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An attempt is made to understand the principles of turbulent transport in tokomaks, starting with 
the general principles of nonlinear physics. The key point is the conservation of the 
magnetic field topology. The freezing-in of the generalized vorticity (a special case of which is 
the magnetic field) is derived from the Poincari relative integral invariant. The inertia of 
the electrons, in contrast to their thermal motion, does not destroy the freezing-in constants, but 
only changes their form. Heat and particle transport are caused by a group of particles 
with nonintegrable trajectories; a group of electrons with integrable trajectories plays the role of 
preserver of the magnetic-field topology and interferes with the appearance of turbulent 
resistance. It is shown that, although the basis for Onsager symmetry in turbulent processes is 
insufficient, simplified models can possess symmetry. But in the general case fluxes 
appear even in the absence of gradients of the thermodynamic quantities, which agrees with 
experimentally observed pinching of particles and heat. The asymmetric loss of ions results from 
the toroidal rotation of the plasma, which affects the pinching of particles and the bootstrap 
current when it interacts with the rippled magnetic field of the coils. The existence of a regime with 
electrostatic confinement of the ions is predicted. O 1995 American Institute of Physics. 

1. INTRODUCTION 

Following the experimental success of tokomaks at the 
end of the 1960s (Ref. 1) their study became a major thrust 
in plasma physics, giving rise to thousands of theoretical 
papers, which were often very detailed. Unfortunately, the 
physics of tokomaks has been broken up into a multitude of 
special cases, strung out one after the other. Since the system 
is highly nonlinear, there are no rules for "assembling" spe- 
cial solutions into a general system. It is therefore natural to 
attempt to understand the principles of the operation of toko- 
maks by starting, if possible, from the general principles of 
nonlinear physics. The presents effort belongs to this class. 

Even the first work of Tamm and ~ a k h a r o v ~ - ~  gave a 
very realistic estimate of the possibilities of tokomaks, aside 
from turbulent transport of heat, particles, and angular mo- 
mentum. Turbulent transport remains the principal problem 
of tokomak physics and magnetic confinement generally: 
and this is what we will concentrate on. We will disregard 
neoclassical effects, since the experimental values of the heat 
and particle transport in large tokomaks are far in excess of 
the neoclassical transport due to Coulomb  collision^.^,^ 

In the opinion of the author, one of the most important 
questions is the apparent contradiction between the Spitzer 
Coulomb conductivity exhibited in experiments and the tur- 
bulent diffusion of the plasma, which is two orders of mag- 
nitude greater than the Coulomb value. The point is that in 
the simplest one-fluid hydrodynamics8 magnetic field diffu- 
sion and plasma diffusion are determined by a single process, 
friction between electrons and ions, and this is a single co- 
efficient; to use the Coulomb value in one equation but to 
replace it with an anomalous coefficient in the other, without 
explanation, is bad, even if this agrees with experiments. The 
correct resolution of the paradox by means of the introduc- 

tion of an anomalous transverse conductivity while the nor- 
mal conductivity is retained in the longitudinal direction is 
well known; the reason for keeping the normal longitudinal 
conductivity is explained in Sec. 3 in terms of the concept of 
a set of nonresonant particles, a "preserver" of magnetic 
field topology, while the resonant particles supply the trans- 
verse diffusion of the plasma. 

This is preceded by Sec. 2, in which the reason for the 
existence of the concept of a frozen-in magnetic field is clari- 
fied. It is well known that energy conservation can be proved 
and the causes explained by using the translational invariants 
of the Hamiltonian in time, whereas it can also be proved 
"experimentally" by differentiating the energy with respect 
to time. This applies to many other invariants as well. The 
freezing-in of the magnetic field is derived "experimentally" 
in most textbooks (see, e.g., Ref. 8). As will be shown, the 
very important concept of freezing-in arises from the Poin- 
car6 relative integral invariant. The resulting generalizations 
are also useful for understanding the operation of tokomaks. 

If we include the off-diagonal fluxes, such as, e.g., the 
auxiliary toroidal current proportional to the radial gradient 
of the electron temperature (the bootstrap or the 
radial particle flux, which is proportional to the radial gradi- 
ent of the electron temperature or to the toroidal electric field 
(pinching), then dozens of transport coefficients arise. The 
desire to reduce the number of independent off-diagonal co- 
efficients by a factor of two by attributing Onsager symmetry 
to them is natural. The main limitations result from the in- 
compressibility of the phase flux, which follows from the 
Hamiltonian property of the system. As will be shown in 
Sec. 4, symmetry can arise in the simplest situations, but in 
the general case it is lacking, and furthermore fluxes can 
exist even in the absence of gradients of the thermodynamic 
quantities. Turbulence is active and can create thermal fluxes 
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the way a home refrigerator creates them. Turbulent equilib- 
rium distributions differ from uniform Coulomb distribu- 
tions. 

