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Methods for calculating the lateral interactions in systems of adsorbed molecules are discussed. 
These methods make it possible to find the stable orientational structures of polar molecules 
as well as the characteristics of the vibrational and electronic spectra of the adsorbate. Several new 
results concerning the determination of the ground state of dipoles on a flat hexagonal 
lattice (of the honeycomb type) are presented. It is shown that dipoles in this state form a 
complicated antiferroelectric vortex structure. When the dipoles are tilted with respect to the plane 
of the lattice, the tilting being associated with the action of adsorption potentials, such a 
structure is characterized by Davydov splitting of the spectral lines in two perpendicular 
polarizations. O 1995 American Institute of Physics. 

The need to understand the mechanisms leading to the 
formation of complicated orientational structures of adsorbed 
molecules and to describe the orientational, vibrational, and 
electronic excitations in these systems has led to the devel- 
opment of a new scientific direction in the surface physics of 
solids-the theoretical study of the properties of two- 
dimensional dipole systems. Dipole-dipole interactions make 
the main contribution to the lateral interactions of the dy- 
namic dipole moments of the vibrational and electronic ex- 
citations of adsorbed molecules, as well as to the lateral in- 
teractions of the static dipole moments of polar molecules. In 
many cases, the adsorbed molecules can assume several 
equivalent orientations in the plane of the lattice of adsorp- 
tion centers. Then the dipole-dipole interactions of the static 
dipole moments can form orientationally ordered structures, 
which arise by means of an orientational phase transition at 
definite low temperatures.'-5 The existence of such transi- 
tions was proved experimentally for the system COINaCl 
(100); in which low-temperature Davydov splitting of the 
spectral lines of the valence vibrations of CO molecules was 
observed. 

As a result of the anisotropy of the dipole forces, the 
dipole moments in the ground state have complicated con- 
figurations, which have been calculated, taking into account 
the long-range action, by different methods for square,377 
triangular,3 orthorh~mbic,~ and arbitrary planar Bravais 
 lattice^.^ In the present paper we shall show, for the example 
of the calculation of the orientational structures and charac- 
teristics of the spectra of systems with several nonequivalent 
molecules in the unit cell of a two-dimensional lattice, that 
all information about the lateral interactions of the system at 
hand is contained in the Fourier components of the dipole- 
dipole interaction tensors. Lattice-sublattice relations, which 
make it possible, specifically, to express the energy of differ- 
ent orientational structures on a complicated hexagonal lat- 
tice in terms of known quantities for triangular sublattices, 
will be obtained for these quantities. In the process, the 
ground state of the system under discussion, the dispersion 
laws of the collective excitations, and the frequencies of the 
valence vibrations of dipoles which are active in the infrared 
absorption spectra will be determined. 

We consider an arbitrary planar lattice of adsorbed mol- 
ecules, which is formed by the local crystal field of the sur- 
face. We assume that the lattice is a compound lattice and 
consists of n Bravais sublattices with the unit cell A,,A2. 
Then its sites can be described by the vectors R + r j ,  where 
R=mlA, +m2A2 are the sites of the basic Bravais sublattice 
(m, and m2 are integers) and r, is the position of a site in the 
jth sublattice in the unit cell (A1,A2). The adsorbed mol- 
ecules are characterized by the dipole moments p ~ j ,  whose 
interactions we intend to take into account here. Since our 
objective in the present paper is to analyze the lateral inter- 
actions, the effects associated with the action of the substrate 
(which were discussed in detail in, for example, Refs. 4 and 
5) will be assumed to have been taken into account and in- 
corporated in the parameters of the adsorbed molecules. We 
shall show how and when such an analysis is justified. 

