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An analysis is given of laser autosolitons-localized light structures-and of the interactions of 
pairs of such autosolitons in a wide-aperture laser with saturable absorption. Stationary 
and propagating autosolitons with wavefront dislocations (vortices) have been found. Reflection 
of autosolitons from the mirrors of the laser cavity is studied. Two colliding laser 
autosolitons display the regime of weak interactions (in which autosoliton characteristics vary 
little after the collision) and the regime of strong interactions (where the number of autosolitons 
changes). O 1995 American Institute of Physics. 

1. INTRODUCTION 

The formation of spatial and temporal field structures 
due to spontaneous symmetry violation in nonlinear-optical 
systems which are homogeneous in space and time takes 
place according to two different scenarios. The first is con- 
nected with the loss of stability of the homogeneous field 
distribution, which leads to filamentation: a) to small-scale 
self-focusing and breakup of the beam in the transverse di- 
rection (relative to the main direction of propagation) into 
separate, intense filaments, and b) to modulational instability 
and breakup of a long pulse into separate short pulses. Re- 
lated studies, initiated by the work of Bespalov and ~alanov,' 
have had great practical importance since small-scale self- 
focusing is the main obstacle to increasing the intensity of 
high-power pulsed lasers. As a result, various approaches to 
suppressing such instabilities have been proposed.2 In addi- 
tion, filamentation conditions lead to the appearance of lo- 
calized (particle-like or soliton-like) light structures. The si- 
multaneous development of instabilities in the transverse and 
longitudinal directions has given rise to the important con- 
cept of three-dimensional solitons, or "light  bullet^."^ If in 
systems without feedback these instabilities are convective 
(the perturbations grow with increase of the longitudinal co- 
ordinate), then in the presence of feedback, e.g., in a nonlin- 
ear interferometer, the instabilities are absolute (they in- 
crease in time at a given position).4 

The second scenario does not require loss of instability 
of spatially homogeneous regimes. In this case, soliton-like 
structures are rigidly excited by a large initial perturbation, 
whereas weak perturbations against a background of a stable, 
spatially homogeneous distribution disperse. Such localized 
structures are known for a wide class of open, nonlinear 
systems of varying physical nature, and in the Russian litera- 
ture they are frequently called aut~solitons.~ The character- 
istics of these autosolitons do not depend on the details of the 
initial perturbation, so these structures are quite rigid. What 
is important is that in optics there now is a new mechanism 
of spatial coupling of the elements of an optical system, 
namely a diffraction mechanism, alongside the previously 
considered diffusion mechani~rn.~ This factor is responsible 
for a number of the properties of "diffraction autosolitons," 
both t h e ~ r e t i c a l ~ , ~  and experimentals in wide-aperture non- 

linear interferometers [see Ref. 9 (review)]. Note that diffu- 
sion autosolitons also exist in passive nonlinear interferom- 
eters with competing nonlinearities.1° 

"Laser autosolitons" (a related type of autosoliton) have 
been theoretically predicted in wide-aperture lasers with an 
additional nonlinear element possessing saturable 

As is well known,I3 rigid excitation of lasing 
is achieved in such lasers and the dependence of the lasing 
power on the gain coefficient has a hysteretic character. La- 
ser autosolitons are stationary islands of lasing, which is ab- 
sent from the rest of the laser aperture. They can move in the 
transverse direction with arbitrary speed (but much less than 
the speed of light). In this regard, a mechanical model can be 
constructed of a single laser autosoliton in a laser with 
smoothly varying parameters, e.g., in the case of curved mir- 
rors at the ends of the cavity.14 When the lasing threshold is 
only slightly exceeded, the existence of transversely one- 
dimensional laser autosolitons follows from the results of 
Ref. 15. 

