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The emergence of ultrashort dynamical chaos of biexcitons in semiconductors upon two-photon 
laser excitation has been studied theoretically. It has been shown that the regular oscillations 
in the system become chaotic as the effective dipole moment of the two-photon excitation of a 
biexciton from the ground state increases. The dynamical stochasticity of coherent 
quasiparticles is caused by breakdown of the integrals of the motion of the system. Features of a 
scenario for the development of local instability in systems with n c 2  and n > 2  degrees of 
freedom have been studied in a numerical experiment. O 1995 American Institute of Physics. 

1. INTRODUCTION 

The discovery of dynamical chaos has become one of 
the most important and striking achievements of laser phys- 
ics in recent times. Numerous reviews, articles, and mono- 
graphs have been devoted to this subject.'-5 Dynamical 
chaos is a clear-cut example of the self-organization of di- 
verse nonlinear systems, and processes involving the onset of 
deterministic chaos have a universal character. It can be re- 
alized in both dissipative and Hamiltonian dynamical sys- 
tems. 

A special place among these phenomena is occupied by 
the problem of optical dynamical chaos, especially in the 
excitonic region of the spectrum of a semiconductor as it 
relates to substantial n ~ n l i n e a r i t ~ . ~ , ~  The urgency of the in- 
vestigation of this phenomenon is dictated primarily by the 
need to study the formation of fundamentally new temporal 
structures in semiconductors and insulators, to predict new 
physical phenomena in them and create new optoelectronic 
devices with their aid, to apply these phenomena to optical 
information processing, and to create a new generation of 
optical computers. 

The theory of dynamical chaos and the formation of 
strange attractors in a system of coherent (in the Bogolyubov 
sense) excitons and biexcitons in condensed media with con- 
sideration of dissipative processes was first formulated in 
Refs. 8-14. It was shown, in particular, that the dynamical 
evolution of coherent excitons and biexcitons is described by 
a generalized system of Lorentz equations in a four- 
dimensional phase space, and that the dynamics of coherent 
excitons and photons can be described with consideration of 
the exciton-exciton interaction by a generalized system of 
Keldysh equations. 

On the other hand, the investigation of ultrashort dy- 
namical chaos (without consideration of dissipative pro- 
cesses) on the long-wavelength fundamental absorption edge 
of a crystal is still in its initial stages. The possibility, in 
principle, of the appearance of ultrashort dynamical chaos in 
a system of coherent excitons, photons, and biexcitons in the 
region of the M luminescence band of a semiconductor was 
predicted in Refs. 15 and 16. It was shown that stochastic 
instability appears at certain values of the exciton-biexciton 
conversion constant and the initial concentration of quasipar- 

ticles in the system owing to breakdown of the integrals of 
the motion. 

The present research was devoted to theoretically study- 
ing a new cooperative nonlinear phenomenon, viz., the ul- 
trashort dynamical chaos of coherent biexcitons in supercon- 
ductors. Biexcitons, which were predicted by ~ o s k a l e n k o ' ~  
and ~ a m ~ e r t , ' ~  are widely used to interpret new absorption 
and luminescence bands in semiconductors. The investiga- 
tion of biexcitons has essentially become a separate specialty 
in the physics of the condensed state. The most convincing 
experimental evidence of the existence of biexcitons is based 
on observations of two-photon excitation from the ground 
state of a crystal (CuCl, CuBr, e t ~ . ) . ' ~ ' ~ ~  In addition, 
~ a n a m u r a ~ '  was the first to show that the two-photon exci- 
tation of biexcitons from the ground state of a crystal is 
characterized by an enormous oscillator strength. For this 
reason, the two-photon excitation of biexcitons has become 
widely used in experimental investigations of biexcitonic 
states. The two-photon absorption band has a narrow 
Sshaped form. The direct generation of biexcitons owing to 
the immense two-photon absorption of light in a CuCl crystal 
was first observed by Gale and ~ ~ s ~ r o w i c z . ' ~  The optical 
bistability accompanying two-photon biexciton generation 
was predicted in Refs. 22-24, and it was observed experi- 
mentally in Refs. 24 and 25. 