First, the local crystal fields are already taken into ac- 
count by the fact that a lattice of adsorption centers has been 
formed and the high adsorption energies make it possible to 
ignore effects which are due to desorption of molecules. The 
orientationally dependent part of the potential energy of a 
molecule in the crystal field of the substrate in many cases 
gives rise to several symmetrically equivalent minima, sepa- 
rated by energy barriers which are much less than the adsorp- 
tion energies and are of the order of the room-temperature 
thermal energies or lateral-interaction The curva- 
ture of these minima determines the frequency w, of tor- 
sional vibrations of an individual adsorbed molecule and is 
found to be on the order of 100 cm-'. As a result of the 
interaction with low-frequency phonons of the substrate, a 
torsional vibration becomes resonant. For this reason, the 
renormalized frequency 6, (which is virtually identical to 
w,) and the width of the resonant vibration can be treated as 
parameters of the adsorbed molecule. These parameters, 
within the exchange dephasing model, which takes into ac- 
count the finiteness of the reorientation barrier," determine 
the frequency wO, and damping l7, of high-frequency local 
molecular vibrations associated with the longitudinal dis- 
placement xRj of the dipole-moment vector: &j = (p i  
+ qjxRj)eR, (qj is the effective charge and eR, is the unit 
vector of the orientation of the static dipole moment p,). 
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In experiments the spectral lines of high-frequency lon- 
gitudinal vibrations of adsorbed molecules, such that the fre- 
quencies woj>2000 cm-' are much higher than the vibra- 
tional frequencies of the substrate atoms, are easily recorded. 
The damping T, of these vibrations is less than 1 cm-' at 
low temperatures (see, for example, Ref. 6) and is found to 
be an order of magnitude less than the width of the band 
formed by the lateral interactions. For this reason, if only the 
observed frequency of the spectral line of a collective exci- 
tation is of interest, then Tj=O. In this case, the longitudinal 
vibration is split off from the transverse orientational vibra- 
tion because their polarizations are orthogonal to one another 
and the values of the corresponding frequencies differ by an 
order of magnitude. 

Orientational ordering of polar molecules on simple pla- 
nar lattices, taking into account the local hindered-rotation 
potentials, was studied in Ref. 3. As a result of one- 
parameter degeneracy (in the absence of the crystal field) of 
the ground states of the dipoles on square and triangular 
lattices, the local potentials could easily deform the orienta- 
tional structure without changing the dipole-interaction en- 
ergy. For this reason, in the present paper, in analyzing the 
ground state of the orientational part of the Hamiltonian of 
the interacting static dipole moments on a compound lattice, 
we shall not explicitly study the orientationally dependent 
part of the potential energy of the molecule in the substrate 
crystal field, and in the subsequent problems of describing 
the vibrational spectra of the high-frequency longitudinal vi- 
brations, the existence of such a crystal field will be mani- 
fested in the choice of a definite orientational structure eRj. 

The forgoing discussion of the model of lateral interac- 
tions of adsorbed molecules therefore enables us to represent 
the complete Hamiltonian of the system at hand as the sum 

consisting of static dipole-dipole interactions 

K,, ' 

and the Hamiltonian of longitudinal vibrational excitations 

Here, 

is the dipole-dipole interaction tensor, the second term in Eq. 
(2) corresponds to a transition to Fourier components within 
the main region of the basal Bravais sublattice consisting of 

No sites, pRj= mjxRj is the momentum corresponding to the 
vibration X R ~  with reduced mass m j ,  and summation over the 
repeated Greek indices of the Cartesian coordinate axes is 
implied. The frequency w,, depends on the static electric 
fields generated by neighboring dipoles. When the cubic an- 
harmonicity a, of the vibrations of an isolated jth molecule, 
characterized by the force constant k ,  and frequency 

is taken into account, the static renormalization of the fre- 
quency can be written as 