Comparison of localized clots of light to particles, disre- 
garding their internal structure, has, naturally, a limited do- 
main of applicability. This is manifested with especial clarity 
in the interactions of such "particles7'. If this interaction is 
weak (only the peripheral regions of the soliton-like excita- 
tions, where the intensity is low, overlap), then changes in 
the characteristics of the "particles" occasioned by the inter- 
action are small and can be delineated within the framework 
of perturbation theory.16 In strong interactions, on the other 
hand, when even the number of "particles" can change as a 
result of the collision, analysis is hindered and almost inevi- 
tably reduces (at least initially) to numerical modeling. Note 
that a knowledge of the elementary laws of the interaction of 
the two laser autosolitons is necessary in the subsequent con- 
struction of the theory of the autosoliton "gas" and the for- 
mation of autosoliton lattices, analyzing the optical turbu- 
lence regimes, etc. 

In the present article, we use numerical modeling to do 
the first-ever study of collisions of two laser autosolitons in 
both the weak- and strong-interaction regimes. In Sec. 2 we 
write out the basic equations and discuss the properties of 
isolated laser autosolitons. In particular, we demonstrate here 
for the first time the existence of stable laser autosolitons 
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with wavefront dislocations (vortices). Further calculations 
are carried out in the geometry with transverse dimension. 
This shortens the calculation time and is justified for a laser 
scheme in the form of a planar waveguide in one of the 
transverse directions. Besides, these equations and their so- 
lutions are of independent interest. Specifically, by means of 
a space-time analogy, they describe the propagation of pulses 
in a single-mode nonlinear waveguide which includes ele- 
ments with saturable gain and absorption.17 In Sec. 3 we 
study the previously discussed problem of reflection of laser 
autosolitons from the edge of the mirror of the laser cavity. 
Here it is important for us to show that because of such 
reflections the autosoliton is preserved in a finite-aperture 
laser for an unlimited time. The first results of our analysis of 
the collision of two initially far-apart laser autosolitons are 
presented in Sec. 4. The main results are summarized in the 
Conclusion. 

Note that laser solitons differ substantially in their prop- 
erties both from diffraction autosolitons in passive nonlinear 
interferometers, excited by external radiation, and from dif- 
fusion autosolitons. A detailed comparison of these three 
types of structures is given in Ref. 14. Here we remark that 
we do not know of any analogs from the diffusion autosoli- 
ton region to the laser autosolitons with wavefront disloca- 
tions obtained in the present work: in fact, it is questionable 
whether the very concept of a wavefront is appropriate for 
the "incoherent" systems considered, for example, in Ref. 5. 
If the velocity of a diffusion autosoliton is completely deter- 
mined by the parameters of the system and is established 
independently of the initial conditions, then for a laser auto- 
soliton the speed of transverse motion is arbitrary and is 
determined by the initial conditions. This difference arises 
because a light ray in a laser can have an arbitrary direction 
(within certain limits) relative to the cavity axis, a situation 
that is not observed for the usual transport processes de- 
scribed by the diffusion equations. Also, the physics of the 
interaction of diffusion autosolitons differs substantially 
from that of laser solitons. For example, laser autosolitons 
colliding with large relative velocity "rush through" each 
other so fast that their characteristics after the collision differ 
only slightly from before. Such a situation is excluded for 
diffusion autosolitons for quite obvious reasons. Still more 
different is the physics of the interaction between laser auto- 
solitons with two transverse dimensions and wavefront dis- 
locations, which will be the subject of later work. 

2. BASIC EQUATIONS AND PROPERTIES OF ISOLATED 
LASER AUTOSOLITONS 

We will take as our point of departure the equation pro- 
posed by ~ u c h k o v ' ~  for the slowly varying field amplitude E 
in a wide-aperture laser: 

Here k, c ,  and 6.1 are the wave number, speed of light, and 
frequency, t is the time, A, is the transverse Laplacian, SP is 
the nonlinear component of the polarization of the medium, 
which is assumed to be homogeneous and isotropic, L is the 

length of the cavity, and R is the product of the amplitude 
reflection coefficients of its mirrors. This equation can be 
obtained by averaging the quasi-optical equation in the lon- 
gitudinal direction z under the assumption that the field var- 
ies little during the time r required for the radiation to pass 
through the cavity. This equation correctly describes the 
transverse structure of the field not only in the regime of a 
single longitudinal mode, but also for a sufficiently narrow 
lasing spectrum (see Refs. 11 and 12): 

Here &/A is the relative width of the lasing spectrum, 
and N F  is the Fresnel number of the cavity. Under real con- 
ditions, inequality (2.2) is satisfied even for wide-aperture 
lasers by virtue of the extraordinary narrowness of the lasing 
spectrum. 

