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The stability of the mode synchronization regime is studied in a laser with a coherent absorber 
(absorption line width much less than the width of the amplification line). The solution, a 
272 self-induced-transparency pulse, is shown to be stable against perturbations in the form of small 
amplitude and phase modulation (fast perturbations). The parameter s serves as a control 
parameter; it is equal to the square of the ratio of the Rabi frequency of the amplifying medium 
to that of the absorbing medium, and at the same time plays the role of the absorption 
coefficient of the amplifier. It is found that the condition for stable lasing requires that the 
inequality s s l  hold, which corresponds to strong absorption of the active medium. A calculation 
is also presented of the absorber density needed to ensure that the regime of soliton-like 
pulses is stable against the occurrence of continuous generation (slow perturbations). The problem 
is solved taking into account the effects of an optical filter, which limits the amplification 
band and without which stability against slow perturbations cannot be achieved. Two time scales 
are identified in this model and are used to analyze the transient evolution of the field in 
the cavity. A critical value is found for the energy of a "seed" pulse necessary for lasing to 
occur. O 1995 American Institute of Physics. 

1. INTRODUCTION 

The present work is a logical continuation of previous 
work,' where a system of equations was introduced to de- 
scribe mode synchronization in a laser with a coherent ab- 
sorber. The analytical solutions were also found in the form 
of soliton-like 27r pulses. The energy and width of the pulses 
are determined uniquely by saturation of the gain, linear 
losses in the cavity, and phase relaxation processes in the 
absorber. This property distinguishes the solutions in ques- 
tion from the classical 27r pulses of McCall and ~ a h n ? ~  the 
energy and width of which are determined by the initial con- 
ditions and transient processes in the medium. 

Below results are reported on the stability of the solution 
in the form of a 272 pulse against the onset of the continuous 
generation regime and against perturbations localized within 
the pulse itself. The transient processes in this laser system 
have also been analyzed. 

The chief complication in achieving stable mode syn- 
chronization lies in the suppression of the continuous gen- 
eration regime. For this it is necessary to ensure that the 
overall gain coefficient of a weak signal be negative through- 
out the entire frequency band at the leading and trailing 
edges of the pulse. This condition is hard to satisfy, since the 
width of a 272 pulse must satisfy a double inequality: 
T2g<~p<T (here TZg and TZp are the phase relaxation times 

2p 
of the amplifier and the absorber, respectively). The narrower 
the spectral profile of the absorber, the higher the density of 
absorbing atoms required to avoid continuous generation at 
the edges of the amplification profile. The rise in the ab- 
sorber density increases energy losses for the 272 pulse, and 
when the absorber density exceeds a critical value (see Ref. 
I ) ,  the mode synchronization regime is terminated. In Ref. 1 
it was shown that a satisfactory intermediate absorber den- 
sity can be found only when an optical filter is present which 

cuts off the edge of the amplification contour and thereby 
ensures that the 272 pulses are stabilized for low densities of 
the absorbing atoms. 

If the interaction between the field of the pulse and the 
absorber is coherent, another instability mechanism can de- 
velop. This is instability with respect to small amplitude 
modulation. It is well known that the generation of short 
pulses in a laser with a slow absorber4 depends sensitively on 
the magnitude of the stability parameter,5 which is equal to 
the ratio of the saturation energy density of the amplifier to 
that of the absorber, so = E ~ U ~ U , ,  where a, and up are the 
amplifier and absorber cross sections, respectively; here E, is 
the ratio of the area of the beam in the amplifier to that in the 
absorber. The necessary condition for lasing is that the ab- 
sorber saturate faster than the amplifier, s o > l .  In the case of 
passive mode synchronization with a coherent absorber, the 
interaction between the pulse and the absorbing medium re- 
sults from different mechanisms (coherent and incoherent). 
Now the stability parameter is determined by twice the ratio 
of the square of the Rabi frequency of the amplifier to that of 
the absorber: 