We now consider two basic problems which arise for the 
system under discussion. The first problem is to determine 
the ground state of a system of static dipole moments on a 
lattice and is equivalent to minimizing Ho over all possible 
orientations of the vectors eR,. In so doing, we assume that 
all molecules are identical ( p , = p ) ,  and the orientations 
eRj can be arbitrary in the absence of dipole-dipole interac- 
tions. The eigenvalues and eigenvectors of the tensor 

make it possible to represent the quadratic form (2) as a sum 
of squares 

,a - n 1 / 2  CJ,Y(K) r),Y(K)exp[iK(R+ r,)]. (9) 
K,p, v 

Now, it is obvious that the ground-state energy of the system 
is determined by the deepest minimum of the family of func- 
tions V,"(K), and the corresponding configuration of dipole 
moments eR,, as follows from the relation (9), is determined 
by the eigenvectors C r ( K ) .  The procedure, presented here, 
of seeking the ground state of a system of dipoles on a com- 
pound lattice is an extension of the analogous procedure for 
simple Bravais lattices9 

The second problem is to find the frequencies of the 
normal vibrations and the corresponding integral intensities 
of spectral lines active in the IR-absorption spectra. To solve 
this problem, the orientations eRj of the molecules may be 
regarded as given. Here, it is unimportant whether or not the 
orientational structure eRj was determined as a result of mini- 
mizing the energy of static dipole-dipole interactions or as a 
result of competition between other interactions (for ex- 
ample, adsorption potentials and Coulomb interactions). In 

290 JETP 80 (2), February 1995 V. M. Rozenbaum 290 



the case of nonpolar molecules ( ,ujZ 0 )  the vectors e ~ ,  will 
describe the orientation of the dynamic transition-dipole mo- 
ments. 

We shall be interested in the periodic orientations of the 
dynamic dipole moments, when it can be assumed that a unit 
cell of a two-dimensional crystal contains n orientationally 
nonequivalent molecules, i.e., 

We call attention to an important circumstance which arises 
in the second problem. The periods of the orientational struc- 
ture (9)  can exceed the periods A ,  and A, of the basal Bra- 
vais sublattice. In this case, the unit cell A ,  ,A2 must be en- 
larged so that the conditions (10) would be satisfied and 
translations by the new vectors R would reproduce the ori- 
entations of the adsorbed molecules. 

Now in the excitation Hamiltonian (3)  we can go over to 
the Fourier representation in the wave vector K: 

and we can introduce the normal coordinates t1 for the mode 
K=O of interest to us, which is seen in infrared spectra: 

Here the unitary matrices Sjl  

are constructed from the eigenvectors of the following ma- 
trix of squared frequencies: 

The eigenvalues IR: of the same matrix, which satisfy the 
equation 

C @ , , ' S ~ ~ ~ = I R : S ~ , ,  (16) 
j' 

determine the squared frequencies of the normal vibrations: 

The IR absorption coefficient A ( w )  of a monolayer of 
adsorbed molecules with surface concentration NIF is deter- 

mined by the angle of incidence 6 of the radiation with 
respect to the normal to the surface and the effective absorp- 
tion cross section d w )  as follows: 

N 
A ( w ) = -  

F cos 6 4 w ) ,  

where d w )  equals the ratio of the power Q ( w )  absorbed by 
a single molecule to the average (over a period of the vibra- 
tions) energy flux density in the incident wave: 

Here, E and E are, respectively, the amplitudes, which are 
related by the Fresnel formulas, of the electric fields on the 
surface and in free space, co is the velocity of light in free 
space, and i , y f ( K , o )  is the susceptibility tensor of the sys- 
tem and satisfies the equation 

- xy y( C, B;?, (K)~;; , (K,  w ) ,  (20) 
I" 

where the polarizability tensor of the jth molecule is 

4: e p j "  
X i " p ( w ) = - -  * 

mj w -w?+i0  sign w '  

The solution of Eq. (20) with K=O can be expressed in terms 
of the eigenvalues and eigenvectors of the problem (16): 

q .  ., s ,Is; 
ia! (O,w)  = - - lql  eye:, I I  6 l w 2 - f l : + i ~  sign w '  

