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It is possible to approach the problem of computing T ,  for complex compounds by starting with 
spatially inhomogeneous systems: first, consider a structure made up of macroscopic blocks 
of size L B a  (where a is the interatomic spacing), and then make the extrapolation L-+a. A 
general theorem for the Gor'kov equation implies that when T ,  is computed for such a 
block structure, neglect of transitional behavior of all physical quantities at boundaries results in 
a value of T,  which cannot exceed the largest value of T,  for the constituent materials of 
the structure. However, this bound is removed when we take into account surface effects, a fact 
that makes them important for problems of high-temperature superconductivity. In this 
paper, we use general expressions obtained in Refs. 6 and 7 to investigate surface contributions 
to T,  for a periodic structure consisting of alternating layers of two metals 0 and 1 with 
quadratic spectra. We discuss three possible differences between the spectra of metals 0 and 1: 
(a) different energies for the bottoms of the conduction band, (b) different longitudinal 
masses, and (c) different transverse masses. All these differences lead to nontrivial oscillatory 
behavior of T ,  as we vary the thickness d  of the layers of material 1. Based on this 
dependence T , ( d ) ,  we predict the maximum value of T ,  , discuss its dependence on the parameters 
of metals 0 and 1, and identify factors that favor or hinder increasing this value. At the 
same time, the contents of this paper may be regarded as a systematic theory of the effect of 
quantum oscillations in T,  first discussed by Kagan and ~ u b 0 v s k i i . l ~  O 1995 American 
Institute of Physics. 

1. INTRODUCTION 

An ideal theory of superconductivity should make it pos- 
sible to calculate the transition temperature T ,  for an arbi- 
trary material. In principle, there is a well-known algorithm 
for performing this calculation "from first principles," i.e., 
starting only from knowledge of the atoms entering into the 
compound and their positions in space (see, e.g., Ref. 1); 
however, it requires tedious numerical calculations for each 
specific material. Therefore, the search for compounds with 
high T ,  is reduced to systematic trials, as in an experimental 
investigation. For this reason, a need has arisen for a cruder 
method whose use could yield some sort of qualitative pat- 
tern. 

It is possible to approach the problem of calculating T,  
for complex compounds by starting with spatially inhomoge- 
neous systems. For example, we replace a lattice made of 
alternating A and B atoms (Fig. la) with a system made up of 
macroscopic blocks of bulk materials A and B (Fig. lb), 
assuming that the size L of a block is large compared to the 
interatomic spacing a .  We then extrapolate down to L - a  at 
the end of the calculation, which marks the limit of the re- 
gion of applicability of the latter. For L B a  we may use 
information about the bulk properties of materials A and B, 
which leads to a great saving in computation (it is known 
that in first-principles calculations most of the computer time 
is expended not in calculating T ,  but in "constructing" the 
solid out of atoms). 

In order to obtain nontrivial results in this approach, we 

require a systematic analysis of surface effects. The point is 
that when the transitional behavior of all physical quantities 
is neglected at the boundaries for any block structure of type 
Fig. l b  (independent of the number of materials or the shape 
of the blocks that make up the structure), the value of T ,  
= T:' obtained will lie in the interval 

i.e., between the minimum and maximum bulk transition 
temperatures of the materials that make up the structure. In 
particular, T?' may not exceed Tmax .  This result clearly fol- 
lows from the intuitive picture of superconductivity in a spa- 
tially inhomogeneous system in which the effective interac- 
tion constant A that enters into the BCS formula 
T,-w, exp(-1/A) arises from some type of volume averag- 
ing. Specific recipes for averaging have been obtained in 
special cases by De ~ e n n e s , ~  Kirzhnits and 
~ a k s i m o v , ~  and one of the authors;' in fact, the inequality 
(1) is a consequence of a general theorem for the Gor'kov 
equation1' (see Sec. 2). 

Surface effects may be taken into account heuristically 
by assuming that there is a layer of thickness -a at the 
boundary between materials A and B (Fig. Ib), made of a 
third material. Then averaging of A over the system volume2) 
gives the following expression for T, :  
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FIG. 1. We may replace a lattice made up of atoms A and B (a) by a system 
made up of macroscopic blocks of materials A and B (b), taking at the end 
of the calculation the extrapolation L - a .  

Taking the limit L-+a gives T, - T:' - T,, so that once 
we know the value of T,, we can decide how good our 
chances are of increasing T, for the system above T,,, . Of 
course, it is impossible to predict T, with any serious degree 
of accuracy in this approach; however, we can separate out 
the promising situations (large positive T,) from the non- 
promising ones, and thereby determine a direction to search 
in. 

In what follows, we will discuss systems with spatial 
variation mogeneity in one direction, which are simpler to 
investigate both theoretically and experimentally. That is, we 
introduce thin layers of material 1 into a bulk superconductor 
0, layers with thickness d and a distance L between them; we 
assume d 4 L < t 0 ,  where to is the coherence length. Let su- 
perconductor 0 be a high-temperature material in which 
T,=T,; the question we will pose is whether it is possible to 
increase T, by introducing layers of a very "bad" material 1, 
i.e., under the conditions 

where Vo , V, and No ,N1 are constants for the four-fermion 
interaction and density of states of materials 0 and 1. For 
d 4 L  we can investigate surface effects by using the expres- 
sions obtained in Refs. 6 and 7 for T, , which follow from the 
Gor'kov equations without any assumptions except small- 
ness of the parameter dlL. These expressions have been used 
previously to investigate localization of the order 

coherent interaction between planar  defect^,^ 
and enhancement of the singularities in T, over and above 
the singularities in the density of  state^.^ 

As to investigating how T, for a compound depends 
functionally on the characteristics of the elements that make 
it up, this problem has not been posed seriously in the litera- 
ture due to its obvious complexity and the absence of con- 
structive concepts. The approach we propose here allows sig- 
nificant progress to be made in this direction, which we will 
demonstrate below for the example of a model in which the 
spectra of materials 0 and 1 are quadratic: 

(we distinguish the longitudinal (M,Ml)  and transverse 
(m ,ml) masses because they enter into the equations in dif- 
ferent ways); the boundary conditions for the wave function 
q(z) of the transverse motion that arises after separation of 
variables [*(r) = exp(ikllrll)q(z), rll= (x,y )] has the form 

( 5 )  

(if materials 0 and 1 are in the regions z>0 and z<0 respec- 
tively); the parameter K describes the surface potential at the 
boundary, which is approximated by a S function. 