Within the scope of Eq. (2.1) it is possible also to ana- 
lyze manifestations of smooth transverse and temporal varia- 
tion of the medium and cavity. For example, the transverse 
variation of the reflection coefficient of the mirrors is taken 
into account by the function R(r), where r is the two- 
component vector of the transverse coordinates. Generaliza- 
tion of this equation with inclusion of external radiation19 
describes transverse effects in a nonlinear interferometer (in- 
cluding switching waves and diffraction autosolitons9). 

Let us specify the form of the polarization of the nonlin- 
ear medium. We will assume that two kinds of two-level 
atoms are present inside the laser: respectively, atoms with 
(continuous pumping) and without population inversion. For 
monochromatic radiation and coincidence of the frequencies 
of the field and the atomic transitions, we have in the steady- 
state regime 

where so is the nonresonance (linear) part of the dielectric 
constant of the medium, a. and Po are the coefficients of 
saturable gain and absorption, I f f  and Ip  are the intensities of 
saturation of the active and passive components of the me- 
dium, and I =  1 ~ 1 ~  is the local intensity. 

We will neglect transition processes in the medium, as- 
suming that the relaxation times of the medium are consid- 
erably less than the characteristic time scales of variation of 
the field (class-A laser; finite relaxation times do not notice- 
ably influence the properties of sufficiently slow-moving la- 
ser auto soliton^^^). Then Eqs. (2.1) and (2.3) give a closed 
description of transverse effects in the laser. 

Before discussing various laser regimes, let us note some 
general properties of the solutions of Eqs. (2.1) for which the 
noninertial nonlinearities of the medium have arbitrary form 
SP= X ( I ~ 1 2 ) ~ .  Say we know some solution Eo(r,t) of Eq. 
(2.1), then the following functional forms can serve as solu- 
tions of this equation: 

200 JETP 80 (2), February 1995 Rozanov et a/. 200 



Here we have introduced arbitrary scalar (to and @) and two- 
component vector (ro and v) constants. Relation (2.4) corre- 
sponds to a homogeneous system in space (in the transverse 
coordinates) and time, where ro and to correspond to an ar- 
bitrary shift in the transverse coordinates and time. Relation 
(2.5) displays the arbitrariness of the total phase of the field. 
Finally, relation (2.6) corresponds to arbitrariness in the 
choice of the direction of the preferred direction of propaga- 
tion and puts each solution in correspondence with a family 
of other solutions for which the velocity of transverse motion 
of the field envelope is shifted by v, with an additional wave- 
front wedge (proportional to v) and frequency shift propor- 
tional to u2. 

The simplest (trivial) regimes that can be described by 
Eq. (2.1) are the nonlasing regime and the plane-wave re- 
gimes. The nonlasing regime (Eo=O) is stable if 

Ca- Cp< I ,  (2.7) 

where C a = a & / 2 ( 1  -R), Cp=P&/2(1  -R). We can write 
this condition in the form go<gma, (where go=&& is the 
gain, and we assume it to be fulfilled. 

The plane-wave regimes correspond to a field of the 
form 

Here @ is an arbitrary phase, q is the transverse component 
of the wave vector, v= -cq2/2k is the frequency shift, and 
the amplitude A can be assumed to be real and related to the 
intensity of the wave I by the formula I = A ~ .  The intensity is 
determined by the quadratic equation 

It is not hard to determine the conditions under which this 
equation has two (positive) stationary solutions I, and I,. 
The smaller value (I,) corresponds to unstable regimes. Then 
we have bistability: for the same gain go=a& in the interval 

either the nonlasing regime (intensity 10=0) or the plane- 
wave regime with intensity I, can be realized (Fig. 1). Ac- 
cording to Eq. (2.8), these plane waves are characterized by 
different (arbitrary, but small) values of the angle between 
the propagation direction of the wave and the axis and cor- 
responding (quadratic in the angle) frequency shifts. In this 
way we have a continuous spectrum of plane waves with the 
same value of the intensity. This situation can be compared 
with the continuous spectrum of transverse modes in an 
infinite-aperture laser. In a real laser, with a finite aperture, 
the plane-wave regimes are significantly altered; what hap- 
pens here with the nontrivial (transversely inhomogeneous) 
regimes-the regimes that will be of interest to us in what 
follows-we will elucidate in the following section. 