Substituting Eq. (22) into Eqs. (18) and (19), we obtain the 
following relation for the total intensity of the lth spectral 
line: 

where E=E/E is the orientation vector of the electric field at 
the surface and is scaled to the amplitude of the electric field 
of the infrared radiation in free space. Thus, n molecules in a 
unit cell of a two-dimensional crystal correspond to n spec- 
tral lines. If the molecules are identical (i.e., q ,  , mj , and w,j 
do not depend on j) and are subjected to identical static 
electric fields of neighboring dipoles (w ,  does not depend on 
j), but the orientations of e, are different, then the splitting of 
a single nondegenerate vibrational state of a free molecule 
into somewhat differently polarized normal vibrations with 
formation of a crystal is customarily called Davydov 
splitting.'' 

In both problems considered, the orientational structures 
and ground spectroscopic characteristics are determined by 
the behavior of the Fourier components of the tensor 
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V;~(K) describing the dipole-dipole interactions between 
the sublattices. The properties of the quantities VffP(K) for !I 
an arbitrary Bravais sublattice have been studied quite 
we11.4,5.9 For this reason, the problem is to learn how to dis- 
tinguish most efficiently the quantities V;!(K) for j # j ' . We 
shall show that such intersublattice interactions can be re- 
lated with the known tensors V;~(K) for the basis Bravais 
sublattice. For this we construct a denser Bravais lattice, 
whose site set r=m,a,+m2a2 includes the set of sites of the 
compound lattice under consideration. Of course, such a con- 
struction is not always possible, but for the most interesting 
cases of symmetric lattices the main vectors of the Bravais 
basal sublattice can be represented as integer linear combi- 
nations of the main vectors of the dense lattice: 
Aj= njla!+nj2a2 Q= 1,  2; njjj  are integers). Then the areas 
of the unlt cells of these lattices will differ by a factor det(6) 
= n, and the main vectors of the reciprocal lattices, satisfying 
the conditions AjBjt = 27rsjjr and ajbjl = 27r6jjt will be 
expressed in terms of one another as linear combinations 
with rational coefficients: 

B,= x (6-1)jrjbjt .  (24) 
j ' 

If we now introduce the Fourier components V*~(K) of the 
dipole-dipole interaction tensor on a dense Bravais lattice, 
then the desired quantities V1;!(K) for the compound lattice 
are determined by the expression 

where the summation extends over all integer linear combi- 
nations of the vectors B, and B2, falling into the first Bril- 
louin zone of the dense Bravais lattice. 

The relation (25) is very convenient both for finding the 
relations between the values of the tensors Vap(K) at differ- 
ent points of the first Brillouin zone and for calculating the 
interactions of the sublattices of the compound lattice. For a 
square lattice, it is necessary only to have values of the two 
lattice sums 

determining the energies H ~ =  ( I / ~ ) N ~ ( ~ ~ / U ~ ) D ~ , ~ ,  where 
a is the lattice constant, of the system of dipoles with ferro- 
electric or antiferroelectric (Fig. 1) ordering in the plane of 
the la t t i~e .~  Then the nonzero values Dap(K)=a3Vffp(K) at 
symmetric points of the first Brillouin zone and D1;?(0) - a3V1;!(0) with the j sublattices designated as indicated in 
Fig. 1 will be as follows: 

FIG. 1. Ground-state configuration of dipoles on a square lattice and desig- 
nations of sublattices with identically oriented dipoles. 