For 5 here we can take the amplitude of the pulse; this has 
no great significance, since the ratio of the Rabi frequencies 
enters into (1) and the field cancels out. Everywhere in what 
follows we will assume that the parameter E, is equal to 
unity, and when it is necessary to take into account the dif- 
ference in the areas of the beam in the amplifier and in the 
absorber a simple renormalization of the dipole moments can 
be carried out. Stable production of self-induced transpar- 
ency (SIT) pulses requires that the condition s 2 l  hold; in 
the opposite limit the amplitude modulation destroys the 
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time-independent form of the pulse. In the regime in which 
27r pulses are generated the parameter s  plays the role of the 
saturation coefficient of the amplifier, and so directly affects 
the propagation speed of the pulse. Increasing s speeds up 
the saturation of the amplification profile, and consequently 
causes the leading edge of the pulse to grow preferentially. 
Then the trailing edge experiences substantially less amplifi- 
cation. Ultimately the propagation speed of the pulse in- 
creases due to a shift in the center of mass of the pulse 
forward along the direction of propagation. The effect of 
linear dispersion in the absorbing medium does not depend 
on the magnitude of s ,  but instead causes the velocity to 
decrease. For s  = 1 the two competing processes cancel out. 
For a 27r pulse to propagate stably it is necessary that the 
amplifier as a whole accelerate the pulse, i.e., s s l .  Then the 
conditions for a perturbation developing on the trailing edge 
of the 27r pulse to grow exponentially no longer hold. 

We have shown1 that for rpGT2p the formation of the 
pulse takes place primarily under the influence of the ab- 
sorber. We use this fact in treating the transient processes by 
which a steady 27r pulse is established. It will be shown that 
the number of passes required for the pulse to evolve to a 
steady state due to coherent processes in the absorber is 
much less than the number required for a steady value of the 
energy to develop on account of the action of the amplifier. 
As the energy changes the shape of the pulse is adjusted 
almost instantaneously in response to these variations. This 
separation of processes into fast and slow allows us to obtain 
an analytical estimate for the threshold conditions associated 
with the onset of lasing and to discuss the basic laws gov- 
erning this transition. Depending on the density of the ab- 
sorbing atoms in the cavity, there is a change in the threshold 
value of the energy of a "seed" pulse required to initiate 
lasing and the transition to the steady 27r-pulse state. 

The material in this paper is organized as follows. In 
Sec. 2 the basic system of model equations is presented with- 
out derivation; the solution derived from them is the SIT 
pulse (the derivation is given in Ref. 1). Section 3 is devoted 
to studying the energetic stability of 277 pulses and analyzing 
the properties of the transient stage. In Sec. 4 we derive the 
stability conditions for 27r pulses against fast perturbations 
localized within the pulse itself. In Sec. 5 the stability of the 
mode synchronization regime is studied with respect to the 
onset of continuous generation. 

2. MODEL EQUATIONS AND SOLUTIONS IN THE FORM OF 
SIT PULSES 

A pulse propagating inside the cavity passes succes- 
sively through the amplifier and the absorber and experi- 
ences losses at the mirrors. If the relative changes in the field 
are small in traversing each of the cavity elements, then we 
can look for a solution of the problem in the form of a sta- 
tionary pulse that depends on the wave coordinate 
u = ( t  - z / v p ) / r p ,  where u p  and rp are the velocity and width 
of the pulse. The amplifying medium is assumed to be slow, 
i.e., the pulse width rp satisfies the inequality T  G r p G T l g  

21: 
(here T2g and T I ,  are the transverse and longitudinal relax- 
ation times of the amplifier). It is assumed that the popula- 
tions of the amplifying and absorbing media reach their 

steady values in the time required for a pulse to traverse the 
cavity. We will also assume that the profiles of both media 
are homogeneously broadened and that they have the same 
center. 

