conditions, m indicates the direction of propagation along 
the surface (Iml= I), and A, is the polarization vector of the 
partial mode identified by the label a. 

After substituting (3) into Eq. (1) we have 

n;l'a"4 = O  (4) 
a 9 

where M ( ~  is a matrix with elements 
4 

( ~ ( a ) ) q l = ( ~ k + ~ a ~ k ) ~ q k l j ( ~ j + ~ a ~ j ) - ~ v 2 ~ q / ~  (5) 

From the condition for existence of a nontrivial solution to 
the system (4), which consists of the requirement that the 
determinant 1M("))1 of the matrix M(") equal zero: 

we find the pa(v).  It is not difficult to verify that six func- 
tions p,(v) are obtained in all, which can take on both real 
and complex values depending on the value of the velocity 
v. The modes with real pa correspond to uniform (bulk) 
waves, while the partial solutions to (3) with complex pa are 
customarily referred to as nonuniform modes. In the case 
where the crystal is treated as a semi-infinite medium, we 
must include in the solution only those nonuniform modes 
for which the sign of the imaginary part of pa ensures that 
u,(r,t) decreases as the value of lnrl increases, so that the 
amplitude of the total field u(r,t) remains bounded at an 
infinite distance from the surface. If, however, we assume 
that the crystal has finite thickness, then there is no longer 
any need to select modes based on the sign of the imaginary 
parts of the p a ,  and we may include all six partial solutions 
to the wave equation in the total solution. 

Each of the partial modes (3) acts on a unit area of the 
surface nr=const with an elastic force fa: 

FIG. 1. Geometry of the problem. The axis x ,  is perpendicular to the plane 
of the figure; I+rystal, 11-film. The circles are cross sections in the plane 
x , x ,  of cavities cut in the slowness surface for bulk waves in the crystal: 
I-shear-wave branch ( u  I = m); 2-the branch of transverse waves 
polarized in the x , x ,  plane ( u 2  = a); 3-the longitudinal wave 
branch ( u ,  = a). Here v R  is the velocity of the "supersonic" Ray- 
leigh wave, v  is the velocity of the incident wave along the surface, and Bi, 
0, are the angles of incidence and reflection (8,=8,). 

where 0 , j  are the zero and unit matrices respectively; the 
symbol "@"  denotes the dyadic product of the vectors. 

3. A CRYSTAL WITH A FREE SURFACE 

Assume that the hexagonal crystal occupies the half- 
space x2>0 relative to the system of coordinates xIx2x3 (Fig. 
1). The sixfold axis of symmetry is directed along the x3 
axis. The crystal is characterized by a density p and the elas- 
tic moduli 

In Ref. 4 it was shown that for fixed values of v the 
vectors A, ,La, and Ap ,Lp that correspond to modes a and /3 C 1 2 1 2 ~ ( C 1 1 1 1 - C 1 1 2 2 ) ~ 2 = c 6 6  (11) 

with pa+ pp satisfy the relation (see, e.g., Ref. 5). We also assume that 

Furthermore, according to Ref. 4, with the normalization <4d- \i%, (12) 

2AaLa= 1 ,  (9) the condition c44<c66 implies the inequality ,, since 

the following identities hold: 

. . 

in hexagonal media we always have c ~ ~ < c ~  for thermody- 
namic reasons. Note that there is a large group of crystals for 

6 6 6 which relations (12) actually hold. x L,@L,=~, x A,@A,=~, A,@L,=~, We are interested in solutions to the wave equation in the 
a =  1 a= 1 a =  1 crystal for the x,x, plane. When m and n are directed along 

(10) the x,  and x2 axes respectively, the matrix M(") has the form 
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Expanding the determinant of M(*' and setting it equal to 
zero, we obtain 

where 

v l = J a ,  v2=Jc66Ip9 v3=\ICIIIP 

are the phase velocities of bulk waves in the plane xlx2,  
v1<v2<v3 

For the interval of velocities we will discuss below, 

we find from Eq. (14) the following p,, a=i,r,2,3,5,6: 

Then using (4), (7), (9) we compute the normalized vectors 
A,, L,: 

Labels a = i  and a = r  are used to identify the uniform shear 
waves that propagate normal to the crystal boundary (inci- 
dent wave) and from the boundary into the interior of the 
medium (reflected wave) respectively. 

