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The operation of a micromaser under conditions such that injected active atoms are excited in 
the last stage by light from an auxiliary sub-Poissonian laser has been analyzed 
theoretically. It has been shown that special choice of the physical parameters permits the 
realization of two limiting regimes: totally random excitation in which the quantum properties of 
the exciting light are not manifested in any way, and strictly regular excitation in which the 
always present photon noise of the laser becomes insignificant. Here it is important that the noise 
spectrum of the exciting light is inhomogeneous, since its low-frequency portion is 
suppressed. This light stimulates occupation of the upper maser level, also with suppression of 
the low-frequency noise. This is sufficient for the laser output to become sub-Poissonian, 
as when population fluctuations are totally absent. O 1995 American Institute of Physics. 

1. INTRODUCTION 

The working medium of a micromaser has the form of 
an atomic beam, which is gradually excited as it approaches 
the micromaser cavity. Here we assume that the last step, 
after which the atoms are in the upper maser level, is effected 
by the light from an auxiliary sub-Poissonian laser. This 
guarantees that elements of regularity, which, we recall, 
cause effective sub-Poissonian lasing in the case of optical 
lasers, are introduced into the atomic excitation system.' A 
decisive role was played here by the fact that the shot noise 
for the excitation of the atoms was suppressed at low fre- 
quencies, distinguishing this problem from the problems pre- 
viously ~ o l v e d , ~  in which the noise spectrum for excitation of 
the working medium was assumed to be homogeneous. 

The stationary states of the intracavity field oscillator of 
a micromaser may be classical with Poissonian photon sta- 
tistics or quantum with sub-Poissonian  statistic^.^ Here we 
shall endeavor to ascertain how the statistical properties of 
micromaser radiation are transformed in the specific mode 
that we have selected to excite the active medium when the 
physical parameters of the exciting and excited systems vary 
over a broad range. 

2. PHYSICAL MODEL 

Figure 1 is a schematic representation of the physical 
situation we wish to discuss here. A random atomic beam 
moves toward the micromaser cavity, being gradually excited 
to all the higher energy levels in a random manner. In the last 
stage, right before the entrance, the beam passes through the 
intracavity space of an auxiliary sub-Poissonian laser with 
resultant excitation of the atoms to the upper maser level to 
create the population inversion needed to overcome the 
threshold. 

We assume that sub-Poissonian lasing at a frequency o, 
is realized in the context of the same model as in Ref. 4. The 
active atoms have the energy structure shown on the left in 
Fig. 2. Regular pumping to the 12)L state from the state 
takes place at a rate r,. The maser atoms randomly enter the 

intracavity space at a mean rate r, and are then in the 13), 
state (on the right in Fig. 2). Interacting with the laser field, 
they make a transition to the upper laser level 12), and enter 
the microcavity. 

We shall consider the optical laser and the micromaser 
theoretically as a single compound system with a compound 
cavity and a two-component medium (one in the atomic 
beam, which interacts both with the micromaser output and 
with the optical laser output, and another in the optical cav- 
ity, which interacts only with the optical laser output). A 
similar approach makes it possible to automatically introduce 
into the discussion all the details of the statistical picture of 
the exciting light which are characteristic of the emission of 
the sub-Poissonian laser. For example, previously, when the 
exciting light taken to be purely e ~ t e r n a l , ~  it was possible to 
ignore the inhomogeneous course of the spectral line of the 
noise of the exciting light. Here we have exciting light which 
is created by an assigned physical system. In particular, it is 
known4 that its spectral components at zero frequency are 
suppressed to a considerable degree, and this, as we shall 
see, is decisive in shaping the statistical properties of the 
maser radiation. 

The following relation may be written for the two-mode 
density matrix describing both the output field of the optical 
laser and the output field of the micromaser: 

It indicates that the two-mode output field density matrix 
varies with time due to interactions with the laser medium 
(L) and the micromaser medium (M) and due to damping of 
the field from the cavities of both types (D). 

The expression for ( P ) ~  can be taken from our earlier 
work:4 

where the operator has the following form 
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To write a master kinetic equation, we must calculate 
1 ( P ) ~ .  It appears as a result of interactions with maser atoms 

Q = [aLaLf + aLaLf] + - pL[aLa; - aLa:I2. which were already excited by the field of the optical laser. 
4 -  - +  2 + +  t +  We follow the thinking in the work of Scully and ~ a m b '  and 

Here rL  is the mean excitation rate of the upper laser level; 
a L  and a t  are the photon operators for the laser mode 
( [ a L , a t ] = l ) ;  and pL is the saturation parameter of the 
atomic transition of the optical laser. In Eq. (2 )  the operator 
1/2* appears under the condition that regular pumping of 
the upper laser level is provided. If the pumping is random, 
this term is simply absent. The arrows under the operators 
specify the direction from which they act on the expressions 
following them. 