The evolution of the field is described by the wave equa- 
tion in the approximation of slowly varying phases and am- 
plitudes. The field is divided into real amplitude and phase, 
while the polarization is divided into synphase and quadra- 
ture parts: 

The total field and polarization take the form 

Here wo represents the central frequency of the amplifier and 
absorber transmissions; d ,  and d p  are the transition dipole 
moments of the amplifier and absorber; and LBW(w) is the 
frequency-dependent linear loss introduced by the optical fil- 
ter. We have also written 

We write down the transmission function LBW of the filter in 
the time representation, assuming that it is centered on the 
frequency wo and has a parabolic dependence on the fre- 
quency w: 

The polarization of the absorber is described by the system 
of Bloch equation, in which processes of spontaneous inver- 
sion relaxation are not treated, in accordance with the speci- 
fied model. 

Here we have written 

T =  T 2 g / ~ p ,  K =  T 2 p / T 2 g .  (6) 

The Bloch equations for an amplifier can be simplified if we 
use the small parameter T, i.e., if we assume that the pulse 
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spectrum is much narrower than the spectrum of the ampli- $7 o J , , ( z )  

fication line. The expressions for the components of the /*& ' 
Bloch vector are found in Ref. 1: I 

FIG. 1. Schematic representation of the evolution of the energy of a "seed" 
pulse toward its stationary value J=O or J=J,, , depending on the initial 

(7) value of the energy. 

Here 

is the energy which passes through the amplifier at a speci- 
fied time t .  In expressions (7)-(9) we have taken the initial 
condition for inversion: 

In Ref. 1 an analytical solution of Eqs. (2)  and (5)  to- 
gether with (8) and (9) was found, taking into account the 
terms in the expansion of the amplifier polarization through 
T'. Since the line centers of the two media are the same, the 
steady solution in the form of a pulse is also centered at the 
frequency oo and has no phase modulation: 

is the total energy of the pulse. Condition (12) implies that 
the area of the pulse in the absorber does not depend on the 
parameters of the problem and is equal to 2rr. Equation (13) 
determines the velocity of the pulse. Equation (14) deter- 
mines the energy (and hence the width) of the pulse. The 
behavior of T as a function of p is shown in Fig. 1 of Ref. 1. 
The analysis of Eq. (14) simplifies if we consider sufficiently 
short pulses: T ~ < T ~ ~ .  For p=O the quantity T assumes its 
maximum value T,,,= 71s; as p increases T falls monotoni- 
cally and reaches its minimum value Tmin=(2/3)77/s at 
p=pcr= $ ( 2 / 3 ) 4 ~ / s ) ] ' .  Equation (14) has a second solution 
for T that grows as a function of p. This solution is unphysi- 
cal and we will show below that it is unstable. 

In the Introduction we indicated that for a 2rr pulse to be 
stable against the onset of the continuous regime the concen- 
tration of the absorber should be greater than some value 
pmi,. Below we show that this quantity is equal to 

pmin= (: - 7 7 -  3' , for ~ : = l +  
1-77 

1 (16) 
( T2& w,) 

In Ref. 1 it was pointed out that the absorber density can be 
chosen so as to satisfy pmin<p<pc, only if an optical filter is 

(11) present: & I .  
The pulse parameters A o ,  rp , and v satisfy the relations 

(12) 
3. ANALYSIS OF THE TRANSITIONAL EVOLUTION 

C 
- = I +  

3( f iP~2,) '  
v p  ~ ( K T ) ' + ~ K T +  1 + ( I  - s ) ( f i , ~ 2 , ) ~ ,  (13) We have already noted that the solution of Eq. (14) for 

the pulse width is not unique; this is reflected in the presence 
where of two branches of T(p)  in Fig. 1 of Ref. 1. One solution 

corresponds to increasing power as a function of the absorber 
2 rroodgnp 2rrood;ng 

fig = , fii= density and the other to decreasing power. We show that the 
f i  fi first of these is unstable. Integrating Eq. (2a) with respect to 