- fi)D,-2Da) A], 

For the structure, displayed in Fig. 1, of the projections of 
the dipole moments on the plane of the square lattice, corre- 
sponding to the ground state, 

el=(sin 8 cos cp,sin 8 sin cp,cos t?), 

e2 = (sin 8 cos cp, - sin 8 sin cp,cos 8), 

e3=(-sin 8 cos cp,-sin 8 sin cp,cos 8), (28) 

e4=(-sin 8 cos cp,sin 8 sin cp,cos 8), 

where 90"-8 is the tilt angle of the dipoles with respect to 
the plane of the lattice, substituting Eqs. (27) and (28) into 
Eqs. (14)-(16) and (23) gives the following squared frequen- 
cies and integral intensities of the spectral lines: 

n2- I - wo[l 2 + ( X / ~ 3 )  ( 1  + K)(-2DF c0S2 8 
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A 3m 6: sin2 B cos2 cp, 

f i i = ~ % { l  + ( x / ~ ~ ) K ( - ~ D ~  c0s2 O+DA sin2 8) 

- t(Xla3)(1 - &)DF cos2 8 + ( x l a 3 ) ~ d s i n 2  cp 

+ (2-'I2- 1)cos2 cp]sin2 81, 

A,M 6; sin2 8 sin2 cp, 

where X =  q2/(m o i )  is the vibrational polarizability of a 
molecule, and K =  2ap lqk  is a dimensionless parameter, de- 
scribing the static renormalization of the frequency in the 
presence of the cubic anharmonicity a. The unitary matrix 
representing the transformation to normal coordinates has the 
form 

When the relations (27) are taken into account, the expres- 
sions (29) for the allowed absorption lines (A,#O) in the 
infrared spectra are identical to those obtained in Ref. 12 by 
a different method, which does not employ a sublattice de- 
scription. The magnitudes of the Davydov splitting are deter- 
mined by the differences of the squared frequencies (29) and 
do not depend on the static renormalization of the frequen- 
cies. For a structure with p=O, corresponding to the system 
~0INa~1(100) ,~  the relations (29) give good agreement with 
the observed magnitude of the Davydov splitting.'' 

We now illustrate the operation of the identity (25) for 
the example of a complex hexagonal lattice with the hexagon 
edgelength equal to a .  The basis vectors of the basis trian- 
gular sublattice A, =f la (1 ,0 ,0)  and A2=fla(1/2,f l /2 ,0)  
can be expressed in terms of the basis vectors of the dense 
triangular lattice a, =a(O, - 1,O) and a2=a(f l /2 ,  - 1/2,0) 
as follows: Al=2a2-a, and A2=a2-2al (Fig. 2a). Then we 
have r2,=a(f l /2 ,  1/2,0) =a2-a,, and all sites of the com- 
pound lattice are included in the site set of the dense Bravais 
lattice. The basis vectors of the reciprocal lattices are related 
by the relations B,=(bl+2b,)/3 and B2= -(2b1 +b2)/3, so 
that the corresponding first Brillouin zones have the form 
displayed in Fig. 2b and the summation in Eq. (25) is limited 
to the vectors B= -B2, 0, and B2. For this reason, 

FIG. 2. a--Ground-state configuration of dipoles on a compound hexagonal 
lattice and the corresponding basis and dense triangular lattices. &First 
Brillouin zones for the reciprocal basis and dense lattices. 

The dense Bravais lattice is the same basis triangular sublat- 
tice, but is turned clockwise by 90" around the Z axis. Intro- 
ducing the corresponding rotation matrix 0, we obtain the 
following important identity: 

which, together with the relation (31), makes it possible to 
associate the values of V a P ( ~ )  at different points of the first 
Brillouin zone. In particular, at the symmetric points K=O, 
kA=b2/2, kL= -B2 (Fig. 2b) and at K=KJ=b2/3 for 
D a p ( ~ ) = a  v a p ( ~ )  we obtain 

D a P ( ~ ) = ~ F 6 a p ,  DaP(kJ)= t(3'l2- 
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where DF= -5.517088 and DA= -4.094910 determine the 
energies of the ferroelectric and antiferroelectric states on a 
triangular lattice of dipoles3 Now, the following values are 
obtained with the help of the relations (32) for D,"~(K) with 
K=O, KA=B2/2, and KJ=b2/3 (Fig. 2b): 

The eigenvalues of the tensor D]?!(K) = 03??!(K) at sym- 
I! 

metric points of the first Brillouin zone, which are deter- 
mined by Eq. (7), assume the following form: 

FIG. 3. Eigenvalues D,Y(K) of the Fourier components of the dipole-dipole 
interaction tensor on a hexagonal lattice as a function of the wave vector K, 
determined in the first Brillouin zone of the basal sublattice. 