We studied the nonlinear two-photon dynamics of coher- 
ent biexcitons created by an ultrashort laser pulse during a 
time shorter than the relaxation times of biexcitons, which 
are of the order of 10-'~-10-" s in semiconductors. Owing 
to the development of methods for generating and shaping 
light pulses with a duration as short as s, the restric- 
tions on the characteristic times of biexciton dynamics have 
been removed, and the experimental observation of such co- 
herent phenomena as the propagation of solitons and the lin- 
ear and nonlinear nutation of excitons and biexcitons is 
possible.26327 In those studies, the temporal dynamics of co- 
herent excitons and biexcitons, in particular, were explored. 
The theory of nonlinear nutation formulated in those studies 
was based on a resonance approximation. However, as was 
noted in Ref. 28, "the neglect of nonresonance terms in the 
Hamiltonian has been so poorly justified, due to the formal 
difficulties involved, that it has become an article of faith." 
As was shown in Ref. 28, consideration of the nonresonance 
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FIG. 1. Energy scheme for the two-photon generation of a biexciton from 
the ground state: 0-ground state of the crystal; 1-biexcitonic energy level; 
up,-frequency of the light; Lfrequency of the biexcitonic transition. 

terms results in destruction of the bound states of a system of 
two-level atoms interacting with a radiation field and in the 
appearance of a new phenomenon, dynamical chaos in 
Hamiltonian systems. It will be shown below that consider- 
ation of the antiresonance terms in the interaction Hamil- 
tonian in the case of two-photon excitation of biexcitons 
from the ground state of a crystal, in contrast to the case of 
nonlinear n u t a t i ~ n ? ~  fundamentally alters the nonlinear dy- 
namics of biexcitons and, under certain conditions, results in 
the onset of dynamical chaos of biexcitons. 

2. FORMULATION OF THE PROBLEM. DYNAMICAL 
EQUATIONS 

Let us examine the ultrashort nonlinear dynamics of co- 
herent biexcitons in the case of two-photon excitation from 
the ground state of a crystal. Since this process is character- 
ized by an enormous oscillator strength and since the excita- 
tion pulse is assumed to be ultrashort, we shall henceforth 
disregard the biexciton relaxation processes. This requires a 
pulse duration that is shorter than the biexciton relaxation 
time. The estimates given in Ref. 29 show that the biexciton 
relaxation times due to biexciton-biexciton collisions and the 
interaction of biexcitons with acoustic phonons at a concen- 
tration of biexcitons equal to 1016 cm-3 are equal to 
- 5 ~ 1 0 - "  and - 5 ~ 1 0 - ' ~  s, respectively. On the other 
hand, the spectral width of the ultrashort pulses may result in 
the appearance of biexciton recombination processes with 
the formation of free excitons and photons. To eliminate 
these processes, the uncertainty in the photon energy must be 
less than 1,/2, and the pulse duration T must be greater than 
2hlIm, where I, is the binding energy of a biexciton. Evalu- 
ations show that the pulse duration for a CuCl crystal has a 
lower limit: r>10-l4 S. Thus, short-lived pulses in the pico- 
and subpicosecond ranges are needed to observe the ul- 
trashort dynamic chaos of biexcitons upon two-photon exci- 
tation. 

Let us examine the temporal evolution of a spatially ho- 
mogeneous system of coherent biexcitons and photons in a 
semiconductor. It is assumed that the quasiparticles are co- 
herent in the Bogolyubov sense, i.e., they have identical 
wave vectors, polarizations, and phases, and their amplitudes 
are macroscopically large. Figure 1 presents the energy-level 
scheme of the phenomenon under study. 