While there are dozens of fluxes, inevitably several of 
these are the most important, and they are the only ones that 
need to be investigated. Section 5 is devoted to transport by 
vortices and their relationship with rotation and the bootstrap 
current. It contains no significantly new ideas and is supplied 
in order to complete the picture. The complexity of the in- 
teraction between the vortices and particles means that it is 
impossible to calculate either the shape of the vortices or the 
transport coefficients. Next a conjecture is described regard- 
ing a mechanism for the appearance of off-diagonal terms in 
a turbulent plasma. Asymmetric loss of ions gives rise to 
toroidal rotation of the plasma. The nonconservation of the 
toroidal momentum due to rippling of the coils interacting 
with the rotation leads to pinching of the particles and a new 
mechanism for the bootstrap current. 

Section 6 is devoted to confinement regimes. The exist- 
ence of a regime with electrostatic confinement of the ions is 
predicted; in it the ion temperature is nonzero at the plasma 
boundary. The equilibrium distribution of the ions suppresses 
some of the instabilities and thus improves confinement. The 
transition to this regime has a threshold, since it requires 
traversal of a Coulomb barrier: the cooling of ions by elec- 
trons at the boundary. 

2. ORIGIN OF THE CONCEPT OF FREEZING-IN FROM THE 
POINCARE RELATIVE INTEGRAL INVARIANT 

Let us elucidate the fundamental physical reasons for the 
frozen-in law. 

In the differential formulation freezing-in means that the 
evolution of the magnetic field B is described by the equa- 
tion 

B,=EV[VBII, (1) 

where v is the plasma velocity. In the equivalent integral 
formulation the flux of the magnetic field B through any 
closed contour transported with the plasma velocity v is con- 
served. 

Equation (1) can be derived by taking the curl of the 
hydrodynamic equation for the electron motion and setting 
the electron mass equal to zero. In this connection people 
frequently say that including finite mass destroys freezing-in 
and causes plasma to leak out of the confinement system or 
leads to reconnection. Furthermore, when finite mass is taken 
into account the equation of motion of each species of the 
plasma can be represented in the form of the conservation of 
a generalized vorticity fl: 

fl,= [V[vflll, (2)  

where fl=[Vp],p=rnv+eA/c is the generalized particle mo- 
mentum. When the mechanical part dominates in the gener- 
alized momentum, we obtain the theorem of Kelvin on the 
circulation in an ideal fluid, which was well known a century 
ago; when the electromagnetic part dominates we obtain the 
freezing-in of the magnetic field. Conservation of general- 
ized vorticity was also pointed out in the well-known review 
of ~ra~inski i , ' '  and in the western literature by 

~~nden-  ell;" it was found independently by Imshennik, 
and then rediscovered in connection with electron 
hydrodynamics.12 In the West the work of sudan13 is best 
known. 

However, the conservation of the generalized vorticity 
remains little known, which is responsible for many misun- 
derstandings. For example, although the inclusion of a small 
electron inertia implies that the magnetic field deviates 
slightly from the frozen-in condition, these changes cannot 
accumulate even over a long period of time because of the 
conservation of generalized vorticity. When their inertia is 
taken into account the electrons are "glued" not to magnetic 
field lines but to lines of constant f l .  The constant of the 
motion has not disappeared, its definition has changed. Con- 
sequently, the numerous attempts to explain enhanced elec- 
tron thermal conductivity or reconnection of magnetic field 
lines in terms of the electron inertia, without treating thermal 
drifts, are dubious. Conservation of the generalized vorticity 
is responsible for the potential behavior of the high- 
frequency pressure, also known as the ponderomotive force. 

The new notation also helps to clarify the fundamental 
reason for the origin of the frozen-in concept. The conserva- 
tion of generalized vorticity is not accidental; it arises from 
the canonical form of the Hamiltonian equation for a fluid 
particle, which was pointed out in Refs. 14 and 15. In fact, 
the hydrodynamic equations of motion when the pressure 
depends only on the density can be derived from the Hamil- 
tonian 

where P(q) is the normalized pressure and &q) and A(q) are 
the electrostatic and vector potentials. The equations have 
the canonical form 

Then from (4) the conservation of the Poincard relative 
integral invariant16 follows: 

where the integration contour is transported by the phase 
flux. (This exact invariant should not be confused with the 
approximate adiabatic invariant which stems from the Poin- 
card invariant and has exactly the same form. The difference 
lies in the integration contour: in the case of the adiabatic 
invariant the integral is taken over a periodic particle trajec- 
tory. The periodic trajectory is only approximately the same 
as the contour transported by the phase flux.) Since in hydro- 
dynamics the generalized momentum is a function of space 
and time, it is possible to carry out a projection from the 
six-dimensional phase space into ordinary three-dimensional 
configuration space. After that the contour integral can be 
transformed into the flux [Vp] through the surface spread 
across the contour, and this is the integral formulation for the 
freezing-in of the variable: 
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These descriptions require no calculations, but experi- 3. THE FREEZING-IN OF THE MAGNETIC FIELD IN THE 
ence shows that they are difficult to understand, due to the KINETIC DESCRlPTlON OF COLLlSlONLESS 
transition from phase flux and ordinary differential equations PLASMA TURBULENCE IN A TDKOMAK 