The fundamental regimes with transverse variation in- 
clude switching waves and laser autosolitons. Switching 
waves exist inside every bistability interval (2.10) and are 

I. rel. units , I, rel. units 

x, rel. units 

FIG. 1.  a) Dependence of the lasing intensity on the gain in the plane-wave 
regime. Dashed line corresponds to unstable regimes; b) intensity profile of 
a laser autosoliton: g,=2.06, R =0.9, &L =2.0, I,= 1 0 I p .  

fronts of switching between two stable trivial states (with 
intensities I o = O  and I,), translating in the transverse direc- 
tion with constant velocity v. The field intensity approaches 
these values at sufficient distances from the wavefront, on 
either side. Switching waves exist in a wide-aperture laser 
for both the diffusion2' and the di f f ra~t ion" .~~ mechanisms 
of transverse coupling. The "Maxwell value" g M  (or some 
other control parameter), which is defined in the following 
manner, plays an important role here. If lasing with intensity 
-I, is initially present over a finite (large in comparison with 
the width of the switching wavefront) region of the laser 
aperture, then as a result of the motion of the switching 
wavefronts the lasing region will narrow in time for go<gM 
and increase for go>gM. 

Laser autosolitons exist in some gain interval narrower 
than the bistability interval (2.10) and including the "Max- 
well value" of the gain gM .",12 The simplest (immobile or 
stationary) laser autosoliton is characterized by a field distri- 
bution of the form 

Here v(O) is the lasing frequency shift, defined by the laser 
parameters, and is due to the combined action of the diffrac- 
tion and nonlinear effects. The intensity profile I = I G ( ~ ) ~ ~  
(Fig. lb) possesses a characteristic width wo-4w 
= ~ J X L / ~ T ( I  - R ) ,  where w is the width of the switching 
wave. Note that along with the simple bell-shaped profile, 
laser autosolitons can possess a more complicated field dis- 
tribution, including screw dislocations of the wavefront. In 
this case, in the geometry with two transverse dimensions, 
using polar coordinates we can write 

The azimuthal number (topological charge) m deter- 
mines the rate of falloff of the field at the dislocation center 
( ~ ~ ( r ) - r l ~ l  as r+O) and the phase shift incurred upon one 
circulation around the center along a closed contour (27rm). 
Axially-symmetric laser autosolitons (m =0) with two trans- 
verse dimensions were demonstrated in Ref. 20. Our calcu- 
lations demonstrate the existence of laser autosolitons with 
screw dislocations of first (m = 1 or - 1) and second (m = 2  or 
-2) order. The initial field distribution is given in the form 
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FIG. 2. Intensity profiles (upper figures) and 
phase isolines (with interval ~ 1 4 ,  lower fig- 
ures) in the formation of a laser autosoliton 
with a first-order wavefront dislocation (m 
=1, & = l o w ,  ro=30w, 6ro=0.1w); a) 
t =0, b) t =400, c)  t = 1000 (time in number 
of passes of the cavity). 