Let us discuss the situation where there is no additional 
layer at the crystal surface. We will seek the wave field in the 
crystal in the form of a linear combination (2), which can 
contain the modes a=i,r,2,3. At the free boundary of the 
medium, the elastic forces reduce to zero; therefore, the co- 
efficients b, in (2) should be chosen so that 

Condition (22) is always satisfied by a superposition of 
modes a=i,r, since for any v on the interval (15) we have 

Li+iLr=O.  (23) 

This solution describes the reflection problem for shear 
waves. Furthermore, when v = v R ,  where vR is the real non- 
zero root of the equation 

f R ( ~ ) = ( 2 - ~ 2 / ~ ; ) 2 - 4 d m  J ~ = o ,  (24) 

yet another solution appears: the surface Rayleigh wave, 
which is formed from the nonuniform modes a=2,3, be- 
cause in this case 

L2+iL3=0 .  (25) 

According to Ref. 6, it follows from the inequality (12) that 

U I < V R < V Z ,  (26) 

i.e., in a hexagonal medium with elastic constants that are 
subject to conditions (12), the Rayleigh wave for this geom- 
etry is "supersonic" with respect to the shear bulk waves 
(Fig. 1). 

4. THE PROBLEM OF REFLECTION FOR SHEAR WAVES AT 
THE BOUNDARY BETWEEN CRYSTAL AND FILM 

We now assume that an elastically anisotropic film of 
thickness h is deposited on the crystal surface, and that rigid 
acoustic contact is maintained between the film and the crys- 
tal. The film is oriented so that the even-order axis of sym- 
metry and the plane of symmetry of the film, if there is such 
a plane, do not coincide with the x, axis and the plane x,x2, 
respectively. 

We consider the reflection problem for shear waves. We 
look for the wave field in the crystal in the form 

and in the layer in the form 

where v = v l/sinOi, and Bi is the angle of incidence; fi enu- 
merates the partial solutions to the wave equation in the 
layer, while pfp, A;, and L; can be found by following the 
procedure (4)-(7). We assume that 2 ~ ;  Lpf= l .  

The boundary conditions in this case are continuity of 
the displacement and elastic forces at the crystal boundaries, 
i.e., the layer (x2=O), and also the vanishing of elastic forces 
at the free surface of the layer (x2= - h ) .  This gives nine 
equations for determining b, , d p  : 
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5. RESONANCE BEHAVIOR IN THE REFLECTION NEAR A 
LEAKY WAVE 

For the specified orientation of the layer, the partial modes 
P= 1, ..., 6 do not split up into purely shear waves with A;, L; 
directed along the axis x3, and modes for which A;, L; lie in 
the plane xlx2 (see, e.g., Ref. 7). Therefore, the modes a=i,r 
and a=2,3 cannot independently satisfy the boundary condi- 
tions (29). 

In order to calculate the reflection coefficient 
R(v,h)= br(v,h)lbi(v,h) and the coefficients for excitation 
of the nonuniform modes Ta(v,h)=ba(v ,h)/b,(v,h), 
a=2,3, we proceed as follows. We will successively dot the 
first vector equation in (29) with the vector L; and the sec- 
ond with A;, with P=1, ..., 6. Each time we add right side to 
right side, left side to left side. Taking (8), (9) into account, 
we find 

