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Using the Keldysh equations, which describe weakly inhomogeneous (in space and time) 
excitons and photons, we predict the possibility of formation of dissipative structures in a system 
of coherent polaritons in semiconductors. In the slowly varying envelope approximation we 
derive a system of equations that describe the evolution of coherent quasiparticles and allow for 
external pumping and damping. We obtain uniform time-independent solutions and study 
their stability. We establish the conditions in which the uniform solutions for coherent excitons 
and photons become unstable and, as aresult of which a superlattice of coherent polaritons 
is formed. Finally, we give estimates for the CdS crystal. 0 1995 American Institute of Physics. 

1. INTRODUCTION 

The existence of giant nonlinearities and short relaxation 
times for excitons in semiconductors has recently stimulated 
research in the field of coherent nonlinear effects at the long- 
wave intrinsic-absorption edge of a crystal in connection 
with resonant exciton excitation. 

Coherent nonlinear phenomena in the excitonic range of 
the spectrum have their own specific features and differ sig- 
nificantly from similar phenomena in two-level systems. 

The fact is that when the exciton number density is not 
very high, i.e., when we can think of excitons as bosons, the 
Hamiltonian representing the exciton-photon interaction is 
quadratic while the dependence of the electromagnetic field 
amplitude E on the exciton wave amplitude a is linear: 
E a .  This clearly distinguishes the exciton problem from 
the model of two-level atoms, where the Hamiltonian repre- 
senting the interaction of light with a two-level medium is 
cubic and the system exhibits natural nonlinearity. 

With excitons the nonlinearity is caused by the dynamic 
and kinematic exciton-exciton interactions. Here the space- 
time evolution of dipole-active excitons in crystals is de- 
scribed by the well-known system of Keldysh equations,' 
which play the role of the Maxwell-Bloch equations for 
two-level systems. The system consists of equations of the 
Ginzburg-Landau type and describes the coherent exciton 
and photon states that vary slowly in space and time. The 
Keldysh equations served as a basis for studying many as- 
pects of coherent nonlinear propagation of light in dense 
condensed media in the excitonic region of the spectrum. For 
one thing, by employing these equations we constructed2-" a 
theory of self-induced transparency (SIT) in the excitonic 
range of the spectrum, a theory of optical bistability (OB) 
and optical switching, and a theory of periodic and stochastic 
self-pulsations. The SIT and OB phenomena in the excitonic 
range of the spectrum have been observed in 
e ~ ~ e r i m e n t s . ' ~ " ~  

This paper is devoted to a new cooperative nonlinear 
phenomenon in condensed media, the occurrence of dissipa- 
tive structures in a system of coherent excitons and photons 
(polaritons). The occurrence of spontaneous dissipative 

structures is under extensive study in various fields of phys- 
ics, chemistry, and 

The possibility of a dissipative structure appearing as a 
superlattice of the exciton number density in a system of 
mechanical incoherent high-number-density excitons was 
first demonstrated by sugakov,I6 who established the forma- 
tion thresholds, the properties, and conditions for stability of 
the one-dimensional superlattice that develops owing to the 
dynamical attractive interaction of excitons. 

In contrast to Ref. 16, here we study dissipative struc- 
tures in a more complex system, a system of dipole-active 
coherent excitons and photons, and the formation of polar- 
iton superlattices. 

2. STATEMENT OF THE PROBLEM AND BASIC EQUATIONS 

Suppose that a plane monochromatic wave is incident on 
a cavity whose mirrors are the polished faces of the crystal 
under investigation. The wave excites the cavity mode 
coupled to the excitons. The interaction of the active sub- 
stance with the coherent external pumping radiation and the 
heat sink, which ensures that relaxation processes take place, 
will be taken into account at a certain stage phenomenologi- 
cally. 