Here ro  is the radial coordinate at which the intensity is 
maximum, and Sr and Sro characterize the width of this 
maximum in the regions of smaller and larger r .  Figure 2 
depicts the formation of a laser autosoliton with a first-order 
dislocation. Time in this figure and and the figures that fol- 
low is in units of the time it takes light to make one pass 
across the cavity, 7. The intensity profiles are axially sym- 
metric; initially two radial switching waves are formed in 
them at distances of roughly Sr and ro  + Sr, from the center. 
Further motion of the switching waves in opposing direc- 
tions leads to the formation of a ring-shaped laser autosoli- 
ton, whose radius r ( t )  decreases with time (Fig. 2b). The 
local radial profiles of the intensity and phase do not change 
as long as r(t)>2w. The mean value of the phase grows 
constantly in time, which is equivalent to the turning of the 
isolines like the hour-hand of a clock, or to a positive phase 
shift v. Finally, after -1000 passes, a field distribution is 
formed in the center of the established laser autosoliton (Fig. 
2c) that is characteristic of a dislocation of the given order. 
Here the frequency shift of the dislocation laser autosoliton 
is, as before, nonzero, i.e., the established phase vortex, like 
the hour-hand of a clock, continues to turn. The kinetics of 
the establishment of a second-order dislocation laser auto- 
soliton (m =2) is analogous. The laser autosolitons shown in 
Fig. 2 are stationary (in the transverse direction). At the same 
time, relation (2.6) means that dislocation laser autosolitons 
with field profile 

moving with arbitrary (constant) velocity v ( v l c 4 l )  have 
been constructed. Here the frequency shift depends quadrati- 
cally on the velocity: 

3. INFLUENCE OF THE EDGES OF THE MIRRORS 

When we take the edges of the mirrors into account, the 
plane-wave solutions discussed above lose their meaning. 
Empty-cavity modes correspond not to traveling waves (in 
the transverse direction), but to standing waves formed by 

diffraction of the waves by the edges of the mirrors.22723 
Nonlinearity leads to distortions and interaction of modes. 
Regarding what is of interest to us here, laser autosolitons, it 
is important that because of the falloff of the field at the 
periphery of the autosoliton, the edge of the mirror does not 
affect the properties of the laser autosoliton as long as the 
distance from the center of the autosoliton to the nearest 
point on the edge of the mirror significantly exceeds the 
width of the autosoliton. Therefore the edges of the mirrors 
in a wide-aperture laser need to be included only for travel- 
ing autosolitons ( v f  0) during those time intervals when they 
approach one of the edges of the mirror. We will consider 
this problem in the present section. 

An established laser soliton is characterized by the tilt 
angle of its direction of propagation with the cavity axis 
O=u/c and the width of the angular (diffractional) diver- 
gence Od-X/wO, where X is the wavelength of the light and 
wo is the characteristic width of the autosoliton. Of course, at 
large angles O>O, a laser soliton heading for the edge of the 
mirror will escape from the cavity and disappear, at which 
point lasing will cease. At the same time, at small angles the 
magnitude of the coefficient of diffractional reflection of 
plane waves approaches unity.22 We should therefore expect 
that for O<Oc the laser autosoliton will be reflected from the 
edge of the mirror and move away from it. It is natural to 
assume that the critical angle Oc at which the geometric trans- 
port of the autosoliton and diffractive spreading become 
comparable is equal to - 4 .  

Our calculations confirm this qualitative picture. For 
simplicity here and below we consider a transversely one- 
dimensional laser scheme with the single transverse coordi- 
nate x. Although the reflection coefficient R(x) of the mir- 
rors varies abruptly at their edges, the approximation of the 
averaged quasi-optical equation (2.1) remains valid at small 
angles of incidence of the laser soliton (02<1), since then 
the field distribution changes little in one pass through the 
cavity. In this case an autosoliton should reflect from an edge 
of a mirror or escape from the cavity in this approximation 
during a time significantly exceeding the time of one tra- 
versal of the cavity, 7. 

Results of our calculations are shown in Figs. 3-6. Fig- 
ures 3 and 4 show the dynamics of the transverse profiles of 
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FIG. 3. Intensity profiles (left) and radiance distribution (right) for reflection 
of an autosoliton from the edge of the mirror at subcritical incidence angle 
8=0.148,. 

the intensity (normalized to the saturation intensity Ip) and 
radiance (in arbitrary units) 

0 
10 30 50 -2 0 2 

X, rel. units eleo 

FIG. 4. The same as in Fig. 3, but for supercritical incidence angle 
e=o.16e0. 

I,,, rel. units 
i 

FIG. 5. Time dependence of the maximum intensity for reflection of an 
autosoliton with incidence angle 8=0.148, (I) and 8=0.168, (2). 