The damping terms are represented in the form 

where 

first construct the increment of the two-mode field density 
matrix due to the interaction of the two-mode field with only 
one atom. 

Let F be the density matrix of the two-mode field and a 
single atom from the atomic beam, which interacts with the 
% mode during the time interval [ t , t  + TJ and then with the 
maser q,, mode during the time interval [ t  + ~ , , t  + T ~ +  T,]. 

As a starting equation we take 

where the Hamiltonian of the interaction in the resonant di- 
pole approximation is written in the form 

and 
The atomic operators act in the following manner: 

n1 and are the lifetimes of the photons in the laser and 
maser cavities due to their finite Q factors, a ,  and a& are 
the maser photon operators [ a , , a & ] = l ,  and nb takes into 
account the temperature phenomena in the microcavity. 

The relaxation processes of the atoms are not taken into ac- 
count in (7),  since the time intervals T, and 7 2  are assumed to 
be short compared with characteristic atomic times. 

We rewrite Eq. (7 )  in terms of matrix elements according 
to the atomic indices. For two time intervals of length TL and 
T, we have, respectively, two different systems of equations: 

FIG. 2. 
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We now go over to the Laplace representation, which 
defined by 

All the derivatives on the right should be replaced according 

to the rule f i - + s ~ , .  The two matrix elements fi33 and fi2, 
are exceptions, since they, unlike the other matrix elements, 
are not equal to zero at the initial times t and t + r L ,  respec- 
tively, according to the set-up of the problem, and we should 
bear in mind the rules 

F33(t)-.sF,,s-F,,(t), 

F22(t)+~F22,-F22(t). (13) 

Now, instead of two systems of differential equations, 
we have two systems of algebraic equations, which can be 
solved relatively simply. The solution of the first system can 
be written in the following form: 

where 

Analogous expressions are written for the second system 
of equations: 

where we now have 

Performing inverse Laplace transformation, we obtain 
the following equations 

sin sin Jm 
+ + + t  + + 

= P L ~ L ~ L  U M ~ M  

't 4 -  

Here 

are saturation parameters characteristic of this problem. 
Equations (18)-(20) were written under the assumption that 
the interaction between the laser field and the maser atom 
(the 12),+13), transition) is weak and we can restrict our- 
selves to the first nonvanishing order of perturbation theory 
with respect to the exciting laser action. 

Now, having the matrix elements in explicit forms at our 
disposal, we can write the increment of the field density ma- 
trix, which is expressed in terms of these matrix elements in 
the form 

This increment is produced by only one atom. However, ?-MT 

atoms enter the microcavity during the time r= rL+ 7,. Re- 
calling that the entry of the atoms is totally random, we can 
obtain the total increment of the field form the increment due 
to a single atom by simple multiplication by the number of 
atoms. Going over to a "coarse" time scale, we obtain our 
master equation in the following form: 
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For the laser mode the following new damping rate of the 
laser field from the optical cavity appears instead of yL due 
to additional absorption in the maser medium: 

The operator M has the form 

sin JM sin 
* + + t  

This operator coincides exactly with the standard maser 
operator,3 if the operator multiplier in front of the square 
brackets a L a l  is replaced by the c number nL and the quan- 

+ + 

tity rMPLnL is called the mean rate of the injection of active 
atoms in the upper maser state. 

4. CALCULATION OF AVERAGES 

We recall a rule which enables us to simplify the calcu- 
lation of averages:6 for a stationary light flux in the most 
general case 

here ( a t a L ) :  is the solution of the differential equation for 
the average number of photons with an initial condition of 
the special form 

where (a ta , ) , ,  and (a ta taLaL) , ,  are the solutions of the 
corresponding stationary problems. 
Of course, precisely the same rule can be formulated for the 
average 

The master kinetic equation (23) makes it possible, in 
principle, to write all the necessary expressions, which have 
the following forms in the present case: 

This system of differential equations is not closed; therefore, 
it cannot be solved exactly. As usual, help is provided by an 
assumption that the photon number fluctuations are small, 
which makes it possible to break up the chains of equations 
and linearize them with respect to a small parameter. It is 
convenient to introduce the operators of the photon number 
fluctuations hL and h M  : 

where n L  and n ,  coincide with good accuracy with the sta- 
tionary semiclassical (without consideration of the fluctua- 
tions) solutions of the laser-maser problem: 

These equations follow from Eqs. (26) and (27) when the 
operators are replaced by deterministic c numbers, provided 
the number of thermal photons in the maser mode is small 
compared with the total number of photons (nh<(nM). 