to hydrodynamics and partial differential equations. - 
Note that this integral of the generalized vorticity is a 

consequence of the form of the Poisson brackets (4), and 
does not depend on the form of the Hamiltonian; these are 
called Casimir integrals. In particular, this means that the 
frozen-in condition is also conserved in the curved space 
near a black hole, when the magnetic field acquires mass. It 
is also possible to introduce freezing-in into a quark-gluon 
plasma describes by the Yang-Mills equations.17 

This constant cannot be destroyed by any additions to 
the Hamiltonian; in our case, that of a collisionless plasma, 
the only chance is the treatment of particle thermal motion, 
i.e., kinetics. This analysis is presented in the next section. A 
brief version was sketched in Ref. 18. 

We note also the possibility of using freezing-in directly 
in kinetics, without hydrodynamic averaging. The content of 
a conservation law is determined by its ability to restrict 
motion. The Poincar6 invariant in 6+ 1-dimensional space is 
very arbitrary and imposes serious restrictions only together 
with additional assumptions, such as the transition to hydro- 
dynamics. A different possibility results from drift kinetics. If 
the Larmor radius is small comparison with the characteristic 
length scale of the fields and if the frequencies are low, then 
the transverse adiabatic invariant is conserved: 

In this section we consider the problem of the preserva- 
tion and destruction of the freezing-in of a magnetic field in 
collisionless tokomak plasmas. The key concept of a "pre- 
server" for magnetic field topology is introduced. In a toko- 
mak the role of the preserver can be performed by untrapped 
electrons, those which are not in resonance with the turbu- 
lence and which therefore perform integrable motion. The 
longitudinal conductivity then diverges, while the transverse 
conductivity is finite. As a result the poloidal magnetic field 
is frozen-in to the toroidal field, while the particle and heat 
diffusion are determined by the turbulence, in agreement 
with experiment. 

The concept of the freezing-in of the magnetic field is 
central to the idea of magnetic plasma confinement. The 
magnetic field itself plays the role of a skeleton to which the 
tokomak plasma is attached; the poloidal magnetic field 
stores a significant part of the energy, so it is natural to begin 
the study of the turbulent transport with its effect on the 
conductivity. An interesting property is the absence of turbu- 
lent resistivity in the experiments, although the plasma dif- 
fusion is turbulent. The solution is to use two conductivities 
instead of one: the classical longitudinal conductivity and an 
anomalous transverse c o n d u ~ t i v i t ~ . ~ ~ ' ~ ~ ~ ~  A further complica- 
tion (and one of the main subjects of this paper) is the cus- 

2 
tomary use of the hydrodynamic concept of freezing-in far 

UI 
(6) 

beyond its limits of applicability in ideal hydrodynamics, 
p= ?T. under conditions such that the Vlasov equation is appropri- 

ate. 
This immediately reduces the number of dimensions by In the differential formulation freezing-in means that the 

two. If we now consider quasiperiodic motion of a particle evolution of the magnetic field B is described by the equa- 
between two magnetic mirrors and introduce conservation of tion 
the longitudinal adiabatic invariant 

B,= [V[vBII, (9) 

then the centers of the banana orbits lie on hypersurfaces of 
dimension 2+ 1, which introduces important limitations. This 
is because a line divides two-dimensional space, so that the 
number of particles inside a contour transported by the par- 
ticles is conserved. Thus, we have now gone over to the drift 
approximation; in the Poincard invariant it is only necessary 
to retain the magnetic part of the momentum, and it assumes 
the extremely simple form of a Lagrangian invariant. The 
quantity 

is conserved along trajectories. 
This Lagrangian invariant is very convenient for analyz- 

ing the structure of the equations of turbulent transport (see 
Sec. 4). We should keep in mind that this invariant and both 
of the adiabatic invariants are derived from the Poincari in- 
variant. 

where v is the plasma velocity. In the equivalent integral 
(7) formulation the flux of the magnetic field B through an arbi- 

trary closed contour transported with the plasma velocity v is 
conserved. Unfortunately, under actual conditions it is not 
clear how we should interpret the "plasma velocity v," since 
the particles move with the individual velocity of the thermal 
drifts. Generally speaking, these are not small in comparison 
with v, not to mention the large thermal velocity of the par- 
ticles parallel to the magnetic field. If by v we mean the 
average velocity of particles of a single species, then terms 
appear in the pressure tensor which violate the freezing-in 
condition (9), while in the experiments the plasma behaves 
as if this does not occur. This question is analyzed in the 
present section. It can also be posed by asking, what effects 
destroy the freezing-in (9) in a collisionless plasma? 