(as a function of the angle 8=qlk, in units of = m) 
for subcritical and supercritical incidence angles. Figures 5 
and 6 show the time dependence of the maximum intensity 
I,,, and the coordinate of this maximum, x,,,, for laser 
parameters R=0.9, a& =2.06, /3& =2.0, and saturation in- 
tensity I,= 1 0 I p .  The intensity I is given in units of ID,  and 
its angular distribution (the radiance) is normalized to its 
maximum value J,,, . The x coordinate is expressed in units 
of w, the characteristic width of the switching wavefront (see 
above), and the edge of the mirror is at x=45. 

For a subcritical angle of incidence (Fig. 3, 8=0.148,), 
when the laser autosoliton reaches of the edge of the mirror 
(t=30) its intensity profile becomes deformed, to the extent 
that a second maximum forms near the boundary. In this case 
the radiance diagram acquires a second peak in the region of 
negative angles. Power gradually shifts into this peak out of 
the positive peak. Since the angle of incidence is near- 
critical, a significant amount of power is lost upon reflection 
(t =130), but the remaining part is large enough (it is super- 

I,,: rel. units 

FIG. 6. Time dependence of the location of the maximum intensity of an 
autosoliton for reflection with incidence angle 8=0.148,. 
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critical) that with time the laser autosoliton regains its sta- 
tionary parameters (t=360). For a supercritical angle of in- 
cidence (Fig. 4, 8=O.l68,) the initial stage of the reflection is 
the same. However, the reflected part has subcritical power, 
and in time it dissipates (see also Fig. 5). In Fig. 6 one can 
make out some time delay upon reflection of the autosoliton, 
which is the temporal analog of a longitudinal shift of a 
beam when it reflects from the interface of linear media. In 
the same figure one can notice a decrease (of up to 30%) in 
the velocity of the reflection autosoliton in comparison with 
its velocity before reflection. This is due to the change in the 
radiance diagram brought about by the reflection (compare 
Fig. 3, t=O and t=360), the maximum of which after reflec- 
tion shifts toward smaller angles. 

4. INTERACTION OF LASER AUTOSOLITONS 

Let some spatially distributed laser autosolitons be ex- 
cited in a laser (the distance between neighboring solitons 
Sr, significantly exceeds the width of an individual soliton, 
wo). Then until the traveling autosolitons have begun to in- 
teract intensely, their field can be represented in the form 
[compare Eq. (2.14)] 

E =  x G(r-r,-v,t)exp i - v,r exp[i(v,t+@,)]. 
n ( 1 :  i 

(4.1) 

The constants r, , v, , v, , and @, have their previous mean- 
ing. According to Eq. (4.1), to determine the field it is nec- 
essary to assign the initial localization (coordinates of the 
centers) of the individual autosolitons r, , and their velocities 
v, and phases @, . The frequency shifts v, according to Eq. 
(2.15) are expressed in terms of the velocities v, . 

v, = v(0) - (k12c)v:. (4.2) 

Besides the "coordinate representation7' (4.1), the angu- 
lar spectrum of the field (its Fourier transformation with re- 
spect to the transverse coordinates) at some fixed moment of 
time t gives useful information. For an isolated, stationary 
(vo=O) laser autosoliton, localized at the origin (ro=O), the 
angular spectrum has the form 

Fo(q,t) =exp(iv(O)t)g(q), 

where 

Note that the angular spectrum of one laser autosoliton 
~ ~ ( q ) = I ~ , ( q , t ) ( ~ = l ~ ( q ) 1 ~  does not depend on time. The 
width of its angular spectrum is proportional to w,'. 

The angular spectrum of a superposition of fields of sev- 
eral laser autosolitons is given by 

Xexp i ;v,r,+qr, exp[i(v,t+@,)]. i i k  11 

Now the intensity of the angular spectrum varies with time 
quasiperiodically, and at a fixed time describes the interfer- 
ence (superposition taking phase into account) of the spectra 
of all of the autosolitons. When the velocities of the autosoli- 
tons differ significantly, i.e., when min l&l~c lkw~ ,  the angu- 
lar spectrum of the total field separates into the nonoverlap- 
ping (and noninterfering) spectra of the individual solitons. 
In the opposite limit maxl&l~clkwo, for small q Eq. (4.5) 
can be replaced by the following approximate relation: 

Here the spectral intensity as a function of q includes oscil- 
lations with characteristic "angular frequencies" 
89,-2.rrlSrn. In other words, the further apart the various 
laser autosolitons are, the faster the amplitude of their radi- 
ance field oscillates. As the autosolitons get closer together, 
these oscillations increase in amplitude. 