are the squares of the cooperative absorber and amplifier time from minus to plus infinity, we find an equation for the 
frequencies. Here energy of a pulse propagated inside the cavity: 
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In deriving Eq. (17) we have assumed that the inversion of 
the absorber and the amplifier and the field E have an addi- 
tional dependence on the longitudinal position z .  The diffi- 
culty in finding an analytical solution of Eq. (17) is associ- 
ated with the presence of information about the changes in 
the pulse shape during the transitional process. We used the 
fact, noted earlier, that the absorber plays the dominant role 
in the formation of the pulse shape. If the pulse is originally 
launched into the laser cavity with a smooth envelope and 
width T ~ < T ~ ~ ,  then after traversing a distance equal to sev- 
eral linear absorption lengths Lpz=2-3 it acquires the shape 
of a hyperbolic secant and its area becomes equal to 25- (Ref. 
3). This means that the pulse shape and its area become 
established after N=(2-3)l(Lplcav) passes through the cavity 
[we assume that all the absorption (gain) coefficients 
L p  ,Lg Jcav for weak signals are scaled by the cavity length 
l,,,]. On the other hand, in order to get an idea about the 
number of traversals of the cavity required to allow the en- 
ergy to reach a steady value we use the following estimate: 

~ = [ ( ~ g - ~ c a v ) l c a v l - ~ -  

If the ratio 

is large (here we have used LdLg=pmin), the transient pro- 
cess can be clearly divided into two stages. The first stage is 
related to the conversion of the original field profile into a 27r 
pulse with losses of a small part of the energy. The evolution 
of the pulse in the second, longer stage is due to the action of 
the amplifying medium and is associated with the gradual 
increase in the energy of the 21r pulse to its time-independent 
value. The role of the absorber in the second stage reduces to 
keeping the area of the pulse and the shape of the envelope 
unchanged, and also to the adiabatic tracking of the changes 
in the field due to the amplifier processes. 

Using this hierarchy of the processes by which a time- 
independent pulse shape develops we can study Eq. (17) ana- 
lytically. For the field E ( u , z )  we assume a pulse with am- 
plitude, velocity, and width which depend on the longitudinal 
position z :  

Substituting the solution in the form (18) into Eq. (17) and 
using the condition that the area under the envelope is con- 
stant, we obtain the desired equation for the evolution of the 
energy: 

In deriving Eq. (19) we have used the following expressions; 
for their derivation see Ref. 1: 

Here J ,  and T are functions of z .  The important step in the 
derivation of the control equation (19) is representing the 
field in the form (18), and hence the energy losses in the first 
stage of the transition process, i.e., in the formation of a 27r 
pulse from the initial field profile, are not treated. An esti- 
mate of the size of this correction is given at the end of the 
section. 

For real nonnegative values of J o ( z )  Eq. (19) determines 
three time-independent solutions. They are shown in graphi- 
cal form in Fig. 1. The solution with largest energy Js t  cor- 
responds to the upper branch in Fig. 1 of Ref. 1, and the 
solution J,,,, with the smallest energy corresponds to the 
lower branch in Fig. 1 of Ref. 1. The picture of the evolution 
of the pulse looks different, depending on the initial condi- 
tions. If the energy of the "seed" pulse is less than J,,,,, then 
there is no lasing-after several passes through the resonator 
the energy of the seed pulse decreases to zero. The value 
J = O  is stable within its region of attraction: O G ~ J u n s t .  If 
the original pulse energy is larger than J,,,, , then after the 
transition process lasing occurs in the mode synchronization 
regime with energy J,, in a single pulse. The stable point 
J=Jst  has a region of attraction J>JUnst. 

We have shown that the regime in which 277 pulses are 
stably generated is possible for a single value J=Jst  of the 
energy. In addition, the value J,,,, can be regarded as an 
energetic threshold, i.e., a seed spike of the field must be 
larger than this (under the condition that the duration of the 
spike is shorter than the phase relaxation time TZp) SO that the 
necessary conditions for generation of 25-r pulses hold. 

Returning to the analysis of the first stage in the forma- 
tion of SIT pulses we note that energy losses have been 
neglected in the first stage of the evolution toward the steady 
profile. In reality, as a result of the process of transition to a 
27r pulse part of the energy is scattered in the absorbing 
medium (even in the absence of relaxation). If we know how 
the pulse area B(z) changes we can estimate the "coherent" 
energy losses quantitatively: 
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Here the quantity N;' has been derived from Eq. (5)  under 
the assumption T2p--im. Expression (22) should be added to 
the right-hand side of Eq. (19). Now the corrected threshold 
value for the seed energy of the pulse can be written 

For example, for an arriving pulse with area 27r< eo<37r the 
energy losses associated with the change in the shape amount 
to approximately 10% of the input energy.6 Thus we obtain 
the estimate 

If the shape of the input pulse is the same as that of the 277 
pulse, the coherent energy losses vanish. 

