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A class of self-similar solutions is found to the simplified equation for the electric field in the 
linear approximation corresponding to resonant excitation of a beam of plasma waves 
by a monochromatic source of external current, together with the evolution of this beam as it 
propagates along the resonant characteristic. The class of external current (charge) spatial 
distributions is found corresponding to these self-similar solutions. The fundamental behavior is 
determined for a beam of plasma waves reflecting from a plasma-metal boundary in the 
presence of an arbitrarily directed magnetic field. O 1995 American Institute of Physics. 

At the present time the problem of creating artificial 
plasma structures with controllable parameters in an external 
source field is of considerable importance, as is the effect of 
such structures on the radiation from antennas in the plasma. 
The principal reason for this is the wide use of various an- 
tennas and probes in space and laboratory experiments. A 
series of rocket experiments with a radio transmitter, 
launched in the low atmosphere7' revealed new possibilities 
for actively affecting the ionospheric and magnetospheric 
plasma parameters by exciting a plasma-wave discharge in 
the electromagnetic field of the antenna, together with the 
effect of this artificial plasma on a number of geophysical 
processes. Gorubyatnikov et aL2 described the results of 
laboratory experimental studies on the field profile and radia- 
tion efficiency of a source when quasisteady plasma struc- 
tures are formed in the near field of an antenna. On the other 
hand, the details of the electrodynamic phenomena that occur 
in a plasma-source system are of general physical interest, 
since similar effects can occur in other physical systems. In 
particular, resonant wave beams for internal waves in a 
stratified fluid,3 excited by harmonic sources, have a struc- 
ture similar to beams of plasma waves. 

As is well known? the field of an external current oscil- 
lating with frequency w which corresponds to excitation of 
eigenmodes of the medium, located in a uniform magnetized 
plasma, has a resonant structure (the field is localized near 
the surfaces of the plasma resonance), due to the intense 
excitation of quasielectrostatic waves. Under resonant exci- 
tation conditions the characteristic size of a source operating 
in the resonant frequency range should be small compared 
with the electromagnetic wavelength ( L e i ) ,  which allows 
the near field of the emitter to be described in the quasisteady 
approximation.435 Under uniform plasma conditions the field 
of this source is localized on the resonant characteristics (the 
surfaces of the plasma resonance) passing through the region 
occupied by the external currents. The integral representation 
of the potential of the electric field in a uniform magnetized 
plasma takes the form6 

Here pk(k) is the spectral density of the external charge, cor- 
responding to the distribution of external currents on the 
source. We will assume that the size L of the source is much 
greater than the parameters vTe/", u ~ ~ / % ~ ,  which 
characterize the effect of the electron thermal motion (here 
v~~ is the thermal velocity, wpl is the plasma frequency, and 
%, is the gyrofrequency). In this case under resonant con- 
ditions (L 4 X )  in the dispersion relation we can disregard the 
effect of spatial dispersion and, taking into account the effect 
of weak collisions and the electromagnetic corrections, write 
D(w,k) in the following form (Ref. 5):'' 

Here (x,y,z) is the Cartesian coordinate system, where the z 
axis is directed parallel to the external magnetic field; E ,  and 
e3 are the diagonal components of the cold-plasma dielectric 
tensor; g = - cXy = cyZ are the off-diagonal elements of this 
tensor, and we have written ?=k: + k;, ,x2= 

where v, is the electron collision frequency. Using the dis- 
persion relation (2) and integrating over the two components 
of the wave vector, taking into account the resonant behavior 
of the field, we can find the structure of the electric field near 
the resonant cone (t+O), as  follow^:^ 

Xexp i k,t+ - -sk T dk,, i i 4:kJ I 
where 
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is the electromagnetic wavelength, s is a coefficient which 
takes into account the collisional dissipation, (6 ,~ )  is the co- 
ordinate system with r axis directed along the surface of the 
resonant cone and 5 axis transverse to it, and the spectral 
density is 

containing the Fourier components with transverse compo- 
nents of the wave vector only. This is related to the fact that 
under resonant conditions the phase velocity of a packet of 
plasma waves is directed perpendicular to the surface of the 
resonant cone. 

Equation (3) was derived using the diffraction effects 
due to the electromagnetic correction and the collisional dis- 
sipation. From (3) we see that when collisions and diffraction 
effects are neglected the field transported along a resonant 
characteristic (&O) will have a beam resonant structure. A 
characteristic feature of such resonant beams of plaspa 
waves is evident from the formula (21) for the potential of a 
dipole source field, given below. The corresponding expres- 
sion for the potential of a quasisteady electric field in terms 
of the effective space charge distribution peff(tr) under reso- 
nant conditions takes the form 

Differentiating (3) with respect to 5 and rand comparing 
the resulting expressions, we can pass from an integral rep- 
resentation of the potential to a differential representation. 
Since the function + is complex the desired representation is 
a quasihyperbolic partial differential equation: 

The solution must satisfy boundary conditions of the form 

There exists a self-similar variable 7 by means of which 
Eq. (5) can be reduced to an ordinary differential equation: 