If material 1 is a metal, then T ,  of the system will be an 
oscillatory function of d; this quantum-oscillations effect, 
which is observed on films with ~ o a t i n ~ s , ' ~ - ' ~  sandwiches,1° 
and ~u~erlattices, '~ was discussed theoretically by Kagan and 
~ub0vskii . l~ We recently showed15 that the qualitative pic- 
ture that follows from Ref. 14 requires a radical reexamina- 
tion, and that the experiments of Refs. 10-12 should be in- 
terpreted based on two physical mechanisms-interference 
between de Broglie waves reflected from the two surfaces of 
the defect3' (Ref. 8), and interference at one defect deter- 
mined by the jump in the order parameter at the other.15 A 
critique of the quantitative aspects of Ref. 14 was given pre- 
viously in Ref. 7; here we note only that when the proximity 
effect is ignored in an uncontrolled way, terms -dlL are lost 
when we are investigating effects that are -alL. In this pa- 
per we will attempt a systematic description of the quantum- 
oscillation effect. In particular, we will show that these os- 
cillations may arise from any difference in the spectra of 
materials 0 and 1, viz., differences in (a) positions of the 
bottom of the bands (UZO), (b) transverse mass (m Zm,)  or 
(c) longitudinal mass (M +MI) ,  just like the presence of a 
Sfunction-like potential (d) at the boundary (K# 0). For sim- 
plicity and clarity we will discuss the role of each of these 
factors individually: cases (a)-(c) are treated in Secs. 4-6. 
Case (d) was already discussed previously in Ref. 8. Interest 
in the effect of quantum oscillations for this problem stems 
from the fact that the position of the first maximum in the 
oscillations and the value of T, at this maximum are conve- 
nient measures of the surface contribution to T,, and as such 
can indicate whether or not it is possible to increase T ,  (Sec. 
7). 

2. AN INEQUALITY FOR T;'' 

If we incorporate into our description of spatially inho- 
mogeneous superconductors assumptions that are character- 
istic of the BCS theory (e.g., a pointlike interaction with a 
high-frequency cutoff), then T, is determined by the condi- 
tions for the occurrence of a nontrivial solution to the 
Gor 'kov equation: I' 

A(r) = V(r) K(r , rr  )A(rf )d r r ,  I (6) 
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where A(r) is the superconducting order parameter, V(r) is 
the coordinate-dependent constant of the four-fermion inter- 
action, and K(r,rl) is the superconducting kernel, which in 
the absence of magnetic effects is positive and symmetric, 
and also satisfies the sum r ~ l e : ~ . ' ~  

where N(r) is the local density of states: 

at the Fermi level; *,(r) and en are the single-particle eigen- 
states and eigenvalues. If a dimensionless interaction con- 
stant is introduced through the relation A(r)=V(r)N(r), then 
for T, the BCS expression T,= 1.14% exp(- l/Aeff) is valid 
with a constant Aefi that satisfies the inequality 

min A(r )S  X e E S  max A(r). (9) 

In order to prove (9) we make the system discrete, di- 
viding it into small blocks with volume R and assigning to 
the indices i and j values that refer to the ith and jth blocks. 
Setting 

we rewrite (6) in the form 

It is not difficult to see that Aeff equals the maximum eigen- 
value of the Eq. (11). Let us consider two cases individually. 

(a) If V(r)>O for all r, then A,, is the maximum eigen- 
value of a positive matrix and lies in the interval between the 
minimum and maximum of the row-by-row sums:18 

min R V , ~  Lij=SAeff=Smax S Z V , ~  Li j .  (12) 
I 1 

Returning to the continuous variables and taking (7) into 
account, we obtain (9). 

(b) Let V(r) be an indefinite function. We make use of a 
theorem for generalized eig~nvalue problems Ay = X B ~  (see 
Ref. 19, pp. 439, 442): if A and B are hermitian operators, 
and B is positive definite, then addition to a of a positive 
definite hermitian operator cannot decrease even one of the 
eigenvalues. Using the replacement yi= CjkijAj, we reduce 
(11) to this form; then the operators A and B are determined 
by the matrices IIRViSiill and IIL-G ' I~ .  We set Ci=max(vi ,O); 
then for the problem (11) with Vi in place of Vi, the maxi- 
mum eigenvalue lies in the interval from 0 to 
max V i ~ i = m a x  Xi; however, this eigenvalue cannot de- 
crease in passing from Vi to Vi , so Ae,Smax Xi. A lower- 
bound estimate for Aeff is not of interest in this case, because 
the minimum possible value T,=O is admissible in view of 
the admissibility of Aeff=O. 

For the block structure of Sec. 1, when we neglect tran- 
sitional behavior near the boundaries the function A(r) takes 

on only discrete values A,, which equal the bulk values for 
the materials that make up the structure; therefore, Aeff lies 
between the minimum and maximum values of hi and in- 
equality (1) for T, is valid. 