Let us now state the criterion for weak interaction of the 
laser autosolitons, which allows us to represent the field in 
the form (4.1). Usually, this criterion is formulated as a re- 
quirement that the spatial overlap of the fields of neighboring 
solitons be small, i.e., it is required that the field of each 
soliton be weak in the localization region of the other soli- 
tons. If this is the case, use of perturbation theory allows us 
to trace out small variations in the characteristics of the soli- 
tons as a result of their weak in te ra~t i0n . l~ '~~  However, the 
interaction remains weak even when the laser autosoliton 
fields overlap completely if this overlap is short-lived, i.e., 
when the relative velocity (difference of velocities) & of the 
solitons is large:" 

(& is the nonlinear component of the dielectric constant). 
Here we have again justified the use of perturbation theory in 
the form proposed in Refs. 16 and 24. We will not give here 
the corresponding constructions, in light of their limited do- 
main of applicability. Below we present results of a numeri- 
cal analysis of strong as well as weak interaction of two 
initially separated laser autosolitons. For simplicity, we ana- 
lyze only the case of a geometry with one transverse dimen- 
sion. In the calculations we have used the same laser param- 
eters as in Sec. 3; however, the radiance is given in the same 
(arbitrary) units. The two horizontal dashed lines in the 
graphs of the intensity profiles indicate the values I, and I,. 

Consider first the symmetric collision of two laser auto- 
solitons: v2= - v l ,  @,=@,. In this case the velocity of ap- 
proach of the two solitons Sv = 2v and the phase difference 
remains zero. Figures 7-11 show how the dynamics of the 
collision changes as the relative velocity of the laser auto- 
solitons decreases. 

At large approach velocity (correspondingly, at large 
enough angles of incidence of the solitons), when condition 
(4.7) is satisfied, the autosolitons pass right through each 
other without any noticeable distortions of their shape or 
noticeable changes in their velocities and phases. The spatial 
intensity profiles are modulated in the overlap region as a 
consequence of interference. The radiance distribution pre- 
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FIG. 7. Intensity profiles (left) and radiance distribution (right) for the weak FIG. 8. Formation of a third autosoliton in a collision of two autosolitons 
interaction regime (8,,,=20.160,,). (el,,= ?O.lOe,). 

serves the form of two symmetric, separated peaks with 
width -8d=A/wo and maxima at the angles 8 1 , 2 = ~ 1 , 2 / ~ .  The 
result of the collision remains the same, in fact in a wider 
region than described by inequality (4.7) (see Fig. 7): A new 
factor here is the appearance during the overlap time of an 
additional peak in the angular distribution (radiance), and 
also in the spatial profile (Fig. 7, t=380 and 440). This is 
caused by interference of the fields of the colliding autosoli- 
tons. Regions of depressed total intensity arise in the laser, 
where the local saturated gain exceeds the losses. The result- 
ing amplification is preserved for the paraxial rays (8-O), for 
which rays the tails of the initial angular distributions serve 
as initiators. Therefore, during the collision time the central 
peak grows until it reaches some finite value. This value is 
small if the collision time is short (-wo/Sv). After the col- 
lision this central peak dissipates (Fig. 7, t=600). 

For a corresponding decrease in the initial velocity the 
central peak grows during the collision time to some critical 
value. Above this critical value, the peak stabilizes after the 
collision and is converted into an additional laser autosoliton 
(Fig. 8, t>400). This (central) soliton is stationary, and the 
finite velocities of the receding laser autosolitons are some- 
what less than the original velocities (under the conditions of 
Fig. 8, 1.5 times less). The modulation frequency of the an- 
gular distribution of the receding and, correspondingly, non- 
interacting solitons (Fig. 8, t =980) increases; the reason for 
this was explained at the beginning of this section. 