In conclusion, we note that in estimating the number N 
of passes needed to reach a steady envelope profile we have 
used an expression for the absorption coefficient L p  of a 
weak signal. However, if the width of the seed pulse satisfies 

7in< T2p 

then the characteristic length in the absorber increases: 
( L ~ ~ ~ / T ~ ~ ) - ' .  Hence the ratio M / N  which we have obtained 
is a slight overestimate, and in more detailed calculations it 
should be replaced according to Lp-'Lpqn/T2p. 

4. STABILITY OF 257 PULSES AGAINST AMPLITUDE 
MODULATION 

The perturbations that distort the time-independent shape 
(11) of the pulse can be divided into two classes, slow and 
fast. Fast perturbations, which are located within the pulse 
itself, are equivalent to exponentially growing amplitude 
modulation of the envelope and ultimately lead to destruc- 
tion of the steady shape of the pulse. Our problem is to find 
the range of parameters within which 271. soliton-like pulses 
are produced which are stable against perturbations located 
within the envelope. 

When the centers of the amplifier, absorber, and filter 
lines coincide, spectrally bounded pulses of the form (17) are 
generated at this same frequency. Then it can easily be 
shown that the equations for studying phase and amplitude 
stability decouple and can be studied separately. This sepa- 
ration takes place on account of the procedure for linearizing 
Eqs. (2) and (4) with respect to small perturbations of the 
phase and amplitude. Terms of the form (dq /du)Q and ( dq l  
du)P couple the amplitude and phase perturbations, but after 
linearization this coupling is gone. 

We start the investigation with the amplitude stability 
and write down the field as a sum of the time-independent 
solution and a small correction: 

E(u,z)=Eo(u)+E,,fl(u) exp(ALpz). (23) 

Here Eo(u)  is the time-independent solution in the form of a 
27r pulse. Treating the field perturbation in the linear ap- 
proximation enables us to look for a solution in factored 
form, i.e., in the form of a product E ~ ~ ~ ( U ) ~ ( Z ) . ' )  The equa- 
tions of the coefficient obtained in the process of linearizing 

Eqs. (2 )  and (5)  evidently do not depend on z;  we can seek a 
solution by replacing f ( z )  with an exponential, as in Eq. 
(23). The quantity A is called the growth rate of the pertur- 
bation. The time-independent solution (11) is unstable if the 
real part of A assumes positive values. 

We write down the linearized equations for the perturba- 
tion Ep,,(u) in the form 

Here we have introduced the notation 

The expression for Qg(e1) /T2 ,  is derived from (8) by substi- 
tuting the field E(u ,z )  in the form (23). In writing expres- 
sions (25) we have used the fact, established previously, that 
the right-hand side of Eq. (24) plays a secondary role in the 
formation of the field profile and can be treated in the next 
order of perturbation theory. We rewrite the left-hand side of 
Eq. (24) in self-adjoint form, using the relations between the 
parameters of the classical 27r pulse: 

Here we have written 

In the first step we solve the problem for the eigenvalues 
and eigenfunctions of Eq. (27), setting the right-hand side 
equal to zero. The eigenvalues in the potential U= 1 -2/ch2u 
satisfy the inequality Re(A,)sO. The discrete spectrum of the 
homogeneous equation (27) consists of the number Xo,=O. 
The eigenfunction corresponding to A,,=O is Kl(u)  =sech u ,  
which describes the neutral stability of a 27r pulse against 
longitudinal perturbation. The right-hand side of Eq. (27) is 
small and can give rise only to a slight change in the eigen- 
value A,=O. In accordance with our perturbation treatment, 
we neglect terms on the right-hand side proportional to X,. 
The condition for solubility of the inhomogeneous equation 
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(27) is that the right-hand side be orthogonal to the solution 
of the homogeneous equation for the eigenvalue A,=O. Thus 
we find an expression for a new more accurate value of A,: 