As was pointed out in the previous section, a Casimir 
integral cannot be destroyed by any terms added to the 
Hamiltonian; in our case the only possibility is to take into 
account the thermal motion of the particles, i.e., kinetics. 
Before treating kinetics realistically we introduce the impor- 
tant concept of a preserver for the freezing-in in the simplest 
example.20 Assume that, e.g., the plasma electrons consist of 
cold (T= 0) and hot components. Then it is easy to see that 
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the generalized vorticity of the cold component is conserved, 
independent of the behavior of the hot particles. Thus, the 
cold component is a preserver for the topology of the gener- 
alized vorticity, and if we neglect the inertia of the cold 
electrons, a preserver for the topology of the magnetic field. 
This remains true, however, only until multistreaming first 
occurs, which in a cold flow occurs very readily. In a colli- 
sionless plasma the circulation about a contour is conserved 
even after multistreaming starts, but its sign changes because 
the contour gets turned inside-out. The general idea for the 
destruction of the freezing-in is as follows. In the absence of 
multistreaming the magnetic part of the vorticity changes 
into mechanical vorticity reversibly. But multistreaming in- 
troduces irreversibility and causes the freezing-in to be de- 
stroyed if there is no group of particles acting as a preserver 
within which multistreaming cannot occur. Cold storage of 
the freezing-in operates very briefly, and in actual fact is of 
little use. Above we have discussed multistreaming in hydro- 
dynamics, but similar irreversibility also arises in kinetic 
multistreaming. 

Let us try to apply the concept of a preserver to the 
tokomak plasma. Its property is the distribution of magnetic 
field lines in a system of nested toroidal surfaces which un- 
dergo three-dimensional perturbations owing to the turbu- 
lence. It is natural to expect that the turbulence does not give 
rise to mixing throughout the entire phase space, so that there 
exists a group of particles (most likely the fast untrapped 
electrons) which perform integrable motion and do not mul- 
tistream; these are not in resonance with the perturbations, so 
this set acts as a preserver. Consequently, the magnetic field 
diffusion is much slower than the particle and heat diffusion, 
i.e., 

where u is no longer the plasma velocity. We can say that the 
poloidal and toroidal magnetic field are frozen to one an- 
other, but not to the plasma. This explains the important 
experimental fact that the plasma conductivity in tokomaks 
is classical, whereas the other processes are anomalous. This 
can be given a transparent explanation: in the plasma the 
conductivities of different groups of particles add like resis- 
tances in parallel. If a particular group does not scatter off 
the turbulence, it is the one that makes the principal contri- 
bution to the conductivity. In the other transport coefficients 
the main contribution comes from just those particles which 
scatter most effectively; these coefficients are determined by 
the turbulence. We can replace the intuitive claims with an- 
other, closely related to them, but one which can be proved 
and is quite well known (see, e.g., Refs. 9, 19, and 21). 

Perfect conductivity parallel to the magnetic field suf- 
fices for conservation of the magnetic field topology; the 
transverse conductivity can be arbitrary. There may be no 
direct connection between the transverse current and the 
transverse momentum flux (in a tokomak this is just what 
occurs). 

In order to prove this, let us consider the equations of 
motion for electrons, neglecting their mass in the presence of 
a force F, perpendicular to the magnetic field and otherwise 
arbitrary, plus an arbitrary potential force V+: 

Perfect conductivity parallel to B implies that there is no 
rotational component parallel to B. We introduce 

Then the equation of motion assumes the form 

and after taking the curl of this expression we find the con- 
dition for conservation of topology: 

In those regions where B vanishes all components of the 
conductivity should become infinite. 

A similar assertion for the plasma in toroidal systems is 
contained in Refs. 9, 19, and 21, and a description for the 
case of magnetic field generation by pressure and density 
gradients in Ref. 20. 

As regards preservers, this has the following implica- 
tions. It can be shown that the presence of fast untrapped 
electrons which are not resonant with the turbulence leads in 
an obvious way to an infinite conductivity and to conserva- 
tion of the magnetic field topology. In other words, nonreso- 
nance and infinite conductivity are completely equivalent. In 
fact, thermal pressure forces act on the electrons, but they are 
either perpendicular to the magnetic field (like centrifugal 
forces) or derivable from a potential (like repulsion parallel 
to the field due to a change in the field strength). Conse- 
quently, the argument given above is necessary. 

The following consideration is also useful. The Spitzer 
conductivities parallel and transverse to the field are quanti- 
ties of the same order, since the Coulomb field of an ion is 
isotropic. Drift perturbations which give rise to turbulent 
transport are highly elongated parallel to the magnetic field, 
so that the transverse resistivity naturally dominates the lon- 
gitudinal. A similar idea appears in Ref. 22. 

Finally, the drift perturbations have a tendency to be lo- 
calized in the transverse direction into vortices, also called 
islands. These contain all the transverse harmonics, so it is 
more difficult to ensure the absence of resonances in the 
transverse direction than in the longitudinal. 