Here to is a specified complex scale. We represent the poten- 
tial of the field as follows: 

where @(v) is some function and m is a number. Substituting 
(8) in (5) we find an ordinary differential equation for the 
function @(rl): 

Equation (9) is a particular form of the Bessel equation.' Its 
solution takes the form 

where Z m ( m )  is a cylindrical function. 
It is necessary to make clear to what class of charge 

distributions a given self-similar solution corresponds. Writ- 
ing v* = dX2 and equating (10) and (4) we find 

From this we see that the potential on the left-hand side 
depends only on v*, so the function peff should look like 
peff =peff(tr + 6). Transforming according to 

we have 

We assume that 

where v is a number, the degree of the homogeneous func- 
tion pe&y). Then relation (12) is transformed as follows: 

We must evaluate the integral on the right-hand side of 
(14) for both whole and fractional values of the parameter v. 
The integration is performed in the complex plane; the point 
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FIG. 1. Resonant behavior of the real (a) 
and imaginary (b) parts of the potential of 
the quasisteady electric field of a dipole 
source. 

y  =O is a singular point. For integral values of v it is a pole of 
order v and for fractional v it is a branch point. Finally, after 
integration the right-hand side for fractional v becomes 

for the whole v 

- -27ri 
-- - 

d v -  ' exp( - Jy-rl*) 
lim - 

(v-  I ) !  y + O  d y V - '  e '  (15b) 

where K,(J-rl*) is the modified Bessel function of the 
second kind. When (15) holds identically we must choose the 
cylindrical function on the left-hand side properly, taking 
into account the boundary conditions at infinity and m + 112 
-v=O. In this case the function Z , ( m )  is a modified 

Bessel function of the second kind K , ( w )  with half- 
integral index when v is a whole number and with arbitrary 
index for fractional values of v (Refs. 8 and 9). 

Thus, the above self-similar solution of the reduced 
equation for the potential of a distributed source corresponds 
to a class of algebraic distributions of external charge of the 
form (13), or in the original variables, 

The parameter v may take on either an integral or fractional 
value; to is a complex number. For example, for the dipole 
free-charge distribution (20) we have tO=iL. The complex 
nature of the scale to is a factor which determines the wave- 
like behavior of the field under resonant conditions. Fields 
produced by such sources for v= 1,2 are described in Refs. 5 
and 10. The spectral density of algebraic distributions from 
the class (16) take the form 

where k5>0 and Im tO>O. Then for the self-similar solution 
of (3) we find 

After integrating expression (18) with respect to kg we find 
that the potential takes the following form: 

Asymptotic estimates of the integral (18) (by the method 
of stationary phase for t > 0  and by the method of steepest 
descent for [<0) when the parameter T is large (rS>cO) and 
I~BILI ,  where to is the characteristic length scale of the 
source, show that in the "illuminated" region (t>0) the field 
has an oscillatory character and falls off according to a 
power law, while for (<0 (the "shadow" region) there are 
no oscillations and the field falls off exponentially. The struc- 
ture of the field produced by sources from the class (16) is 
shown in Fig. 1. This transparent interpretation was obtained 
by transforming expression (18) to dimensionless form and 
integrating it numerically. It is clear that under these condi- 
tions the field can be wavelike. From the asymptotic form of 
expression (18) it follows that the surfaces of stationary 
phase are hyperbolas, and the dispersion law also has a hy- 
perbolic character: 

From these relations it also follows that the field energy 
flows out from the resonant characteristic. 

This class of distributions (16) can be used to investigate 
the reflection of beams of plasma waves from steep gradients 
in a magnetized plasma. 

230 JETP 80 (2), February 1995 Fainshtein et a/. 230 



FIG. 2. Showing the reflection of beams of plasma waves from a sharp 
plasma-metal boundary. 

Here, using distributions of the external current and the 
resonant field studied previously, we consider the distribution 
of beams of plasma waves in an inhomogeneous medium. 
We take a thin antenna with a dipole distribution of free 
charge: 

where P is the dipole moment. The quasisteady potential of 
the source field, leaving out the spatial dispersion and colli- 
sional dissipation, takes the form5 

Here Peff is the effective dipole moment, given by 

P J F :  sin p 
Peff= 2 a a 1  7 

where p is the opening angle of the resonant cone (Fig. 2). 
Relation (21) describes the complex amplitude of a beam 

of plasma waves propagating in the resonant direction T. 
Suppose that this beam is incident on a plasma-metal bound- 
ary at an angle a + P ,  where a is the slant of the magnetic 
field. In the direction of propagation (the resonant character- 
istic) the transverse structure of the beam is conser~ed .~  The 
incident beam is reflected into an adjacent resonant charac- 
teristic in the direction 7'. In this quasi-two-dimensional ap- 
proximation the field of the reflected beam can be calculated 
as the field produced by the "image" of the original source, 
taking into account the appropriate boundary conditions. The 
transformation from the coordinate system (&7) to the sys- 
tem (5',7') is as follows: 

7' = sin 2P- 7 cos 2 P ,  

6' = .$ cos 2 P +  ? sin 2 0 ,  (22) 

where we have written 7= T- rs, 7' = T' - T: , T~ is the 
shift in the origin of coordinates 0 ,  T: is a shift in the origin 
O r ,  and the relation between them is given by 