The system of equations that describe the slowly varying 
(in space and time) coherent excitons and photons without 
allowing for external pumping and dissipation effects was 
derived by ~ e 1 d ~ s h . l  For waves propagating parallel to the 
x-axis this system has the form 

where a ( x ,  t )  is the coherent-exciton amplitude, E ' ( x ,  t )  is 
the positive-frequency part of the alternating electromagnetic 
field, g is the exciton-exciton coupling constant, d is the 
dipole moment of the transition from the ground state of the 
crystal to the excitonic state, m is the translational electron 
mass, v o  is the volume of a unit cell, V is the volume of the 
crystal, and fi, is the cutoff transverse-exciton frequency. 
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We write the macroscopic amplitudes of the excitons and 
the field in the form of modulated plane waves with a carrier 
frequency o and a wave vector k: 

a(x,t)  = &Aexp(ikx- i o t ) ,  (3) 

where the slowly varying functions A and E are the enve- 
lopes of the respective wave packets. 

Further discussion will be conducted in the framework 
of the slowly varying envelope approximation, which holds 
if 

etc. This means that the wave packet envelopes are fairly 
smooth functions in comparison to the rapidly oscillating 
part. The envelopes change little over one wavelength and 
during one time period of the light impinging on the crystal. 

Substituting (3) and (4) into Eqs. (1) and (2), we arrive 
in the slowly varying amplitude approximation at the follow- 
ing system of equations: 

fik dA 

where ye,, y, and .Go are the exciton and photon damping 
factors and the amplitude of the external coherent pumping 
field (all three quantities are introduced into Eqs. (6) and (7) 
phenomenologically). These equations provide a complete 
description of the space-time evolution of coherent excitons 
and photons in the presence of external pumping and damp- 
ing. In the spatially homogeneous case they coincide with 
the equations for the exciton and photon amplitudes in Ref. 
17. These were derived strictly within the quantum theory of 
fluctuations and damping from the flux part of the corre- 
sponding Fokker-Planck equation without the fluctuation 
terms. 

In what follows it is more convenient to deal with di- 
mensionless quantities. Allowing for the fact that in the most 
general case the amplitudes A and i; are complex-valued 
quantities and introducing 

w - 0, 02- c2k2 a= - , A= 
Yex 

Y g = -  .=-=+I  - 
Yex lgl 

E o  p= - 
fik p= - kc2 

7 x=-, 
YexE o m Yex WYex 

we obtain from Eqs. (6) and (7) the following: 

For uniform time-independent solutions we have 

where n = lz12 =z:+ z: is the dimensional exciton number 
density. 

3. STABILITY OF THE UNIFORM TIME-INDEPENDENT 
DISTRIBUTION OF QUASIPARTICLES IN THE CRYSTAL 

To study the stability of the uniform time-independent 
solution with respect to small perturbations we put 

Then the characteristic equation for the uniform 
time-independent states of the system has the form 

For simplicity we assume that the frequency w of the 
external electromagnetic field coincides with the natural fre- 
quency ck of the cavity mode, i.e., A=O. For the time- 
independent solutions to be stable, all roots of Eq. (18) must 
have negative real parts. This requires that the following in- 
equalities hold: 
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FIG. 1. Exciton concentration vs the inten- 
sity of external coherent pumping for a>u, 
X6, (a), a>u, 4<X6, (b), a>u, a4 ,  
(c) and a<u, & 6, (d). 

( a +  c ~ ~ ) ~ + u ~ ( B + c ) + Q ~ ( ~  +B+c)-2a2QF>0,  4. DISCUSSION AND CONCLUSIONS 

uQ2+(1  + u ) ~ ( ~ u +  a2) (Q2+B+C)  

+ u ( B + c ) ( B + c - ~ Q ~ ) + ~ ~ ~ Q F ( ~  

+ ( ~ + u ) ~ ( u + ~ ~ ) > o ,  

where 

(19) 
If spatial dispersion is ignored and the field is spatially 

homogeneous, there can be two critical resonance detuning 
values, S1 and S2, determining the dependence of the sta- + u)2 tionary exciton number density on external pumping: 

Further investigations require establishing the values of 
the reduced wave vector Q =xq at which the stationary 
states determined by the external pumping become unstable. 

To determine the stability region we performed a com- 
puter experiment. For a given pair of values of certain pa- 
rameters, the dimensionless intensity Io= l ~ [ ~  of the field 
incident on the crystal and the pair of parameters Io ,Q or 
n,Q, the validity of the inequalities (19) was checked. If at 
least one inequality was found to be violated, the respective 
point was marked on the I-Q diagram. The shaded regions 
in Figs. 2-5 below mark the ranges of the parameter values 
at which the uniform time-independent states become un- 
stable. On the boundaries of such regions Re(&) = 0. Out- 
side the shaded regions the system is stable. 