Some time ago it was noted23 that many experimental 
facts can be explained by taking the electron-electron colli- 
sion frequency to be anomalously large. In terms of results 
this is close to the picture presented above. 

The reasoning about the existence of a preserver appears 
to be almost universal for tokomaks, so it is worthwhile to 
mention an example in which it fails. Sawtooth oscillations 
are related to the development of local current-layer 
~ i n ~ u l a r i t i e s . ~ . ~ ~ ~ ~ ~  Large gradients can cause all the electrons 
passing through the region of the current layer to undergo 
nonadiabatic perturbations, so that the magnetic field ceases 
to be frozen-in in this region. Large-scale hydrodynamic in- 
stabilities, which make use of the magnetic field energy,26327 
naturally give rise to current layers and destroy the frozen-in 
property. 
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Magnetic reconnection is a typical process in toroidal 
pinches with magnetic field reversal, so there may be no 
preserver in pinches. In stellarators the situation is similar to 
tokomaks. 

In regions where there are no magnetic surfaces the lon- 
gitudinal particle motion can have a continuous frequency 
spectrum even when there are no perturbations, so there are 
no nonresonant particles and there is no reason to expect a 
preserver to exist. 

The meaning of a topology preserver is that the turbulent 
variations SB of the magnetic field all have the same 
frozen-in form: 

The term "iso-frozen-in" is used in analogy with isohe- 
licity, introduced by Arn01'd'~ for the Euler equation of an 
ideal fluid. This should not be confused with the well-known 
result28 in which the destruction of magnetic surfaces for 
arbitrary (not uniformly frozen-in) small SB was considered. 

It is essential to treat the fact that perturbations are 
frozen-in to an equal degree in models of electron thermal 
transport along a braided magnetic field, reviewed by, e.g., 
~ s i c h e n k o . ~ ~  The complete agreement with experiment re- 
garding conservation of magnetic field topology implies that 
runaway electrons are confined better than the rest. 

It can also be shown that Eq. (10) has little content be- 
cause of the uncertainty in the velocity u. This is untrue in 
the general case, but as regards tokomaks with their strong 
longitudinal field it simply means that u=O holds over times 
long compared to drift times but less than the classical skin 
time. 

In this section we have shown that in order to preserve 
the magnetic field topology it is enough to have an infinite 
longitudinal conductivity (this result is not new), and we 
have presented arguments as to why a preserver for the 
frozen-in condition in a tokomak brings about this condition. 
We have disregarded the electron inertia and deviations of 
the electrons from resonance, and we have assumed that 
there are magnetic surfaces but no current layers. 

4. THE SYMMETRY OF THE TURBULENT TRANSPORT 
COEFFICIENTS 

In this section we will show that turbulence not only 
destroys Onsager symmetry but gives rise to fluxes in the 
absence of gradients in the thermodynamic quantities. 

In the absence of turbulent transport, when the main con- 
tribution to transport comes from Coulomb collisions, the 
neoclassical coefficients6~" have Onsager symmetry.'0 That 
is, the fluxes of particle number, heat, charge, toroidal angu- 
lar momentum, etc., are proportional to gradients of the ther- 
modynamic variables: 

and the coefficients aik are symmetric or a n t i ~ ~ m m e t r ~ . ~ '  
The treatment of turbulence usually reduces to an additive 
correction to the transport matrix: 

There exist dozens of papers such as Refs. 31-33 in 
which turbulent transport in tokomaks possesses symmetry, 
an dozens of papers in which it is shown that there is no 
symmetry, e.g., Refs. 34 and 35 (see also the discussion in 
Ref. 36). We will show that there may be symmetry for sim- 
plified turbulence models, but in the general case not only is 
symmetry destroyed, the matrix equation (12) itself is incor- 
rect: turbulence gives rise to fluxes in the absence of gradi- 
ents in the thermodynamic variables. This assertion is the 
main result of the present section. 

The presence or absence of symmetry is not specific to 
turbulence in tokomaks. It is a general problem of turbu- 
lence, so we will begin our treatment by using a minimum of 
restrictions. The main restriction is the incompressibility of 
the phase flux which follows from the Hamiltonian property 
of the system (Liouville's theorem).We will first see how the 
one-dimensional transport equation originates. Suppose that 
on a two-dimensional plane incompressible interchanges 
take place, i.e., 

and the mean distribution function f o  depends only on x .  
Then for a flux q we have 

q,= (Sf Sx)= df0ldx(Sx2), 

whence 

This happens, e.g., with quasilinear diffusion due to waves.8 
It is useful to note that the quasilinear diffusion coefficient is 
uniquely determined from the energy conservation condition, 

Here y is the Landau damping rate and W is the wave energy 
density. 

If the diffusion is substantially two-dimensional and the 
turbulence is anisotropic but not gyrotropic, there exist fun- 
damental interchanges of the form shown in Fig. la,from 
which it is possible to construct a general incompressible 
interchange. For this we have 

We see that in this special case the transport matrix is 
symmetric and can be diagonalized by a rotation. 