If the velocities of the two initial laser autosolitons are 
still less, then their angular distributions strongly overlap and 
are strongly modulated (Fig. 9, t=O). As they approach, the 
central peak in the angular distribution, corresponding to 
0=0, grows and dominates. As a result, the two initial soli- 

tons coalesce into one immobile soliton (Fig. 9, t=900). 
At very small velocities, the dynamics of the collision of 

the laser autosolitons again changes. The interaction of the 
solitons at first reduces their relative motion. They approach 
to some minimum distance (Fig. 10, t=1000), after which 
they move apart with decreased velocity (approximately two 
times less). Thus, slowly moving laser autosolitons repel. 

These results suggest that there are difference between 
laser autosolitons and diffraction autosolitons in a nonlinear 
interferometer, for which relatively small velocities of trans- 
verse motion are characteristic, but for which interaction 
leads to the formation of bound structures ("polyatomic mol- 
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FIG. 9. Coalescence of two autosolitons (0,,,=20.04819,). 
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FIG. 10. Repulsion of laser autosolitons (8,,2= +0.0088,,). 

ecules" with a discrete set of distances between the indi- 
vidual "atoms"). These differences are due to the different 
asymptotic behavior of the field at the periphery of the indi- 
vidual solitons: with increasing distance from the center the 
intensity falls off monotonically for laser autosolitons, and 
with oscillations for diffraction autosolitons. Depending on 
the distance between neighboring autosolitons, the presence 
of oscillations causes their regions of attraction and repulsion 
to alternate, leading to a discrete spectrum of equilibrium 
distances between the diffraction auto soliton^.^^^ 

In general, two initial laser autosolitons can differ in 
their speeds (Iu I I # Iu21) and phases (@,#@,). The first of 
these two factors is not of any fundamental significance since 
with the help of transformation (2.6) we can always trans- 
form to a system associated with the motion of the "center of 
inertia," in which u2= - u At the same time, the result of 
the collision depends substantially on the phase difference of 
the initial laser autosolitons, especially for values of the pa- 
rameters corresponding to the boundaries between the differ- 
ent collision regimes. To illustrate, it is sufficient to compare 
Figs. l l a  and b, for which the only difference in the initial 
conditions is the phase differences. Whereas Fig. l l a  dem- 
onstrates the passage of one laser autosoliton through an- 
other, Fig. l l b  demonstrates the formation of an additional 
soliton moving with transverse velocity equal to the arith- 
metic mean of the velocities of the initial solitons. 

5. CONCLUSION 

Our analysis of laser autosolitons leads us to the follow- 
ing conclusions: 

There exist stable laser autosolitons not only with regu- 
lar wavefront, but also with screw dislocations of the wave- 
front of different orders. 

A laser autosoliton moving in the transverse direction 
toward the edge of a mirror disappears if the angle of inci- 
dence exceeds a critical value. It is reflected from the edge, 
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FIG. 11. Change in the regime with variation of the phase difference of the 
autosolitons (8,=0.28,,, 8,=0). 

thereby converting into an autosoliton with its corresponding 
velocity component opposite in sign and somewhat de- 
creased in absolute value if the angle of incidence is less than 
critical. The critical angle is close to the diffraction width of 
a single autosoliton. 

The result of the collision of two initially separated laser 
autosolitons is determined, for given laser parameters, by the 
initial values of their relative velocity and phase difference. 
As the relative velocity decreases, the following regimes oc- 
cur successively: 1) the autosolitons pass through one an- 
other with restoration of their original velocities after the 
collision; 2) as a result of the collision, in addition to the two 
receding autosolitons, an additional autosoliton localized be- 
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tween them develops, moving with velocity equal to the 
arithmetic mean of the velocities of the original autosolitons; 
3) the two autosolitons coalesce into one with velocity equal 
to the arithmetic mean of the velocities of the two original 
autosolitons; 4) the initial autosolitons approach to some 
minimum distance with subsequent repulsion, then separate 
with relative velocity somewhat less in magnitude than the 
magnitude of the initial relative velocity. 
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