3. EXPRESSIONS FOR THE SURFACE CONTRIBUTION TO 
Tc  

By treating the layers of material 1 as planar defects, we 
can use the results of Refs. 6 and 7. In the absence of bound 
states near a planar defect, the following expression for T, is 
valid: 

ST, T,- Tco 1 
-=-- 
Td) 

dzVdV(z)[V(z)N(z) - VdVol, 

where Ao=V,,No, and V(z) and N(z) are the functions V(r) 
and N(r) introduced above, which depend only on z due to 
the one-dimensional geometry; the integration is carried out 
over the region that contains one planar defect."' 

When m bound states are present near the planar defect 
(for fixed kll), Tc is determined by the condition for solvabil- 
ity of the system of m +l equations (see Eqs. (4) and (5) of 
Ref. 8). If all the bound states are extended along material 1, 
i.e., they belong to the quasidiscrete spectrum, then we can 
obtain the following explicit expression for T, :7 

where the parameters A,,, A,,, A , and Aqq (see Eq. (29) of YC 
Ref. 7) are defined by the functions N,(z) and Nql(z) that 
enter into the decomposition 

N(z) =Nc(z) +N,,(z), (15) 

which in turn is defined by Eq. (8), which contains only 
states of the continuous or quasidiscrete spectrum respec- 
tively. The functions N,(z) and Nql(z) have the values No 
and 0 in material 0, while in material 1 they have the values 
N * * and N * (here N,  = N * + N* * ) and change at the bound- 
ary on scales a, and a,, respectively: Al=VINI, A* = V,N*. 
Equation (14) becomes incorrect for Ao=A*, due to the 
"Anderson transition" mentioned in Ref. 5, in which local- 
ization of the order parameter takes place in layers of mate- 
rial 1, so that for A*>Ao we have (Ref. 7) 

where T*= 1.140, exp(-l/A*). Analysis shows that Eq. (16) 
remains valid for A*<Ao if the expression on the right side 
exceeds Tco by an amount - a; Eq. (14) holds if we have 
d%-a,, a,, and the right side of (16) is smaller than T, by an 
amount - Jd/L. For the case a c S a q l ,  in order to describe 
the region a,,+d<a, we must replace (14) by a more gen- 
eral expression 
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which we obtain by analogy with (14), and which is valid for 
d % = a q l .  The quantity 

is not solely a function of Nql(z)  and N,(z) (Kq l ( z , z r )  is a 
kernel constructed from states of the quasidiscrete 
spectrum7), although usually the following result is suffi- 
cient: 

which follows from the sum rule (7).  
In Eqs. (13) and (14) we can identify the general term 

that is linear in d / L ,  which corresponds to the quantity T:' 
introduced above and which coincides with the results of 
Ref. 5; the remaining contribution -alL is a surface effect, 
and is the subject of investigation of the present paper. 

piece-wise-constant, taking on the value V ,  for lzl<d/2 and 
V o  for lzl >d/2 ,  assuming that V ,  satisfies the inequality (3);  
since an increase in V ,  for fixed distribution of electronic 
states leads to an increase5) in T,, the maximum T ,  is at- 
tained for N,Vl=N,Vo,  i.e., A,=A,, for which the bulk ef- 
fect is absent and ST, is determined purely by the surface 
contribution. Therefore, in illustrating the results graphically 
we will pay special attention to the case A, =A,. 

In the usual formulations, T ,  is determined by the redis- 
tribution of electron density: this is quite natural since just 
such a redistribution takes place when chemical bonds are 
formed. In fact, our approach in this paper is a peculiar way 
to describe chemical bonding. 

4. SURFACE EFFECTS ASSOCIATED WITH DIFFERENT 
POSITIONS OF THE BOlTOM OF THE BAND (U+O, m=m, ,  
M = M l ,  K=O) 

In this paper we limit ourselves to discussing metallic 
layers. In what follows, EF is understood to mean the Fermi 
energy measured from the bottom of the band of material 0, 
while kF and q~ are the transverse Fermi wave vectors of 
materials 0 and 1. 

The functions N,(z) and N,,(z) need only be known in 4.1. The case E,-U~E, 
the vicinity of the planar defects; therefore, it is sufficient to 

For U>O the single-particle wave functions either ex- 
consider a sandwich containing material 1 for lzl <dl2 and 

tend throughout the system ( A ) ,  or extend into material 0 but 
material 0 for d / 2 <  lzl <L/2 ,  with zero boundary conditions 

decay toward the interior of material 1 (B); in accordance at the points4) z= ? L / 2 ,  and boundary conditions of type (5)  
with this, it is convenient to decompose N ( z )  as follows: 

at the points z = ? d / 2 ,  after which the computations are 
analogous to Ref. 8. We will consider the quantity V ( z )  to be N ( z )  =N,4(z) + N B ( ~ ) ,  (18) 

0 7 t / q F 2 ~ / q F 3 A / q  d 0 z l q F  27tlq 37tlq d FIG. 2. Dependence of T ,  on d for materials 
F F F 0 and 1 that differ by the position of the 

band minimum for the following cases: (a) 
eF-U+eF, A1=AO; (b) O < U G E ~ ,  h l=hl l ;  
/ 3 = 1 6 ~ ~ ~ - ~ A , k & ;  (c) U<O, IUI+eF, 
A,<h,; and (d) U<O, IUI+eF, A,=h,. In 
the insets we show the functions P , ( x ) ,  
P2(x), f ,(y), u @ ) ,  and Q ( d )  entering into 
Eqs. (24), (32), (43), (47), and (48). 
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where NA(z) and NB(z) are determined by the expressions to zero over a scale k;'), and in the range lzl >dl2 it reduces 

M 9~ q to zero by virtue of (23). The integrals involving NB(z) and 
NA(z)= ( dq H ( k , q , ~ ) l k = m ,  (19) N;(z)' can be made dimensionless and computed numeri- 