For the special case of two-dimensional gyrotropic but 
isotropic turbulence the fundamental interchange looks like a 
local rotation through a small angle. This transformation is 
shown in Fig. lb .  Estimates similar to those above show that 
the transport matrix is antisymmetric in this case. In the more 
general case the sum of a symmetric and antisymmetric ma- 
trix has no symmetry. The real situation, however, can be 
even worse. The reason is that in the multidimensional case 
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FIG. 1. a-Incompressible interchange typical of anisotropic but not gyro- 
tropic turbulence. b-Incompressible interchange typical of isotropic and 
gyrotropic turbulence. 

(and the phase space of the Vlasov equation is six- 
dimensional) two-dimensional transformations can be com- 
pressible due to balancing of the compressions in different 
directions. Consequently, there can be fluxes even when the 
thermodynamic variables have zero gradients. For real toko- 
mak conditions this is hard to show, so we consider four 
successively more complicated examples. 

The simplest example is a home refrigerator, which pro- 
duces a heat flux in the absence of an initial temperature 
gradient. A refrigerator is active, as is turbulence, so such 
fluxes are not forbidden. 

The example of a refrigerator may seem artificial, so we 
consider adiabatic mixing in an initially isothermal atmo- 
sphere in thermodynamic equilibrium. Upwelling volumes of 
air expand and hence cool, while descending volumes con- 
tract and heat up, so that a heat flux develops which is di- 
rected downward. Of course, an isothermal atmosphere is 
conductively stable and there has to be an external source of 
turbulence, e.g., a convective wind. The equation for the heat 
flux can easily be derived from the condition that is vanish in 
an isentropic atmosphere s =const: 

The coefficient D is determined by the turbulence. Of course, 
we make no pretense that this process is important in the 
atmosphere, but it is completely transparent and physical. In 
tokomaks the analogous process would be called a thermal 
pinch. 

A similar example is easily constructed for the inter- 
change instability in a Z pinch.37 We restrict ourselves to the 
simplest case, in which the interchanges take place in the 
corona of the pinch, where the temperature, current, and the 
electric field vanish, the density is constant, and the magnetic 

field strength falls off inversely with the radius. Assuming 
that the conductivity is ideal and using the frozen-in condi- 
tion for axisymmetric interchanges, we see that a particle 
flux toward the axis (pinch) develops, where the flux has the 
form 

Here the factor r2  appears because the magnetic field is pro- 
portional to the radius and the length of a field line is also. 

Finally, the interchange instability can occur in a toko- 
mak near rational surfaces, e.g., in the region where the sta- 
bility safety factor is q =  1. The specific volume per unit 
magnetic flux in a tokomak is a weaker function of the minor 
radius than in pinches, so the pinching that develops because 
of this mechanism is of less interest. 

These four examples have been given in order to illus- 
trate the fundamental assertion that fluxes are possible in the 
absence of gradients of the thermodynamic variables, not to 
mention the destruction of the Onsager symmetry. A treat- 
ment has been carried out in as much detail as could be 
desired of the transition layer of a magnetoelectrostatic con- 
finement system maintained at marginal stability.38 In that 
work what may have been the first nonuniform turbulent 
equilibrium distribution ever in plasma physics was con- 
structed. 

Thus, in the general case turbulent processes in toko- 
maks for a half-dozen quantities (the density, electron and 
ion heat flux, toroidal rotation velocity, poloidal magnetic 
field, radial electric field, and so on) are determined by the 
full matrix plus terms in the absence of gradients, i.e., sev- 
eral dozen independent coefficients, which cannot realisti- 
cally be calculated. Fortunately, in this situation there is no 
need to calculate all the coefficients. It suffices to include 
only the dominant ones. The following sections are devoted 
to an attempt to distinguish the dominant turbulent fluxes. 

5. PINCHING AND THE BOOTSTRAP CURRENT 

Following the clarification in Sec. 3 of the reasons for 
the absence of a turbulent electrical resistivity, we now dis- 
cuss turbulent diffusion of electrons and ions. Note that heat 
and particle diffusion occur essentially in all turbulence mod- 
els, and so are not very useful in choosing the correct theory. 

Less trivial are the experimentally observed absence of 
turbulent resistivity and particle pinching, and also the pos- 
sible effect of turbulence on the bootstrap current. Pinching 
and the bootstrap current are related to the balance of toroi- 
dal momentum, so it is natural to consider them together. 
Pinching and the bootstrap current are the two main off- 
diagonal processes in a tokomak. 