The basis of the ultrashort dynamical chaos appearing 
upon two-photon excitation of a biexciton from the ground 
state of a crystal is the Hamiltonian of biexcitons and pho- 
tons with a wave vector k 

where b:k(b2k) and c:(ck) are the creation (annihilation) 
operators of a biexciton and a photon, respectively, R is the 
energy of formation of a biexciton, wph is the energy of a 
photon, M k  is the matrix element defined in Ref. 29 for the 
two-photon transition from the ground state of the crystal to 
the biexcitonic state. Here and in the following we set h=1. 
The interaction of light with biexcitons has both a resonant 
part and an antiresonant part. The resonance approximation 
leads to the coherent nutation of biexcitations studied in 
Refs. 26 and 29. It will be shown below that consideration of 
the antiresonance terms of the Hamiltonian results in break- 
down of the integrals of the motion of the system and the 
appearance of ultrashort dynamical chaos of biexcitons. 

We transform to action-angle variables: 

ck=  JTexp( - iqph+  ikx); bZk= &?exp(- iqb+  ikx), 
(2) 

+ where f = c  c, qph,  N = b + b ,  and q+, are the numbers and 
phases of the photons and biexcitons, respectively. We shall 
henceforth omit the indices of the wave vectors. With this 
notation the Hamiltonian of the system takes on the form 

With consideration of (3), the temporal evolution of the co- 
herent photons and biexcitons is described by the system of 
equations 

+ sin(qb+ 2 qph) + 2 sin qb], 

+ sin(qb+ 2qph)  + 2 sin qb] .  

Introducing the notation 

we bring Eqs. (4) into the form 
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. 5A 
f = f f i (c0s  )-& COS q ) ,  

[sin *+&(sin cp+2 sin %)I, 

X(sin q + 2  sin q,)], 

The parameter E was introduced in such a manner that 
E = O  when the antiresonance terms are neglected, and that 
Eqs. (5) are equivalent to Eqs. (4) when & = I .  The dot de- 
notes differentiation with respect to the dimensionless pa- 
rameter T. In the resonance approximation (E=O), the num- 
ber of particles is an integral of the motion for Eqs. (5), 

which is determined by the number of particles at the initial 
moment in time. 

Using the integral of the motion (6), from (5) we easily 
obtain 

5 A 
P=AN+ j-g ( c - 2 N ) f i  sin ), (7) 

where P=HIwph-C is an additional integral of the motion, 
which plays the role of the Hamiltonian in the (N,)) param- 
eter space. A system of coherent biexcitons evolves differ- 
ently with time, depending on the parameters of the system, 
the initial values of the occupation numbers, and the offset 
from resonance A. 

Introducing the notation X= A@, f = f l c ,  and N=NI 
C ,  going over to the variables (N,N), and henceforth drop- 
ping the bar, we obtain 

In the general case, the solution of Eq. (8) has the form 

Here F is an elliptic integral of the first kind, k 
= d m  is the modulus of the elliptic function, 
qo= a r c s i n d m ,  N, is the initial number of biexcitons 
per unit volume, N,,=N,-N,, and N3<N2<N, are the 
roots of the equation 

In the case of P =A/2, the number of coherent biexcitons 
as a function of time is given by 

i.e., all the photons are converted into biexcitons, and the 
evolution of the system is thereby completed. 

We note that aperiodic motion is possible when E is non- 
zero, and that periodic oscillations are also possible when 
E=O. These classes of solutions were omitted in our previous 
reports. 