Substituting (30) into the last vector equation in (29), we 
obtain an equation that contains only the b,: 

where 

From (31) it follows that 

Let us consider the behavior of the conversion coeffi- 
cients (34), (33 ,  assuming that the thickness of the layer is 
much smaller than the wavelength (kh<l). By separating the 
mixed products that include only the L, out of the numera- 
tors and denominators of (34), (35), and taking into account 
that [L,Li]L2, [LrLi]L3 are identically equal to zero, we ob- 
tain 

where the functions A bi(v ,kh) and Aba(v ,kh) describe the 
contribution of the film and have small values when kh is 
small; Ab,*(v,kh) is the complex conjugate of the function 
A bi(v,kh), and f ,(v) is defined according to (24). From this 
it is clear that when there is no Rayleigh wave on the interval 
v l  <v < v 2 ,  for k h 4 1  the coefficients R(v,h),Ta(v,h) will 
differ only slightly from their values in the absence of the 
coating. From (24) it follows that for v < v < v2 the values 
of fR(v) will be of order unity; therefore, the presence of the 
layer causes the phase of the reflection coefficient to depend 
only weakly on the angle of incidence, and the coefficient for 
excitation of the nonuniform modes will be small: 
T,=Aba/fR<l. 

The situation is different when the Rayleigh wave is 
"supersonic." Consider the behavior of the denominator 
bi(v,kh) = fR(v) + Abi(v,kh) of the coefficients (36), (37). 
When U = U R ,  kh=O, we have bi(vR,O)=fR(vR)=O. Then 
for small kh the quantity bi(v,kh) will go to zero, but only 
for a certain complex value v = vl  - iv ;(Abi(v,kh) is a 
complex quantity). This assertion follows because the deriva- 
tive dfR(vR)Idv does not equal zero when u = v R  Accord- 
ingly, we assume that for v near v R ,  

the computations show that 

where kR=w/vR. Likewise, the numerators of the coeffi- 
cients (37) Aba(v,kh), a=2,3, have the following forms 
when k h 4 l :  

where b ,(v R) # 0. 
To summarize, it turns out that for v close to u R  and 

kRh<l we have 
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and T:) does not depend on v or kRh. 
From Eqs. (41), (42) it follows that in a neighborhood of 

v = v l  with width of order v; , v; 4 v l,  the phase N v )  of 
the reflection coefficient changes by 27r. In this same region, 
the phases of the coefficients for excitation of nonuniform 
modes T,(v,h) change by 7r, and their magnitudes increase 
greatly: 

for Iv - vll s v i ,  while 

for Iv - vll JURU; - vR(kRh). 
Thus, we see that when the Rayleigh-wave velocity is 

larger than the phase velocity of the shear wave, for angles of 
incidence such that the velocity v of the shear wave along 
the surface is close to the value v l ,  the presence of a layer on 
the surface causes the conversion coefficients 
R(v,h),Ta(v,h) to behave in a way utterly unlike their be- 
havior in its absence. This difference is enhanced as the pa- 
rameter kRh decreases. However, according to (41) and (42) 
we find that R(v, h),Ta(v, h) do not have a limit as v --+vR, 
h+O: their values at the point v = v R ,  h=O depend on the 
way the limit is taken. This indicates that Eqs. (41), (42) 
cannot correctly describe the behavior of the conversion co- 
efficients near v for values of kRh that are too small. We can 
establish the limits of applicability of (41), (42) from the 
following considerations. 

Note first that v = vl  - iv; the wave field in the 
crystal that satisfies the boundary conditions (29) does not 
contain the mode a=i:  in the linear combination (27) we 
have bi=O, but b,#O, b 2 f  0, b3#0. The amplitude b, is 
small compared to b2, b,, i.e., 

while the ratio of amplitudes for the nonuniform modes 
themselves (a=2,3) turns out to be practically the same as 
for the Rayleigh wave: b2/b3= - i. Such solutions are usu- 
ally called leaky waves, and it is convenient to treat them as 
a near-surface perturbation that decays as it propagates along 
the boundary due to radiation into the interior of the ~ rys t a l .~  
The imaginary correction - iv; characterizes the attenuation 
due to radiation; the leakage of energy from the boundary is 
provided by the mode a=r. 