( 2 ~ )  o cally. As a result we obtain for T ,  

here ) 

ko=J2mU,  ~ F = J R ,  kF=&, (21) 

while the function H(k,q,z) has the form 

1 
+kq sin (2kz') sin (qd) 

z '  = Izl -d/2>0,  

In the case cF-U<cF, the parameter qF/ko is small and 
the expression for NA(z) in the integrand is localized near 
the point q,= ~ s l d  [in these computations it is convenient to 
combine the fractions in (22)] and can be approximated by a 
set of S functions; to lowest order in qF/ko we obtain 

lzl >dl2 

(23) 
where Q =[qFdl.rr], and [...I is the integer part of a number. 
Substituting the decomposition (18) into Eq. (13), we obtain 
integrals that are linear and bilinear combinations of NA(z) 
and NB(z). The integrals involving only NA(z) and N;(z) 
are computed by using (23): the integral involving 
NA(z)NB(z) is small over the range lzl<d/2 (because 
NA(z) reduces to zero at z = 2 dl2 and increases toward the 
interior of material 1 to a value -Noq&lko over a scale 
q,', while NB(z) decreases from a value -No at z =  +dl2  

where the term linear in d agrees with Ref. 5, and 

(here {...) is the fractional part of a number); the functions 
Pl(x)  and P2(x), which are shown in the inset to Fig. 2a, 
have the asymptotic forms 

Thus, the dependence of T ,  on d contains: (a) a contribution 
that is linear in d; (b) oscillations with period . r rqi l  that have 
a sawtooth shape due to the smallness of the transmission 
coefficient of the boundary (see Ref. 8); and (c) transitional 
behavior over a scale k, ' = k,' . For X I  = A, we have 
Vo/Vl= kF/qF91; hence, the transitional behavior is deter- 
mined by the function Pl(x) ,  and the amplitude of the oscil- 
lations is small compared to the constant contribution (Fig. 
2a). To leading order, the maximum value of T ,  equals 

dq - H(k,q,z) - 2 "I," ( 2 d 2  [: 1 k =  lzl <dl2 
F(z)  = 

, 
4 -!!- I:dq $ H(k,q.z)- 2 ] k = w  Izl>d/2 

(2.rrI2 

and is attained over the entire region d ~ k , ' .  

4.2. The case O<Uee, 

As in the previous section, the local density of states is 
determined by Eqs. (18)-(22), only now we have 
ko<kF4qF. Let us decompose NA(z) as follows: 

{ Z ~ ~ M / ( ~ T ) ' + F ( Z ) + ~ ( ~  121 <dl2 

NA(z)= (2kF-2ko)~/ (2 . r r )2+ F(z)+ ~ ( z ) ,  lzl>d/Z9 

(28) 
where 

279 JETP 80 (2), February 1995 Yu. A. Krotov and I. M. Suslov 279 



and G(z) is defined by analogous expressions with opposite 
signs and integration from q, to a. By the methods of con- 
tour integration we can show (see the Appendix) that 

so that 

In the expression for G(z) we can also expand with respect 
to ko/q over the entire range of integration q P k o ;  substitut- 
ing (42) into (21) (in this case G ~ ( z )  is written in the form of 
a double integral) and integrating over z, we obtain for T, 

where the functions f,(y) and f2(y) are defined by the ex- 
pressions 

" cos x sin x 

Y x4 
X-Y dx +7TY3)J - dx+2y31y ;-r lnG 

and have asymptotic forms 

f 2  -+ ( --I 1 sin y, ~ $ 1 '  

The dependence of T ,  on d contains a linear term in accor- 
dance with Ref. 5, decaying oscillations -U/E,, and nonde- 
caying oscillations -(u/E,)~. When A, and A, differ signifi- 
cantly, the function f2(y) can be replaced by its asymptotic 
form for y B l ,  while for A,-A, we may set hl=Ao in the 
~atter.~) The dependence of Tc on d for A, =Ao determined by 
the functions f2(y), and the function f l(y), are shown in 
Fig. 2b; in the case Al=Ao, the first maximum occurs for 
d =  1.  lq,', and the value of T ,  in this case is 

1 2 (2) max =0.13-("1. Aokd E F  

4.3. The case U<O, I U I ~ E ~  

For U<O the spectrum contains both continuum and 
quasi-discrete states; therefore, decomposition (15) of N(z) 
is correct, where 

where q, is a root of the equation 

lying in the interval from zero to KO, and NS,, is the density 
of states at the Fermi level of the sth two-dimensional band, 
which in the present case equals M/27~. As in the previous 
case, we set 

where the function F(z) is defined by expressions of type 
(29) with integration from K, to co and k= d m ,  and 
G(z) is defined by analogous expressions with the opposite 
sign and integration from q~ to 03. By the methods of contour 
integration we can prove (see the Appendix) that 

N*-Nql(z), lzl<d/2 
F (z) = 

- N Z  I Z I  >d /z7  

and the result (31) for N(z) is correct as before. 
The computation of T, is carried out using Eqs. (4) and 

(5) of Ref. 8, in which AOO-Aos-Aso-l, and Assr-air, for 
s,st+O, because the eigenfunctions cp,(z) are localized on a 
scale ro-max(d,~;'). By expanding with respect to T,-T,, 
and neglecting  ass^ for s , s l  f.0, we obtain 

The function G(z) in (31) is the same as in the case U>O, 
and the first term in the curly brackets of (41) gives the result 
(32). For Xso we obtain to leading order in ~ d k ,  
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FIG. 3. The region e > k i / 2 ~  above curve I (crosshatched) corresponds to 
the continuous spectrum of material 0. The spectrum of material 1 lies in the 
region E > u + ~ ~ I ~ M ,  above curve 2, and consists of two-dimensional 
bands, i.e., size-quantized levels that depend on kll; these levels are true 
bound states below curve I,  and are broadened levels above it. The two 
periods of oscillation correspond to passage of the point A through A,  and 
the point B through B ,  for successive two-dimensional bands. 