Using the boundary condition in the coordinate system 
(E,?): 7= -tctg(a+P),  and some simple trigonometric for- 
mulas, we derive the relation for the transverse coordinates at 
the boundary: 

We assume that the relation between the transverse coordi- 
nates 6 and 6' is as follows: 

We assume that the structure of the reflected beam is similar 
to that of the incident beam. so that 

At the resonant surface for T ' S ~ ,  rZ>( on the boundary we 
can set T' = T: , -7,. Consequently, for complex ampli- 
tudes of the incident and reflected beam potentials we have 

From (27) it is easy to find the tangential components of 
the electric fields on the interface. Using (23) and (25) we 
obtain 

On the boundary the total tangential component of the elec- 
tric field must vanish, whereupon 

sin( a - p )  
p' = - p  

eff eff s i n ( a + p )  ' 

The reflection coefficient, which is equal to the ratio of the 
amplitudes of the reflected and incident waves, is 

Thus, in this problem the method of images is appli- 
cable, and the boundary conditions are satisfied assuming 
that the reflected beam has the same structure as the incident 
one and is produced by an image source with characteristic 
scale length 

and with the dipole moment given by Eq. (29). 
In the foregoing we derived a class of external distribu- 

tions describing self-similar solutions of the original equa- 
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tions. This class can be used to treat the reflection of beams 
of plasma waves from steep gradients in a plasma. Consider 
a quasisteady electric field of the form (19) with amplitude 
A ,  produced by a source distribution from the class (16) near 
a metal-plasma interface, without taking into account the 
collisional dissipation: 

We assumed that Eq. (32) is the potential of a beam of 
plasma waves incident along the resonant characteristic on 
the interface. Using the notation and results obtained above, 
we find analogously the potential of the reflected beam, 
given by 

The tangential components of the electric fields of the 
incident and reflected beams on the boundary take the form 

By equating to zero the tangential component of the field on 
the boundary we find a relation between the amplitudes of 
the incident and reflected beams: 

For typical beam scale sizes we have 

In this case the reflection coefficient is the same as that given 
by Eq. (30). Equation (35) holds for the amplitudes of arbi- 
trary beams of plasma waves emitted by sources from the 
class (16), described by the self-similar solutions derived 
above. It is not hard to see that the distribution (20) belongs 
to this class. In this case we have v=2, m =3/2, and Eq. (35) 
goes over to (29). 

In order to explain the qualitative picture of the structure 
of the field we can turn to Ref. 2. In Ref. 2 a model problem 
was treated, involving the reflection of a quasistatic wave 
from a sharp oblique boundary. When electrostatic waves are 
reflected and refracted the wavelength changes. The angle a 
(the angle of the slope in the boundary with respect to the 
magnetic field) is important. As a approaches 6 ,  the angle of 

the slope in the resonant characteristics, the amplitude of the 
reflected wave field grows resonantly, the reflection coeffi- 
cient formally diverges, and the reflected wavelength ap- 
proaches zero. For a=@ the group velocity of the reflected 
wave is parallel to the boundary, and the wave vector k is 
orthogonal to it (the reflected wavelength then vanishes). All 
wave fronts of the reflected wave lie in the plane of the 
boundary, i.e., the energy of the reflected wave is concen- 
trated in an infinitesimal layer. For v,=w (where v, is the 
electron collision frequency and w is the frequency of the 
radiation field) in the quasisteady state, which is formed by a 
source in a magnetized plasma, the reflecting boundary has a 
slope close to the critical value.2 

Thus, the reduction in the wavelength in connection with 
reflection at angles close to the critical value allows narrow 
spatial distributions of the field of the quasistatic waves to 
develop with length scale comparable to the thickness of the 
boundary of the heated region. In passing through the critical 
angle the direction of the group velocity of the reflected 
wave changes. For a>@ the energy flux in the reflected wave 
is directed parallel to the resonant characteristic toward the 
plane on which the source is located, while for a<P it is in 
the opposite direction ("forward" and "backward" reflec- 
tion). This means essentially that, by varying the gradient in 
temperature or density one can create artificial plasma irregu- 
larities of different sizes. For backward reflection a plasma 
density gradient develops which is localized near the source; 
for forward reflection and the subsequent geometric focusing 
of the beam of plasma waves a density variation can develop 
which is highly elongated parallel to the magnetic field (a 
plasma channel). These cases have been observed in labora- 
tory e ~ ~ e r i m e n t s . ' ~ ~ . ' ~  

In conclusion we note that the foregoing analysis of the 
resonant behavior of beams of plasma waves and of the evo- 
lution of these beams in propagating along resonant charac- 
teristics in a magnetized plasma, carried out using the sim- 
plified equation (5), is fundamental for the study of the role 
of nonlinear effects in similar problems. 

Note also that the problem regarding the reflection of 
electrostatic waves propagating in a magnetized plasma is 
similar to the problem of the reflection of internal gravita- 
tional waves propagating in a stratified fluid. 
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