In view of this assertion, we see that in the reflection 
problem the condition v = v corresponds to resonant excita- 
tion of the leaky wave by the incident wave; accordingly, the 
behavior near vl can be interpreted as a consequence of this 
resonance. In particular, from this point of view the value of 
ITa(v,h)l for Iv - vll v; is large because "almost" 

characteristic surface oscillations are excited. The abrupt 
change in the phase of the reflected wave is caused by inter- 
ference between the wave that is reflected nonresonantly and 
the bulk component of the leaky wave. The sharpness of the 
resonance will be determined by the attenuation of the leaky 
wave, which in reality is due not only to radiation but also to 
absorption. We did not take into account the presence of 
dissipation in deriving Eqs. (41), (42), which is valid pro- 
vided that the losses due to radiation in the leaky wave ex- 
ceed losses due to absorption. If we describe the absorption 
of the leaky wave by adding an additional imaginary com- 
ponent - iv: to the velocity u l ,  we find that Eqs. (41), (42) 
are valid for v i  + v:. Note that absorption of the leaky 
wave will be determined primarily by absorption of surface 
vibrations; therefore, using the quantity vk that characterizes 
the attenuation of Rayleigh waves as our estimate of v:, we 
have a bound on the value of the parameter kRh in (41), (42): 

Of course, if the absorption of sound in the film is anoma- 
lously large compared to that in the crystal, then v: can 
differ significantly from vk. 

In order to represent the behavior of the coefficients of 
reflection and excitation of nonuniform modes for v; 
2 v:, we replace v l  by v l  - iv: in Eqs. (41), (42). Then in 
place of v the sum vi + v: appears in the denominators of 
R(u, h),Ta(v, h), and the difference v ; - v: appears in the 
numerator of R(u , h ) .  From the expressions obtained in this 
way, it is clear in particular that as long as v; > v: holds, 
the magnitude of the coefficient of excitation of nonuniform 
modes at v = v will increase as the parameter kRh decreases, 
pass through a maximum ITa(v,h)l - Jar and then 
decrease, falling to zero when kRh =O. Furthermore, it is now 
apparent that for v; = v: , within the resonance interval the 
magnitude of the reflection coefficient should increase 
abruptly. The explanation for this is that when the amplitude 
of the surface vibrations are large, even their weak absorp- 
tion leads to the loss of a considerable fraction of the energy 
fed to the surface (see, e.g., Ref. 9). In the case of strong 
absorption (v: 2> v;), all the resonant features disappear. 

6. COMPUTING THE PARAMETERS IN THE CONVERSION 
COEFFICIENTS OF A SHEAR WAVE AT THE 
CRYSTAL-FILM BOUNDARY 

Let us find approximate expressions for the parameters 
entering into (41), (42), and also for the resonance angle of 
incidence 

corresponding to the condition v = v l .  

In accordance with (32) we have 
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while by virtue of (8), (9), 

where 

and (EI:)lT is the transposed matrix of EL',). 
The matrices EL?, EL;), and E,@ are directly expressed 

in terms of the elastic moduli of the layer Cfrnkl in the 
xlx2x3 system of coordinates and its density pf. By the same 
token, taking into account (8), (9), it is easy to verify that 

Now, if we write p V p ,   pi^; using Eq. (4) and the ratio (7), 
and then compare the results obtained with (52), we find 

where the repeated indices p,k  are summed over: p,k= 1,2,3, 
and [c:,,,]-' is the inverse of the matrix with elements 
Cinrn2, n, m=1,2,3; [cinrn2]-l always exists, since the re- 
quirement of thermodynamic stability implies that 
must be a positive definite matrix.') 

Substituting (17)-(20), (48) into (34), (35) and using the 
relations (lo), (50), (53), after rather tedious transformations 
we are led from (34), (35) to Eqs. (41), (42), where 

Note that the parameter a,' in (57) is greater than zero, be- 
cause g is a positive quantity. For the layer orientation we 
have chosen, ( E F ] ) ~ ~ , ( E L ? ) ~ ~  do not simultaneously van- 
ish. 