3. BREAKDOWN OF INTEGRALS OF THE MOTION AND 
STOCHASTIZATION OF PHASE TRAJECTORIES 

When P=A/2, the phase trajectory is a separatrix and 
corresponds to an aperiodic oscillation regime. In this case, 
even an infinitesimal perturbation causes significant destmc- 
tion of the phase trajectories near the separatrix with result- 
ant stochastization of the system of photons and biexcitons. 
Chaotic fluctuations appear owing to breakdown of the inte- 
grals of the motion, this breakdown being due to the non- 
resonance terms in the Hamiltonian, which act as perturba- 
tions. The variation in the integral of the motion P under the 
action of a perturbation, taking the canonical variables (N,)) 
into consideration, is described by 

According to (5) and (7), the perturbed equations have the 
form 

. 5A 
SN= - - (1-2N)f i (cos  cp+2 cos qb) ,  

1 6  

4 fi) (sin q + 2 sin cp,). (13) 

Plugging (13) into (12), we obtain 

We are interested in the motion of the system near the 
separatrix, i.e., when P-+A/2. In this case the characteristic 
roots are given by 
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N(T) varies from almost 0 to 112, where its period tends to 
infinity at a turning point of the hyperbolic type. When A<1, 
the denominator in (14) is of order unity, while f i (1  
- 2N) - PIX and ( 1  - 2N)(1- 6N) -1 far from the singu- 
lar point N=1/2 over a small time interval equal to the pe- 
riod of the small oscillations 7 ~ 1 ~ ~ .  In the vicinity of the 
singular point we have fi(1 - 2N) - PIX and ( 1  
-2N)(1-6N)-PIX over the large time interval 27~lo(P), 
where o(P) is the nonlinear frequency. In this approxima- 
tion the equations of motion have the form 

Here A(r) is a periodic function with period 2.rr/w(P), a 
height -1, and a width 2.lr/w0, where wo=wphA/4 at P+A/2 
is the frequency of small oscillations of the system of quasi- 
particles. Equation (16) directly yields the discrete-time map 

The character of the solution of Eqs. (17) is determined 
by K (Refs. 1 and 28) 

When K<1, the system performs quasiperiodic oscillations, 
and when K>1, the motion of the system becomes stochastic 
during the phase decorrelation time 

where r,= l lw(P)ln  K.  
The change in P in one transformation step is 

max &=40X.rr exp (20) 

where the constant a-1. The nonlinear frequency is given 
by 

Substituting (20) and (21) into (18), we obtain 

K= 1024&/2X.rr exp (-y). 
The boundary of the stochastic layer is determined from the 
condition K ( P o  ,H) - 1 

A 
P -- + 1024&.rr exp 

O -  2 

The decay constant of the nutational motion in the sto- 
chastic layer equals 

4. COMPUTER EXPERIMENT 

In the general case, Eqs. (5) have one integral of the 
motion (the energy of the system), and the region of motion 
in the phase space is a three-dimensional hypersurface de- 
fined by (1) in the four-dimensional phase space. When the 
antiresonance terms are neglected, the additional integral of 
the motion P appears. The temporal evolution of coherent 
quasiparticles in this case takes the form of either nonlinear 
periodic oscillations described by (9) or aperiodic oscilla- 
tions defined by (11). Figure 2 presents the temporal varia- 
tion of the number of coherent biexcitons, the number of 
photons, and the phase, as well as a projection of the phase 
trajectory onto the phasetnumber-of-biexcitons plane. As the 
separatrix is approached, the oscillation period increases, and 
it becomes infinite at the separatrix. 

Consideration of the nonresonance terms results in 
breakdown of the integral of the motion P. When A<1, the 
motion has a quasiperiodic character. Figure 3 presents the 
temporal evolution of the number of coherent biexcitons, the 
number of photons, and the phase, as well as projections of 
the phase trajectories onto the number-of-photonslnumber- 
of-biexcitons plane, the phaselnumber-of-biexcitons plane, 
and the phasetnumber-of-photons plane, and a three- 
dimensional phase portrait in the space of the number of 
photons, the phase, and the number of biexcitons in the per- 
turbed case. As is seen from the figure, the system moves on 
a perturbed torus with a nonlinear frequency 4 P )  and am- 
plitudes modulated by the perturbation. 

As X increases, the diameter of the torus increases, and 
when A s l ,  it overlaps itself. Figure 4 presents the time- 
dependent number of coherent biexcitons, the number of 
photons, and the resonance phase, as well as the correspond- 
ing projections of the phase trajectories for A=0.96. 