and finally obtain 

In deriving (29) we have restricted consideration to the first 
two terms in the expansion Q,(8,) [Eq. (8)]. For s<l the 
quadratic equation has two real roots which differ in absolute 
value and have opposite signs. The perturbation correction to 
the field of the time-independent pulse has its own charac- 
teristic values of the pulse width and velocity. They can be 
determined by analyzing the behavior of the increase in the 
leading and trailing edges of the perturbation: 

t -zIvpert 
e x -  7pert 1, 

For A,>O the localized perturbation moves with a 
smaller velocity than the original pulse, vPe,<vp, and grows 
exponentially in amplitude. Ultimately the trailing edge of 
the pulse is deformed and the time-independent shape of the 
field is destroyed. For A,<O the perturbation leads the main 
pulse and causes it to damp at the leading edge. For s>l  
there are two complex conjugate purely imaginary eigenval- 
ues. In this case the perturbation pulsates, with the velocity 
and pulse length changing periodically about their mean val- 
ues vp and rp. The amplitude of a local perturbation also 
oscillates about its original value, first growing and then de- 
caying. In summary, for s> l  small changes in the param- 
eters of a 27r pulse do not destroy its shape. 

The explicit dependence of the stability of a 237 pulse on 
the magnitude of the parameter s is a consequence of the role 
of s as the saturation coefficient of the amplifier. Increasing s 
causes rapid saturation of the gain profile and hence prefer- 
ential growth of the leading edge of the pulse. Hence the 
trailing edge suffers and is amplified less. Then the center of 
mass of the pulse shifts forward and its velocity increases 
[see Eq. (13)l. This is the explanation for the suppression of 
instability growth when the remaining amplification becomes 
insufficient for exponential growth of the perturbation at the 
trailing edge of the pulse. The competition between the two 
processes (delay of the pulse due to linear dispersion of the 
group velocity7 and acceleration due to the saturation effect) 
determines the stability criterion. Stability of 27r pulses re- 
sults if the latter process dominates and the action of the 
amplifier ultimately results in acceleration of the pulses, i.e., 
s31. 

Now we turn to consideration of the phase stability. The 
corresponding field perturbations will be sought in the form 

8ph=@(~)exp(AL$) = cp(u)E(u)exp(ALp~). (31) 

Linearizing the equation for the perturbation yields 

Here Q,(Eo) is determined by Eq. (8) and the function 
Pg(@) can be written 

1 
- P,(@) =[T- T2s(1+ thu)](B+ Qthu) - T2 
T2g 

In deriving Eqs. (32) and (33) we have used the relation 
between the parameters (26) for the steady solution. The sub- 
stitution 

@(u)  =*(u)exp(A,u) (34) 

reduces the left-hand side of Eq. (32) to self-adjoint form: 

Equation (35) is similar in form to Eq. (27), which we have 
already solved. The discrete spectrum of the homogeneous 
equation consists of the eigenvalue A,,=O and the corre- 
sponding eigenfunction ?V=sech u. The correction to A,, is 
found from the condition that the right-hand side be orthogo- 
nal to the solution of the homogeneous equation. It is found 
that the correction vanishes and the pulse remains neutrally 
stable against various perturbations. That is, for a 27r pulse 
the location of the zero of phase makes no difference. 

5. STABILITY OF 2.71 PULSES AGAINST SLOW 
PERTURBATIONS 

Of the special importance in the operation of a laser in 
the passive mode-synchronization regime is the task of en- 
suring that 27r pulses are stable against the onset of continu- 
ous generation. This is related to the fact that the total gain 
coefficient of a weak signal in the cavity should be negative 
over the entire frequency band, and the narrower the ab- 
sorber line the larger its density must be in order to achieve 
this. Below we find the minimum value of the absorber den- 
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sity at which the threshold for the onset of the single-mode 
regime is nowhere reached over the entire amplification pro- 
file. 