(we can neglect the function G(z) in view of its localization 
near z =  +dl2 over a scale ki l ) .  Substituting the expressions 
for cp,(z), after isolating the term linear in d we obtain for 
the surface contribution to T, 

(43) 

where the functions fl(y) and f2(y) are the same as in (32); 
the function u(p) (see the inset to Fig. 2c) is defined as 
follows: 

where y,=d1 -xf, x,=q,l~,,  and has the asymptotic form 

From (43) and Fig. 2c it is clear that, in contrast to the 
previous case, in addition to the oscillations with period r /qF  
there is an oscillatory component with period T~K,. The ori- 
gin of the two periods of oscillations is revealed in Fig. 3. 
The crosshatched region ~ > k i / 2 M  corresponds to the con- 
tinuous spectrum of material 0. The spectrum of material 1 
lies in the region c>u+k i /2MI ,  and for small d it consists 
of two-dimensional bands, i.e., size-quantized levels that de- 
pend on kll ; these levels are truly bound below the region of 
the continuous spectrum and are broadened within it. As d 
increases, the size-quantized levels are "squeezed out": the 
period rlq, corresponds to the passage of successive broad- 

ened levels through the Fermi energy (passage of point A 
through A,). The second period (which equals r l ~ ,  for 
M = MI) corresponds to the conversion of successive broad- 
ened (quasibound) levels into truly bound levels for &=&,, 
i.e., to the passage of point B through Bo. 

For A, =Ao, the dependence of T, on d is found to be the 
same as in the previous case; accordingly, the result (35) for 
the maximum value of T, remains valid. 

4.4. The case U<O, IUI%cF 

In this case we have N*-N,4N,,  so that T*-TC1. Be- 
cause A,, is positive (see below), for small d there is a region 
where Eq. (16) is applicable when T,,<T,,. In this case, an 
interesting situation arises: the order parameter "exits" the 
high-temperature superconductor 0 and passes into the 
"bad" superconductor 1. The reason for this is that states 
localized in material 1 behave like a sheet in a dielectric 
medium. Because of the large density of states 
N* = N O ~ , / k , ~ N O  and the small constant V1, electrons can 
tunnel into material 0, where the high Vo increases the effec- 
tive transition temperature of the "film" above T,,. This, in 
turn, is the condition for localization of the order parameter, 
which occurs for d 2 d,- ~, ' (A~-X*)- ' .  Equation (16) ap- 
plies when d s d ,  , while for d %d, Eq. (14) must be used; in 
the range d-d,, the oscillatory behavior of A,, causes alter- 
nating localization and delocalization of the order parameter 
as d varies. 

It follows from Eqs. (15), (36), (37) that the scale on 
which Nql(z) changes near the boundary from 0 to N* is 
K;'. The behavior of the function N,(z) is more compli- 
cated: as lzl decreases, it changes from No to Nc(d/2) on a 
scale k i l ,  and then from Nc(d/2) to N * * - N , ~ , / ~ K ~  on a 
scale ~ d k ; .  The quantity Nc(d/2) is of order N** for 
d 2  ~ ~ / k ; ,  and oscillates from 0 to min{No,N*l~od} for 
d s ~ ~ l k ; .  We will consider the case XI-Ao, i.e., 
Vo/Vl - KO/kF. 

In order to compute A,,, we substitute (37) into Eq. (29) 
of Ref. 7, writing N , ~ ( Z ) ~  in the form of a double sum. The 
contribution that is -n (where n is the number of quasilocal 
levels) must be separated out exactly, as it gives the oscilla- 
tory sawtooth dependence. In order to calculate the remain- 

-1 ing part of (37), which is O(nO) for d P a , , - ~ ~  , we may 
convert the summation to an integration. Then 

Keeping in mind the properties of N,(z) and Nql(z), we 
can determine the parameters A,,, A,,, and A,, for kFdSl  
from the integral 

In order to calculate this integral, we note that for ~,*k, the 
limits of integration in (36) are found to be close to one 
another, and we can expand all the functions except the trigo- 
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nometric ones with respect to q -KO. The localization of the 
expression under the integral sign near the point qs=  ~ s l d  
allows us to approximate it by a set of Sfunctions. When T, 
lies in the region d s d , ,  we obtain (16) with Aqq given by 
(46), while in the region d a d ,  we obtain the result 

From A , - A * - k ~ l ~  it follows that the complete formula 
(48) must be used only for Ao=Al; for A,-A,-1 it simplifies 
to the form 

For h o ~ ~ l - k F / ~ o  we have d,sa,-~dk;,  and we must dis- 
cuss the region d ,Sdsa, ,  where Eq. (14) does not apply. 
Use of the more general formula (17) leads to the same result 
(49), because A , - ( K ~ ~ ) - '  implies that we need save only the 
term with A,, in (17). 

In Fig. 2d we show the dependence of T, on d for 
A1=AO.  The inset shows the function Q(d) ,  which deter- 
mines T,(d) when 1,-A,-1. For large d and Al#Ao, the 
oscillations of T, consist of a sum of two periodic functions 
with periods T/qF and 7 ~ 1 ~ 0 ,  in accordance with the qualita- 
tive considerations of the previous section. Because these 
periods are so close together, a characteristic beating behav- 
ior is observed. For A,=Ao, the oscillatory component with 
period T/K, disappears [see (48)]. When d s k , ' ,  we find 
from (16), (46) that T,-Tco~Tco, implying that the expres- 
sions we have introduced are inapplicable. Physical consid- 
erations dictate that T, increase over a scale d-~; ' .  