Thus far we have avoided selecting a specific turbulence 
model. When nonlinearity is taken into account, drift insta- 
bilities give rise to highly elongated (parallel to the magnetic 
field) quasi-two-dimensional vortices, which can be regarded 
as the structural elements of the turbulence. The majority of 
theoretical treatments focus on these vortices (see the re- 
views in Refs. 39 and 40), so we give a short summary of the 
results. 
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1. In the hydrodynamic description the family of stable 
two-dimensional vortices has an infinite number of param- 
eters, since the number of frozen-in constants of motion is 
infinite.40 

2. A large number of one- and two-parameter exact ana- 
lytical solutions have been found whose three-dimensional 
stability has not been determined, and for which even the 
two-dimensional stability is contr~versial.~' 

3. Vortex theory is based on a hydrodynamic understand- 
ing of the freezing-in phenomenon. The transition to kinetics 
causes instability of previously stable vortices even in the 
presence of a topology preserver. Furthermore, the concept 
of a preserver introduced in the present work is inapplicable 
to vortices, since in the derivation we have neglected particle 
inertia. 

4. The principles of nonlinear physics require that only 
those vortices which are attractors be chosen and included in 
the theory. For a tokomak this treatment should be based on 
the Vlasov equation. No such attempt has even been made, 
so there is no point in talking about serious (nonmodel) cal- 
culation of turbulent processes in vortices. Moreover, to the 
best of our knowledge no attractor in an unstable medium 
described by Hamilton's equations has even been analyzed. 

In an unstable medium stable localized solutions cannot 
exist, but the region where entropy is produced may be lo- 
calized. An example is wind waves on water. The instability 
grows at a rate proportional to a small parameter, the ratio of 
the air density to that of the water, but the waves grow to an 
amplitude of order unity since the damping is turned on only 
when combers break as a result of steepening above the 
Stokes limit. Combers are completely local; they occur pre- 
cisely where potential motion is transformed into vortical 
and dissipation occurs. In a plasma the situation may be 
similar, except for one complicating factor: the breaking 
takes place in the kinetics. The small nonuniformity of the 
plasma implies that the fraction of phase space in which 
electrons and ions undergo nonintegrable motion is small. 
We have already introduced a group of particles with inte- 
grable motion in discussing the concept of a topology pre- 
server. 

It is well known experimentally that the scale of trans- 
verse turbulent drift pulsations amounts to several ion Lar- 
mor radii. This scale appears natural, since it allows the 
freezing-in of the gneralized ion momentum to be conserved. 
This also permits the resonance of the longitudinal ion mo- 
tion with the transverse drift motion. Starting from the ideas 
presented above, we will assume that the pulsation amplitude 
is of order unity, i.e., the transverse displacement of the par- 
ticles (and the magnetic field lines) is on the order of the 
transverse wavelength, and the perturbations are on the verge 
of changing of waves into v~rtices.~'  The passage through 
this boundary gives rise to damping and leads to nonlinear 
competition among the perturbations. In one-fluid hydrody- 
namics the vortices travel in both directions along the mag- 
netic field with the same velocity. When particle kinetics is 
taken into account the two directions are no longer equiva- 
lent, and the result of the nonlinear competition may be that 
vortices survive in only one direction. This has important 
macroscopic consequences. For example, a resonant group of 

ions will be asymmetric with respect to the direction of the 
magnetic field, and as it propagates across magnetic surfaces 
it will transport longitudinal momentum and produce strong 
untwisting of the plasma. The efficiency of this thermal en- 
gine contains no apparent small parameters and can be large. 
It is natural to expect that it is just this rotation which is 
responsible for off-diagonal processes. 

For this reason it is very important to determine experi- 
mentally whether there is asymmetry in the direction of vor- 
tex propagation. Unfortunately, the probes are oriented only 
in the transverse direction in most experiments. 

The simplest consequence of the toroidal rotation-the 
interaction between the particles and the rippled field of the 
c o i l s ~ h a n g e s  the toroidal momentum of the particles. The 
change in the magnetic part of the momentum is familiar as 
pinching; the change in the mechanical part of the momen- 
tum gives rise to a new mechanism, the bootstrap current. A 
virtue of this mechanism is the possibility of regulating it by 
means of the corrugation of the field. Since the turbulence 
asymmetrically deforms the electron distribution function 
also, the classical bootstrap current induced by Coulomb col- 
lisions can also ~ h a n ~ e . ~ ' ~  

Thus, we do not attempt to calculate the turbulent trans- 
port coefficients, but point out their interconnectedness, 
which may be used in extracting the coefficients from the 
experimental data.42 Note that the possibility of a bootstrap 
current itself is due to the absence of turbulent resistivity in 
the presence of the preserver. For this region it may turn out 
to be neocla~sical ,~ ,~ but it should be considered even with 
the possible effective turbulence. 