To order (kRh12 we obtain an approximate expression 
for the resonance angle of incidence (40): 

We find the characteristic angular width AO,,, of the interval 
within which the rapid changes of R ( v  , h ) ,  T,(v ,h )  take 
place from the condition 

from which we obtain, again to order (kRh12, 

Recall that in the course of our calculations we assumed 
that the vectors A,,La were normalized in accordance with 
(9). When we go over to the more traditional normalization 
IAal=l, the expression for R ( v , h )  does not change if we set 
A,=(0,0,1), A,=(O,O,-i), but additional factors appear in 

lo, T ,  : 
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IT, I the reflection coefficient on the angle of incidence gives rise 

7. CONCLUSION ' "~hus,  there is no need to compute p L , ~ ; , ~ k .  When the orientation of the 

this paper we have shown that the presence of a thin layer is "nonsymmetric," as is the case here, such computations can only 

elastically anisotropic film at the surface of a hexagonal crys- rarely be done (see, e.g., Ref. 10) without the help of numerical calcula- 
tions. 

tal radically changes the nature of reflection of shear waves 
in the sagittal plane of a "supersonic" Rayleigh wave. A 
narrow interval of incident angles emerges in which the 
phase of the reflection coefficient changes abruptly, and re- 

8 0  : 

60 7 

40 - 

20 1 

flection is accompanied by excitation of surface modes with 
an amplitude much greater than the amplitude of the incident 
wave. In Fig. 2 we show as an illustration plots of the abso- 
lute value of the coefficient of excitation of surface modes 
(42) versus the angle of incidence for kRh=0.05 and 0.1 for 
a Zn crystal with a layer deposited on its surface (also of Zn). 
In the layer the sixfold axis of symmetry is parallel to the 
surface at an angle of 50" to the x ,  axis. For crystals of Zn, 
the factors (63) are equal: IA2/Ail = 1.11, IA,/A,I =0.96. 

Anomalous behavior of the conversion coefficients oc- 
curs at angles of incidence such that the velocity of the inci- 
dent wave along the surface is close to the velocity of the 
leaky wave, which evolves from the Rayleigh wave due to 
anisotropy of the elastic properties of the film; therefore, we 
can interpret the appearance of these peculiarities to be result 
of resonance excitation of the leaky wave. We note that a 
similar resonance effect occurs when the plane of incidence 
is rotated with respect to the sagittal plane of the "super- 
sonic" surface wave;"-l5 in this case, the leaky wave arises 
from the characteristic anisotropy of the crystals as long as 
the angle of deviation is small. 

According to (60), (62), the value of the resonant angle 
of incidence and the width of the resonant interval depend on 
the parameter kRh. This allows us to control the effect by 
varying the frequency of the incident wave. An acoustic 
pulse incident on the boundary will thus suffer a significant 
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FIG. 2. Absolute value of the coefficient of excitation of nonuniform modes 
vs. the angle of incidence for resonance reflection. 1-kRh=0.05, 
2-kRh =0.1. 

to strong "nonspecular" reflection of a wave disturbance 
with a finite spatial spectrum (an acoustic beam), i.e., it leads 
to a lateral shift of the disturbance over a distance of the 

- 

distortion. Likewise, the abrupt dependence of the phase of Translated by Frank J. Crowne 

1 
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I same order as its width, as well as a considerable distortion 
of its shape (see, for example, Refs. 9, 13, 16). 

It is noteworthy that "supersonic" surface waves can 
occur in crystals with symmetries other that hexagonal. For 
example, it is well known that the Rayleigh wave in cubic 
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crystals is often found to be "supersonic";" the Gulyaev- 
Bleustein waves in piezo-electric crystals can also become 
" s ~ ~ e r s o n i c " . ' ~  Accordingly, an anisotropic layer can create 
conditions for resonance reflection in these cases as well. 
Note also that, the analogous phenomenon, i.e., exception- - ally strong influence of a thin anisotropic film on reflection, 

o-----I-~~~-~'''~~~~'- can occur in optics as well. 
58-  5 9 O  60' 6 f 