Retaining the terms of lowest order in ;In in the aver- 
age, we obtain 

The following expressions may be written for the statistical 
Mandel parameters: for the maser output 

and for the laser output 

The Mandel parameter for the laser output is the same as 
when there is no active maser medium. This is perfectly 
natural, since the maser medium determines only the level of 
losses of the laser field from the cavity, on which the mean 
output power, but not its statistical properties under satura- 
tion conditions, depends. This, of course, is a direct conse- 
quence of the fact that we used the lowest approximation in 
the interaction of the laser field with the maser medium. 
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The time-dependent solution of Eq. (26) has the follow- 
ing form: 

Equation (27) must be linearized: 

Now, with consideration of (38) it is not difficult to derive 
the expression 

According to the rule which we formulated at the beginning 
of this section, we should require 

and 

~, 
nM 

Now, according to the same rule we can write the explicit 
equations 

The former expression coincides with the expression known 
from the theory of a sub-Poissonian laser.4 

5. PHOTOCURRENT SPECTRUM WHEN THE MICROMASER 
EMISSION IS RECORDED 

The emission can be recorded along two channels: the 
laser channel (L) and the maser channel (M) (see Fig. 2). 
When, for example, the maser emission is recorded, the for- 
mula for the photocurrent spectrum takes the 

where q M  is the quantum efficiency of the photodetector in 
the M channel. 

When the laser emission is recorded in the L channel, 
precisely the same equation can be written if we replace the 
subscript M by L everywhere. 

Bearing in mind (44), we obtain: in the M channel 

and in the L channel 

As we see, when the laser emission is recorded in the 
absence of a maser medium and the quantum efficiency of 
the photodetector is q L = l ,  the dip in the noise spectrum at 
zero frequency extends down to zero. When a maser medium 
is present, the depth of the dip becomes equal to 

Thus, if the efficiency of the interaction of the laser radiation 
with the maser medium is weak (if the absorption of the laser 
radiation in the maser medium is small), i.e., if rMPL-=S yL, no 
appreciable changes in the measured statistical properties of 
the auxiliary sub-Poissonian laser occur. At the same time, if 
the absorption of the laser radiation in the maser medium is 
so great that it determines the main losses from the cavity, 
i.e., if r M & 9  yL, the depth of the dip in the photocurrent 
spectrum becomes negligibly small, and the laser emission 
becomes practically Poissonian. These results may be inter- 
preted by assuming that a new quantum efficiency of the 
photodetector appears here: 

This is the usual conclusion when, as in the present case, 
there are uncontrollable losses. 

Now let us discuss recording in the M channel. Just as 
was previously done in Ref. 6, it is convenient to consider 
two characteristics. One of them 

characterizes the integral photon number fluctuations: - 
= n M ( l  + t M ) .  The other is equal to the depth of the 

dip or the height of the peak, depending on the sign of the 
equation in the photocurrent spectrum (46) 

and thereby determines the suppression or enhancement of 
the shot noise in the observation. It is not difficult to obtain 
the expression 

Now, taking into account the explicit expressions for the 
quantities appearing here, we can write 

21 6 JETP 80 (2), February 1995 Yu. M. Golubev 216 



where 

For comparison we present the analogous expressions 
for the case of the regular injection of atoms:" 

6. QUANTITATIVE DISCUSSION OF THE PHOTOCURRENT 
SPECTRUM 

We recall the difference between the physical situation 
under consideration here and the case of the regular injection 
of active atoms within a micromaser. When there is regular 
injection, a strictly identical number of active atoms enters 
the cavity during each unit of time: = N2 - - N2 
= 0.  In our case the best situation, under which  AN^ 
= 1 / 2 ~ ,  arises when each laser photon produces an active 
atom, since the statistics of the photons - in a sub-Poissonian 
laser are specified by the relation bn; = (1/2)nL. There- 
fore, here we cannot expect effective suppression of the 
quantum noise.2 However, our formal approach automati- 
cally also takes into account the fact that the excitation noise 
spectrum of the medium is inhomogeneous, and the noise is 
completely suppressed at near-zero frequencies. We expect 
that this fact may be important in determining the quantum 
properties of light. In any case, it was so in the case of an 
optical laser when the active medium was excited by light 
from an auxiliary sub-Poissonian laser.' We ascertained there 
that the noise of the exciting laser, in which the low frequen- 
cies are suppressed, cause analogous noise in the active me- 
dium of the secondary system and, accordingly, the low- 
frequency noise in the secondary laser output is also 
suppressed. 