The functions Dp"(K) in the symmetric directions of the first 
Brillouin zone are displayed in Fig. 3. The lowest value 
D (Kj) determines the energy Ho = 1 / 2 ~ ( / . ~ ~ / a ~ ) D i  (Kj) of 
the one-parameter degenerate (with respect to the angle cp) 
ground state of a system with the following configurations of 
dipole moments: 

displayed in Fig. 2a. It is interesting that the same configu- 
ration of dipole moments in the ground state with 
D (Kj) = -912 is obtained when the dipole-dipole interac- 
tions are taken into account in the simplest nearest-neighbor 
approximation,13 while for a triangular lattice of dipoles the 
short- and long-range models give ground states with quali- 
tatively different ~tructures.~ Numerical calculations of the 
ground-state energy taking into account the long-range inter- 
action between 72 dipoles, surrounded by 48 similar dipole 
configurations, led in Ref. 13 to the value 
Ho = - 2 . 2 2 6 9 ~ , u ~ / a ~ ,  very close to the exact value 
(D: (K~) /~=  -2.226905). We note that in Ref. 14 the ground 
state of dipoles on a hexagonal lattice was analyzed in terms 
of chain structures. This limitation on the possible types of 
dipole orientations made it impossible to find the most ad- 
vantageous antiferroelectric vortex state D : (Kj) and revealed 
only the layered antiferroelectric state D (K,). 
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We now analyze the effect of thermodynamic fluctua- 
tions of the order parameter on the ground state of dipoles on 
a hexagonal lattice. Just as for a square l a t t i~e ,~""~  two fac- 
tors materialize here simultaneously: the quadratic asymp- 
totic behavior of the minimum branch of the eigenvalues 
D;(K) around the ground state with K=Kj  and its one- 
parameter degeneracy with respect to the angular variable. 
As shown in Ref. 15 and confirmed in Ref. 16 by Monte 
Carlo modeling on a square lattice, because of these factors a 
low-temperature dipole system is in a Berezinskii- 
Kosterlitz-Thouless phase. Removal of degeneracy by local 
potentials or multipole corrections will stabilize the long- 
range order, as in the case of a square lattice of dipoles.17 

The curves D,V(K) in Fig. 3 determine six branches of 
vibrations of the charges, which can be displaced relative to 
the sites of a hexagonal lattice. Since the hexagonal lattices 
are realized on the basal face of graphite, for which a large 
volume of experimental data on adsorption has been 
ac~umula ted , '~~ '~  here it is useful to give the computed fre- 
quencies of the radial vibrations of adsorbed polar molecules 
that should be observed in the infrared spectra. The adsorp- 
tion potentials can force the dipole moments of the adsorbed 
molecules from the lattice plane,6 so that the X and Y com- 
ponents of the vectors in Eq. (37) are premultiplied by sin 8, 
and the Z components will be cos 8. Using as a basis the 
similar calculation for a square lattice performed in Ref. 12, 
we obtain 

Here the indices X, Y, Z indicate polarization of the corre- 
sponding vibration, and the notations agree with those 
adopted in the expressions (29). The magnitude of the Davy- 
dov splitting of the spectral lines 

is determined by the values of D,V(K) (36) at symmetric 
points of the first Brillouin zone and is described by the 
lateral interactions, inclusively, of the dynamic dipole mo- 
ments of adsorbed molecules. 
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