6. CONFINEMENT REGIMES 

If we assume that the ion diffusion is much larger than 
the electron diffusion, which agrees in part with experiment 
and with theoretical considerations, and also neglect the 
electron-ion Coulomb heat exchange, then the possibility of 
purely electrostatic ion confinement arises naturally. This is 
the Boltzmann ion regime. The electrons are confined by the 
magnetic field. A characteristic feature of this regime is that 
the ion temperature is almost constant all the way to the 
boundary, and instabilities caused by the deviation of the ion 
distribution function from equilibrium are suppressed. In the 
coordinate system comoving with the ions the electric field is 
determined by the density gradient: 

There is no obstacle to having a high ion temperature all 
the way to the magnetic field separatrix and even beyond it; 
a high electron temperature beyond the separatrix is impos- 
sible because of the large thermal conductivity along the 
magnetic field. In order to reach the regime in which ions are 
electrostatically confined we must have an electron tempera- 
ture which is still quite high so as to avoid Coulomb heat 
exchange between the ions and the electrons. A rough esti- 
mate yields 

n7i<~2'21012.  

Here the electron temperature is in keV and the density 
is given in particle number per cubic centimeter. This condi- 
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FIG. 2. Schematic representation of the splitting of the separatrices for ion 
and electron generalized vorticity. 

tion is hard to satisfy in the separatrix region. We recall that 
the typical size of the drift turbulence pumped by the ions is 
several ion Larmor radii, so in a region of smaller extent 
failure of the ion Boltzmann regime to apply is no obstacle to 
suppressing the turbulence. 

As regards the high ion temperature all the way to the 
boundary and the suppression of noise, this regime is similar 
to the well-known  mode.^^ And if it is not the same, 
then--even better-it is possible to improve on it. It differs 
from the H-mode in not having any obvious connection to 
plasma rotation. The connection with rotation was studied in 
Ref. 44. Of course, we can assume that in experiment a 
strong electric field is required for rotation, produced by the 
density gradient and completely balanced by ion pressure 
since it is easier to measure the field than the ion velocity. 
We discard this possibility and assume that there is rotation 
and it affects confinement. The simplest description is de- 
rived from ideal two-fluid hydrodynamics. We assume that 
the generalized vorticity 

is frozen-in to both the electrons and the ions, where p=mv 
+eA/c is the generalized particle momentum. Consider 
steady plasma rotation. Then the lines of the generalized vor- 
ticity lie on surfaces that are close to magnetic surfaces. Of 
course, the electron inertia can be ignored. The ion inertia 
also has only a small effect on the vector field S1. This 
change, however, cannot be ignored near the separatrix. In 
the model particles can blow out only along the separatrices, 
and the rotation splits the electron and ion separatrices. But 
quasineutrality keeps the electrons and ions from moving 
along different trajectories, even close ones. This is shown 
schematically in Fig. 2. 

Thus, plasma rotation suppresses the fluxes, since at the 
x point of the separatrix the particles are compelled to move 
across the surface of generalized vorticity, which is com- 
pletely analogous to movement across magnetic surfaces. 
Unfortunately, it is difficult to calculate the diffusive resis- 
tivity of the x point as a function of the rotational velocity; in 
fact, a kinetic description of the particles is required. 

In principle it is also possible to have a regime in which 
the plasma is pulled away from the separatrix. In this regime 
the electron temperature can also be high on the plasma sur- 

face. This is encountered in Z pinches.45 This regime is far 
removed from tokomak experiments, but perhaps the plasma 
connections can be blown away by the transverse magnetic 
surfaces of the current from auxiliary electrodes, and this 
will create something like a vacuum gap which will promote 
the transition to the  m mode.^^ 

7. CONCLUSION 

The main results of this work stem from dividing all 
particles into two groups, those with integrable and those 
with nonintegrable behavior, rather than the usual division 
into trapped and untrapped. 

Neglecting the nonintegrable particles and using ideal 
hydrodynamics, we have derived the freezing-in of the gen- 
eralized vorticity from the Poincar; relative integral invari- 
ant. 

Including both the integral and nonintegral particles en- 
ables us to introduce an important concept: a preserver for 
the magnetic field topology. It is important to emphasize that 
the usual relationship between particle diffusion and mag- 
netic flux diffusion is disrupted. The particles acquire the 
ability to move across magnetic surfaces, despite the ideal 
conductivity. The Coulomb conductivity of the plasma is 
found to be combined with turbulent diffusion of particles, 
which is in complete accord with experiment. 

We have shows that the turbulent transport does not sim- 
ply fail to have Onsager symmetry (in special cases the sym- 
metry can occur). More important is the appearance of fluxes 
in the absence of gradients of the thermodynamic variables; 
this is the second important result. The simple example of 
particle pinching is presented for interchange turbulence in 
the atmosphere and Z pinches. A mechanism closer to ex- 
periments was discovered in Ref. 46. We have described a 
mechanism by which the plasma rotation produced by turbu- 
lence affects pinching and the bootstrap current. 

We have described a regime with electrostatic confine- 
ment of the ions, which shares certain features with the 
H-modes. Note that the plasma rotation causes the separa- 
trices of the electron and ion generalized vorticity to be dis- 
tinct, which in turn causes the diffusive resistance near the x 
point of a separatrix to increase. 
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