Now, let us compare the equations for the two physical 
situations. We first compare the general form of the photo- 
current spectrum i.e., Eqs. (46) and (55). As we see, in the 
general case they differ fairly strongly. In the case of regular 
pumping, we have a dip (or a peak) of Lorentzian shape at 
zero frequency. In our case the structure at zero frequency is 
formed by two Lorentzian features, one of which depends 
only on the properties of the exciting radiation. 

As for the parameters tM and &,, , a comparison of Eqs. 
(53) and (54) with Eqs. (56) and (57) reveals that they differ 
from 6 and S for the regular injection of atoms by the coef- 
ficients A, and A2, which can run through values from zero 
to unity. Below we shall consider several limiting cases, in 
which a very interesting and physically obvious situation 
arises. 

Let the efficiency of the interaction of the laser emission 
with the maser medium be low: 

It is not difficult to see that we then have A , A 2 4 1  and that 
we can obtain precisely the same expressions for 6 and S as 
in the case of random injection? 

The photocurrent spectrum also takes on the usual form: 

Thus, we conclude that under condition (58) excitation of the 
active laser medium to the upper maser level is a random 
process. From the physical point of view, this is a perfectly 
natural result, since only when the laser radiation interacts 
with the maser medium is efficiently and each laser photon 
produces an atom in the upper maser level can we expect that 
the statistics of the atoms would duplicate the statistics of the 
laser photons and thus turn out to have no noise at low fre- 
quencies. 

In the directly opposite case, in which 

A, =A2= 1 ,  and Eqs. (53) and (54) coincide exactly with 
Eqs. (56) and (57). The photocurrent spectrum also takes on 
the usual form (60). In this case we obtain the same results as 
for the regular injection of active atoms.6 

The intermediate case in which 

is physically consistent. Here we have A ,el and A2= 1, i.e., 
lM is the same as for random injection (59), and Scoincides 
with (57), where injection is strictly regular. At the same 
time, the photocurrent spectrum has the form 

As we see, it contains a contribution from an excitation noise 
spectrum with a spectral width T, . Moreover, this term be- 
comes the main term for the stationary states of a microma- 
ser oscillator for which sin2 JG - l (y  - 0).  In this 
case the photocurrent noise spectrum contains precisely the 
same dip as in the case of the exciting laser light. 

Here it must be understood how the observed quantum 
manifestations can correspond to a Poissonian (or even 
super-Poissonian) state of the intracavity field oscillator. It is 
not surprising when the reverse situation occurs, i.e., when, 
for example, Poissonian noise in the photocurrent corre- 
sponds to a Fock state of the intracavity field oscillator. Ev- 
erything here is physically obvious: the photons leaving the 
cavity in this case are totally uncorrelated with one another 
due to the infinitely fast decay of the fluctuations within the 
cavity. Furthermore, in this case we can say that the observed 
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classical Poissonian light (Poissonian stream of photoelec- 
trons) corresponds to a quantum state of the intracavity os- 
cillator. But what should we do now? Should we say that the 
observed quantum light corresponds to a classical Poissonian 
state of the oscillator? However, this is against common 
sense, since it is impossible to imagine that light would be 
transformed from "bad" to "good" as a result of leaving the 
cavity. In our opinion, it can only be assumed that, generally, 
the Mandel parameter 6, which characterized the stationary 
state of the oscillator, is not the only characteristic that can 
signal the appearance of nonclassical states in the field oscil- 
lator. There is still some dynamics, which determines the 
decay law of the fluctuations appearing in the system. This 
dynamics can be completely quantum and ensure integral 
photon number fluctuations at the 0 s 6  level. In fact, if the 
low frequencies are completely suppressed in the intensity 
noise spectrum, while some high frequencies are enhanced to 
the same extent, this light will be quantum on the one hand, 
since classical light with noise below the shot level does not 
exist, and Poissonian on the other hand. Just this situation 
arose in the example we analyzed of a micromaser with ex- 
citation by light from a sub-Poissonian laser in case (62). 
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