In the region of unstable parameters, any small deviation 
from uniform time-independent values leads to formation of 
a distinctly periodic spatial structure of quasiparticles with a 
period d = 2 r l q ,  i.e., formation of a polariton superlattice. 

For a>u and S<Sl all stationary points are stable, and 
the n(Io) dependence is one-to-one [Fig. l(a)]. If 
S1 < S< 62, on the stationary n(Io) curve [Fig. l(b)] a range 
of values 11<Io<12 occurs for which the stationary points 
lose their stability, with I, and I2 given by the following 
expressions: 

For au and S > S2, the system of coherent excitons 
and photons becomes optically bistable, with the turning 
point I3 and I4 being [Fig. l(c)] 

In this case, instability windows appear on both the lower 
branch of optical bistability and the upper branch. The lower 

FIG. 2. Wave vector vs the intensity I ( n )  of external pumping at FIG. 3. Wave vector vs the intensity I ( n )  of external pumping at 
a= 22.9, 6= 10, u= 10, and PIx=O. ru=22.9, S= 10, u= 10, and P/,y=O.Ol. 
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FIG. 4. Wave vector vs the intensity I(n)  of external pumping at FIG. 5. Wave vector vs the intensity I(n)  of external pumping at 
a=  22.9, 6= 30, a= 10, and PIX= 0.01. a=22.9, S= 110, o=10,  and PI,y=O.Ol. 

Thus, allowing for the spatial dispersion of excitons and 
branch is stable for 0 < Io < 1 1  and unstable in interval the spatial variation of the field gives rise to spatial instabil- 
1 1  < I 0  < 1 4 .  The upper branch is stable for Io > 1 2  and ity and to the appearance of a polariton superlattice formed 
unstable for I3 < IO < 12. by coherent excitons and photons. 

For a < a at 6< S2 there is no bistability in the system, 
and the entire n(Io) curve is stable. When the &tuning sat- IL. V. Keldysh, in Problems of Theoretical Physics: In Memory of I. E. 

Tamm, Nauka, Moscow (1972), p. 433 [in Russian]. * ' S2 ' the upper and lower bistability 'S. A. Moscalenco, Kh. Rotaru, and P. I. Khadzhi, Opt. Commun. 23, 367 
branches are stable [Fig. l(d)]. (1977). 

Allowing for spatial dispersion and field nonuniformity 
leads to the following results. Figures 2 and 3 depict the 
wave vector values as functions of external pumping at 
a= 10, 6= 10, and a=22.9  (the case where a > a and 
S < 8,). Clearly, allowing for spatial dispersion and field 
nonuniformity leads to spatial instability and formation of a 
superlattice for parameter values at which the n(I,,) was for- 
merly stable. 

Figure 4 depicts the q(I )  dependence for S=30, 
a=22.9, and a =  10. We see that for such values of the 
parameters there are two regions of spatial instability. 

Figure 5 is the diagram for the case where optical bista- 
bility occurs in the system of coherent excitons and photons 
for a= 10, S= 110, and a= 22.9(a> o, 6> S2. In this case 
two superlattices with periods d,,-10-~-10-~ m and dl- 
2(10-~-10-~) m for the upper and lower optical bistability 
branches, respectively, appear in the system. One superlattice 
is formed from a low-density exciton domain, and the other 
from a high-density exciton domain. 

To conclude this paper, we list the numerical estimates 
for a CdS crystal: g = 2 . 4 X 1 0 - ~ ~  erg.cm-3, ye,-3 
xlOll s-', y - 3 ~ 1 0 1 2 s - 1 ,  and f l o = 1 ~ - 4 f l , = 4  
X 10" s-' .  For these parameter values the period of the 
superlattice lies in the range 10-100 pm for exciton densities 
n - 1017 ~ m - ~ .  In this case the intensity of external pumping 
at which polariton superlattices can form in the crystal is in 
the 10-100 mw/cm2 range, respectively. 
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