5. SURFACE EFFECTS CONNECTED WITH A DIFFERENCE 
IN THE TRANSVERSE MASSES (U=O, m f m, , M = M , ,  
K=O) 

In this case all the single-particle states extend through- 
out the entire system, and the following expression holds for 
N(z) : 

( p +  l ) + ( P -  1)cos (qd) cos (2qz) 

( p +  I ) ~ - ( P -  1)2 cos2 q d  ' lzl < d l 2  

(1  - p2)sin2 (qd) cos ( 2 q i )  - f i ( p -  1)sin (2qd) sin ( 2 q i )  
(50) 

1 + , i= fi(lz1 -d/2)  
( p +  I ) ~ - ( P -  1 )2  cos2 (qd)  

where q~ = JG, and the notation /3=mlm, is used. The dependence of T, on d for A, = A, is shown in Fig. 4a: it 
is sawtooth-shaped because of the smallness of the transmis- 

5.1. The case m*m, 
sion coefficient of the b~undar ies .~  The maximum value of 

For pa1 the expression in the integrand of (50) is local- T, is reached for d =  2 . 8 k i 1 ,  and equals 
ized near the point qs=  ~ s l d ;  by approximating it with a set 
of S functions and substituting into (13), we obtain for T, ($1 max =% G. (54) 

Tco AokFL 
(51) 

5.2. The case (m - m ,  l e m  

in which the linear term agrees with Ref. 5, while the func- Expanding (50) with respect to p-1 and substituting 
tion g(x) equals into (13), we obtain 

For O<x<l the we have g(x)m l lx ,  which diverges as x-0. 

ST, 1 

In order to eliminate the divergence we need a more accurate 
where the function g (x) is defined as 

treatment of the region q&-=Sl. For this we expand the inte- 
grand in q d  without using the Sfunction approximation; as a 

sin x 
result we obtain g l (x )=  rr+(2A1 /Ao- 1)sin x +  - [- ~ + 2 S i ( 2 x ) ]  

X 

cos X 

X 
- 2S,(2x) 
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(with S, (x) =ln x + Ci(x); Si(x) and Ci(x) are the sine and 
cosine integrals, and C is Euler's constant; see Ref. 19, pp. 
732, 733). This function has the asymptotic form 

Besides the usual linear term, the dependence of T ,  on d 
contains decaying oscillations that are -(/I-1) and nonde- 
caying oscillations that are -(/I-I)~. When A, and A, differ 
significantly, we may replace the function g , (x)  by its as- 
ymptotic form for x + l ,  while for X,=Ao we evaluate it for 
X I  = A,. When A, =Ao, the behavior of T ,  as a function of d is 
determined by the function g l (x )  and is shown in Fig. 4b; 
the maximum value of T ,  is reached for d =  1.2k;' and 
equals 

5.3. The case m e n ,  

For pel the expression under the integral sign is local- 
ized near the point q,= rrsld; after approximating it with a 
set of S functions and substituting into (13), we obtain 

where 

Expression (60) cannot be used in the region of small x (i.e., 
when q&Gl).  This region must be discussed separately, by 
expanding the expression in (50) with respect to q d  and not 
using the Sfunction approximation; as a result, we obtain 

For A,=Ao the dependence of T ,  on d is determined by the 
function g2(x) and is shown in Fig. 4c; the maximum value 
of T ,  equals 

1 37T 

max 

which is valid at the points d = rrslq, (s=1,2, ...). 

6. SURFACE EFFECTS CONNECTED WITH DIFFERENT 
PARALLEL MASSES (U=O, m =m,  , M f  M, , K=O) 

6.1. The case M a M ,  

For M > M I the longitudinal Fermi momentum in mate- 
rial 0 is larger than it is in material 1, and some of the states 
do not extend from material 0 into material 1 due to the 
impossibility of conserving longitudinal momentum; there- 
fore, the decomposition (18) is valid for N(z), where 

and the following notation is used: 

For M S M ,  , i.e., y>l ,  little simplication of (63) is 
possible-we can only set k=kF in (63a). Therefore, we im- 
mediately substitute (18), (63) into Eq. (13), representing the 
bi-linear combinations of NA(z) and N,(z) in the form of 
double integrals. These integrals are computed in the follow- 
ing way: 

1) In the integrals that involve NB(z) and N;(Z), we 
discuss in order of occurrence the three terms that result from 
integrating with respect to z. For k F d S l  the leading term in 
the integral (63b) arises from the region q-kF, which allows 
us to take the limit qd+m in the hyperbolic functions 
entering into H(k,iq,z). When y-14kFd<<l,  the leading 
term in the integral (63b) comes from the region 

-1 -112 q-d y , and the hyperbolic functions can be expanded 
as series in which we keep only the leading order in qd. 
When k&<< y-' the entire region of integration in the inte- 
gral (63b) is important; after expanding the hyperbolic func- 
tions in series, we must carefully distinguish the contribu- 
tions from the neighborhood of the upper limit of integration. 

2) The integral involving NA(z)NB(z) is small compared 
to the integrals that involve N,(Z), N ~ ( Z ) '  in the region 
k d s l ;  in the region kFd?l it determines the oscillatory 
part of T , .  After integrating with respect to z we calculate 
this quantity to logarithmic accuracy, including the contribu- 
tion -In yly that arises from the region lzl>d/2, but dis- 
carding terms - 11 y. 

3) The surface portion of the integrals involving NA(z) 
and N;(Z) are estimated from above by a quantity -lly, and 
so we may neglect them. This becomes obvious for the inte- 
gral involving NA(z)-NA(m) after the integration with re- 
spect to z over the region 121 >d/2.  The remaining integrals 
are estimated by taking into account the behavior of the 
function NA(z), which far from the boundary enters in with a 
value N A ( ~ ) = N d y o v e r  a scale yk,l in material 0 and with 
a value NA(0) = N d y  over a scale k i l  in material 1. 

As a result, we obtain for the surface contribution to T ,  
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( ~ k & ) ~ ,  k&& y- ' ,  

y - '<k&&l ,  

sin ( 2 k d )  
k & S l .  