As can be seen from the figure, the motion becomes 
more complex, the number of harmonics in the oscillation 
spectrum increases, and the amplitude of the oscillations in- 
creases. As A increases, both the frequency of the resonant 
interaction and the frequency of the nonresonant interaction 
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increase. Near the separatrix, however, the resonant fre- 
quency decreases sharply. When A-1, the energy of the per- 
turbing interaction is of the order of the energy of the reso- 
nant interaction. The system of coherent quasiparticles 
performs quasiperiodic oscillations with the frequency of the 
antiresonant interaction, modulated by the resonant interac- 
tion. 

Figure 5 presents the temporal evolution of the number 
of coherent biexcitons, the number of photons, and the 

phase, as well as projections of the phase trajectories for 
A=1.056. At this value of the parameter, the number of har- 
monics increases sharply, and the system performs increas- 
ingly complex oscillations, which attest to the onset of sto- 
chastic motion. When A increases further, the motion of the 
system becomes completely stochastic (Fig. 6). 

Figure 7 presents the development of local instability at 
various values of A. The distance between the two close tra- 
jectories is given by 

FIG. 2. Temporal evolution of the number of coher- 
ent biexcitons (a), the number of photons (b), the 
coherent phase (c), and projection of the phase tra- 
jectory onto the phaselnumber-of-biexcitons plane 
(d) for ~ = 1 0 - ~ ,  C=1.001, and X=l. 

FIG. 3. Temporal evolution of the number 
of coherent biexcitons (a), the number of 
photons (b), and the coherent phase (c), pro- 
jections of the phase trajectory onto the 
number-of-photons/number-of-biexcitons 
plane (d), the phaselnumber-of-biexcitons 
plane (e), and the phaselnumber-of-photons 
plane (f), and phase portrait of the evolution 
of the system in the space of the number of 
photons, the phase, and the number of biex- 
citons (g) for ~ ,=10- ' ,  f ,= l ,  
~=cp, , , ,=~r/2,  and A=0.64. 
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FIG. 4. Same as in Fig. 3, but for h=0.96. 

D = D o  exp(y,?). 

In conclusion, we note that the trajectory always remains 

+ [ Q h  ;n(Pph 1 ]  '1 ' I 2  
on the torus. Varying the integrals of the motion of the sys- 
tem, we find a family of invariant tori. Their relative arrange- 
ment in the phase space is determined by the dimensionality 

We find the decay constant ys from the expression of the phase space of the system. When the number of de- 

FIG. 5. Same as in Fig. 3, but for h=1.056. 

245 JETP 80 (2), February 1995 A. Kh. Rotaru and K. V. Shura 245 



0.4 0.4 1.3 

0.2 0.2 0.9 

FIG. 6. Same as in Fig. 3, but for X=1.064. 
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grees of freedom n s 2 ,  the tori corresponding to different 
integrals of the motion are nested and do not intersect. In this 
case it can be said that they partition the space. When n>2, 
the tori fail to partition the phase space, and intersect. There- 
fore, the regions of breakdown may permeate the entire 
phase space. In this case the phenomenon known as Amol'd 
diffusion3' is observed. The excited trajectories may wander 
unrestrictedly far from their unperturbed values, even when 
the majority of the tori do not collapse. 

In Ref. 16 n =3 ,  and initially nearby trajectories wan- 
dered apart to a distance D-1 after sufficiently long time 
intervals even when A 4 1 .  In contrast to Ref. 28, in the 
present problem n =2, and the collapsed tori are compressed 
between the uncollapsed tori. In this case D<1. Only when 
the critical value A=1.04 is achieved do the majority of the 

tori collapse and does the stochastic layer spread throughout 
the phase space. When D 1 . 0 4 ,  D-1,  and the value of y, 
increases sharply as A increases: ys=0.03, 0.08, and 0.18 
when A= 1.056, 1.064, and 1.12, respectively. 
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