The dependence of T ,  on d  for A 1 = A ,  is shown in Fig. 5a; and have the asymptotic forms 
the maximum value of T ,  is reached for d - k ~ '  and is of the 
same order as the quantity f p '  p + l  

1  In y 

max 

6.2. The case O<M - M, 4 4  

As before, the expressions (18), (63) are valid for N ( z ) .  
In complete analogy with Sec. 4.2 we can establish the result 
(31), with the function G ( z )  defined by integrals from q ,  to 
m. For y- 1 4 1  we have k,&kF and k -  q < q  over the entire 
range of integration; expanding with respect to ( k -  q ) / q  and 
substituting (31) into Eq. (13), we obtain7) for the surface 
contribution to T ,  : 

where h , @ )  and h 2 @ )  are defined as follows: 

7 T l m  1 1  
h l ( p ) =  -+ 4  - 2  I1 dxixT-;)sin ( p x )  

When A, and A, differ significantly, the dependence of T,  on 
d  is determined by the function h, (p ) ,  while for Al=A, it is 
determined by h2@);  the behavior of these functions is 
shown in Fig. 5b. For A l = A o  the quantity ST, is negative for 
all d ;  the first maximum of the oscillations occurs for 
d = 3 . 6 q F 1 ,  and the value of T ,  at this point is 

0 . 2 4  M - M I  
-- - (66) ($1 max = AokFL ( M ) 

6.3. The case O<M, - M e M  

For M < M I  the decomposition (15) is valid in view of 
the presence of the quasidiscrete spectrum for N ( z ) ,  where 

- .  

x 2 - 1  x + 1  KO = k F G - 7 ,  (70) 
sin ( p x )  - In - dx 

x2 x - 1  (67) 
while N4,(z)  is defined by Eq. (37) with N;,  of the form 

FIG. 4. The dependence of T ,  on d for 
materials 0 and 1 that differ in their 
transverse masses for A, = &: (a) 

3 n  - 
2 

m*m,; (b) (m-m,(<m; and (c) 
n m s m , .  We have used the notation 
1C 
2 

C =  16(P- l ) - 2 ~ k & .  
0 

2 'Ukt mqt 2% 3dqt d 
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FIG. 5. The dependence of T ,  on d for materials 0  and 
1 that differ in their parallel masses: (a) M S M , ,  
Al=A,; (b) O < M - M , < M ,  A,=&; (c) 
O < M l - M e M ,  AI<Ao; and (d) M e M , ,  Al=Ao. In 
the insets we show the functions h , ( p )  and w(p) en- 
tering into Eqs. (66) and (76); we have used the nota- 
tion D = ~ , k & ( ~ -  l)-'. 

FIG. 6. The dependence of the value of T ,  at the 
first maximum of the quantum oscillations on the 

ST, parameters of the model for A,=h, in the following 
ST, A- cases: (a) U f O ,  m = m , ,  M = M , ,  K=O; (b) U=O, 

A- 
TO TO mfml,M=M,,~=O;(c)U=0,m=ml,MfM,, 

d K=O; and (d) U=O, m = m l ,  M = M , ,  KZO. We 
C have used the notation A = A,k&. 

In?' Ic -- 

0  
- 
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x e ( ~ o - q s ) ~ ( q s ) ,  (71) 

where ks= Jw and q ,  is a root of Eq. (38).  By 
analogy to Sec. 4.3, we establish the result (31) with the 
same function G ( z )  as we used in Sec. 6.2. For 1 - e l ,  Eq. 
(41) is valid for T,  with Aso taken from (42),  which leads to 
the following result for the surface contribution to T , :  

ykFd< 1 

7~ sin ( 2 k F d )  I , 
- -- yk,d B 1 

2 8(YkFd)' ' 
(73) 

which can be computed in two limiting cases: for yk&<l 
we set 9 % ~ ~  in (70), while for yk ,dBl  we can expand in a 
Fourier series with respect to qd  by analogy with (A2) ,  and 
use the asymptotic form of the integrals with rapidly oscil- 
lating e ~ ~ o n e n t i a l s . ~ ~  The terms in (73) with periods n - 1 ~ ~  
and .rrlqF are computed to lowest order in l l d ,  and the func- 
tion w ( p )  equals (see the inset to Fig. 5d):  

the functions h l ( p )  and h 2 ( p )  are defined in (84), and the w ( p ) = W ( p ) + W ( p + . r r / 2 ) - 1 ,  
function u ( p )  is the same as in (43) to lowest order in 1 - y. 
The dependence of T,  on d for AIZA, is shown in Fig. 5c; cos p -  .rr p(112-(pl.rr))sin 
for A l = A o  it is determined by the function h 2 ( p )  and is @ ( P I  ' (74) 
found to be the same as in the previous case. 

6.4. The case M 9 M ,  

From (70) it is not difficult to sort out the behavior of the 
functions Nql ( z )  and N,(z)  for @ I :  the function NqI(z )  
changes near the boundary from 0 to N * = N d y  over a scale 
k, ' ,  reaching a value -No at the boundary, whereas the 
function N,(z)  changes from No to N,(dI2)-No as lzl de- 
creases on a scale k,' , and then from N,(d /2 )  to N* = N d 2  
on a scale k,'ly. Thus, we have a,,-k,',  a,-k,'ly, in the 
region k & = l l y  we make use of Eq. (14),  while in the region 
l < k & s l l y  we use the more general formula (17); because 
we have Aqq<O (see below), there is no quasi-phase transi- 
tion (see Ref. 5) .  Taking into account that for A , - A ,  we have 
VoIVl - l Iy ,  we find that the parameters Aqc,  Acq,  A,, are 
determined by the integral 

In calculating Aqq,  we have identified the contribution 
-n ,  as we did in Sec. 4.4. The remaining part O ( n O )  is 
computed in two limiting cases: for y k F d B l ,  by passing 
from a summation to an integration, and for yk ,d< l ,  by 
using the asymptotic form of q ,  as y--to (q,=.rrsld, 
s = l ,  ..., n-1, q,= K ~ )  and the fact that the leading terms 
come from q ,  and 9 , - I  . As a result we have 

E 
a ( x )  = - { x j  - 

\ j ~ k F d  
& =  - 

{ x ) ~ / ' +  E ' 

Calculating T ,  based on (14),  (17) gives 

For large d the oscillatory contribution comes from the sum 7. DISCUSSION OF RESULTS 
of two periodic functions with periods rr/qF and I T / K ~ ,  analo- In order that the bulk contribution to T ,  be small, we 
gous to the previous case. For Ai=Ao the quantity is must use the smallest possible d .  If we examine the curves 
negative for all d (Fig. 5d): its value at the first maxima of shown in Figs. 2, 4 and 5 with this in mind, it is not difficult 
the quantum oscillations (k&-1) is of order to verify that in all cases the first maximum of the quantum 

oscillations is a measure of whether or not it is feasible to 
increase T , .  The value of T,  at this maximum gives a con- 
venient estimate of the surface contribution to T , :  its depen- 

(77) dence on the parameters of the model for X I  =Ao is shown in 
max Fig. 6 (Fig. 6d was plotted using the results of Ref. 8) .  It is 
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not difficult to see that a difference in the positions of the 
band bottoms (U#O) and a difference in the transverse 
masses (m#m,)  will always favor an increase in T , ,  
whereas a difference in the parallel masses ( M  # M ,) will 
hinder it in most cases. The presence of a Sfunction-like 
potential at the boundary (K#O) acts to prevent T, from in- 
creasing when O < ~ s k , ,  but aids it in the other cases. A 
qualitative representation of the combined action of all the 
factors can be obtained by superposing the curves in Fig. 
6a-6d. 

Physically, the increase in T ,  for ~ ? k ,  (Fig. 6) is asso- 
ciated with interference of plane waves reflected from the 
two boundaries,' and takes place only when d is commensu- 
rate with some multiple of the wavelength (for which the 
variation of T ,  averaged over the oscillations is close to 
zero). For K<O the reason for an increase in T ,  is an increase 
in the local density of states at the boundary, which is caused 
by the surface potential having the form of a potential well; 
for K<K, this leads to localization of the order parameter at 
the boundary.'-' These effects are partially present in the 
other cases as well (Figs. 6a-6c); now, however, it is the 
transfer of electrons from the material with high density of 
states and low value of V to the material with high V that 
plays the primary role. The qualitative manifestation of this 
effect depends on the specific situation: for a<% it causes 
localization of the order parameter in the layers of material 1, 
whereas for y 4 1  it is not "triggered" in general. 

The picture we have presented may require some correc- 
tion, because in a real experiment factors may be present that 
are not included in the model we have discussed here. There- 
fore, it is desirable to carry out a systematic experimental 
investigation of the dependence of T ,  on d in layered sys- 
tems. Contemporary technology allows us to create superlat- 
tices with thicknesses of a few angstroms (see, e.g., Ref. 21); 
however, most experiments are carried out on long-period 
systems, in which these surface effects are ~ n i m ~ o r t a n t . ~ ~ , ~ ~  
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APPENDIX 

The Transformation of F(z )  

For U>O we rewrite F (z )  in the form 

for lzl<d/2, and analogously for lzl>d/2. Let us expand 
the functions u + , v  + entering into H(k,q;z) in Fourier series 
with respect to qd: 

By making the replacement n+ - n ,  q +  - q where neces- 
sary, we can write the result in the form of a sum that con- 
tains the exponents exp(icq) with positive c only; for Izl 
>d /2  we also expand the functions cos(2kz1) and 
sin (2kzf )  in power series. The integrand is analytic in the 
complex q plane except for the combination 

lqlk= JmJn, E ~ O ,  ( A 3  

which we regularize by making the cuts (is,ik,) and 
( - ik, , - i s ) .  Shifting the contour of integration upward, we 
obtain an integral over the cut (i&,iko) (the contribution of 
the pole i s  disappears as &w), leading to the expression 
(30). 

For U<O the cut is made from E to K~ and from -KO to 
- E .  The integrand has no singularities in the upper half- 
plane, and F(z )  reduces to an integral over the upper side of 
the cut (- K ~ , K ~ ) .  On this cut there are poles that correspond 
to levels of the quasidiscrete spectrum. We write the integral 
in the form of a principal value and the sum of half-residues 
from the poles: then the principal value gives the constant 
N* for (zl <d l2  and 0 for lzl >d/2,  and the sum is found to 
be -N,,(z). 

"we are neglecting the spatial dependence of the cutoff frequency w,, 
which is valid in the weak-coupling approximation. 

' ) ~ o t e  that the surface contribution to T ,  may not contain any portion -alL 
if localization of the superconducting order parameter occurs at the 
boundaries;',' when this happens, regions that are far from the boundary 
enter into the average of the quantity A with zero weight. 

3'~ecently, the existence of this mechanism has been confirmed 
experimentally." 

4 ' ~ h e  form of the boundary conditions at the points z= ? L / 2  is important 
only for the behavior of N ( z )  in the vicinity of these points. 

 he formal proof that T ,  increases when V ( r )  is replaced by V(r)+AV(r)  
with AV(r)SO is clear from Sec. 2. 

''1n connection with this, the difference between A,  and A, appears in (33) 
only in the unattenuated portion of f,(y); in what follows we set A , = &  in 
terms that are important only for A,-A,, without mentioning explicitly that 
we have done so. 

' ) ~ u e  to the conditional convergence of the integrals, the expressions for 
G ( z )  are inapplicable within an infinitesimally small neighborhood of the 
points z =  + d / 2 ,  where unphysical &function-like singularities arise 
whose contribution should not be included in the integration over z .  
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