The problem reduces to the investigation of the amplifi- 
cation of small field fluctuations occurring in that part of the 
cavity where there is no pulse at a particular time. That is, 
from the formal standpoint we will concern ourselves with 
verifying the stability of the trivial solution. The system of 
equations (2), (5) is linearized about the value E =0, and we 
find the condition for a small field perturbation in the cavity 
to be damped: 

In deriving (36) we have assumed that the centers of the 
amplifier, absorber, and filter lines coincide; here S denotes 
the magnitude of the mismatch in the carrier frequency of the 
pulse with respect to the line centers. It is necessary that 
inequalities (36) hold for all values of the mismatch in order 
that 27r pulses be stable. There is a mismatch A~=A;,,, 
depending on the relationship with the parameters, for which 
the expression on the left-hand side of (36) takes on the 
largest value. Thus, it suffices to verify that the inequality 
(36) holds for A;,, , and then it will certainly hold for all the 
other values. Introducing the quantity 4 from Eq. (16) and 
setting I&-1 we find A;,,: 

7 

Substituting (37) into the inequality (36), we find an expres- 
sion for the minimum absorber density: 

Note that if the spectral width of the filter is large, i.e., 4-1, 
then the expression for A;,, will change: 

dp rL-  1 
AIL= r2- &Z for I <  &2< r2, 

and consequently the lower bound for p will change: 

The condition 4-1 means that we can disregard the finite 
spectral width of the linear losses. But in Ref. 1 we showed 
that when the filter is too wide, 27r pulses cannot be gener- 
ated because of the upper critical value (p,,) for the absorber 
density. The physical interpretation of this restriction is very 
simple: the lower bound on p rises so far that the amplifica- 
tion in the laser becomes insufficient to overcome the in- 
creased losses of the field. consequently, the filter in this 
model fills an important role, overcoming the onset of con- 
tinuous generation at the edges of the amplification profile 
and thereby lowering the threshold pmin. 

We have treated the conditions necessary to suppress 
slow fluctuations at the leading edge of a pulse, i.e., when the 
difference in the populations of the absorbing and amplifying 
media agree with their time-independent values. After the 

pulse has passed the states of the media at its trailing edge 
change: the interaction with the field removes the inversion 
of the amplifier, while some of the atoms of the absorber are 
found in the upper excited state. The characteristic feature of 
a 27r pulse (after passing through it leaves the absorbing 
media in the ground state) is slightly transformed in this 
model. Because of the relaxation processes part of the energy 
of the pulse goes into exciting the medium, which causes the 
populations Np of the absorber to differ from unity by the 
small quantity A N ~ = ~ / ~ ( K T ) - ' ~ I ,  [Eq. (20)] at the trail- 
ing edge of a 27r pulse. Then the inversion of the amplifier is 
reduced by ANg, given by Eq. (21): 

Now we can write down the condition for a small perturba- 
tion at the trailing edge of the pulse to be damped: 

In Eq. (42) the symbols L, and Lp refer to their time- 
independent values, which have not been perturbed by the 
passage of the pulse. The signs in front of the corrections 
AN, and ANp to the time-independent values are chosen so 
that the corrections themselves are positive. The inequality 
(42) is satisfied for all values of pumps when condition (38) 
holds. We show this, dividing the proof into two parts. For 
pumps which are not too large ( 7 ~ 1 / 2 )  we can estimate the 
quantity AN, by using the solution (14) for T:ANg2 '7. The 
amplification is found to be below the level of the linear 
losses, i.e., inequality (42) is satisfied regardless of the value 
of the absorber density. If the pump is sufficiently strong, 
'7>1/2, so that AN,<v holds, we can write the following 
condition: 

When it holds the threshold which is determined by inequal- 
ity (42) lies below pmi, [see Eq. (38)l. In order to prove (43) 
we use the energy conservation law (17) for the steady state: 
d/dz=O, substituting the expression for pmin in place of p, 
and find ANg*ANp. If the small quantity AN, on the right- 
hand side of (3) is replaced by the larger one AN,, the in- 
equality becomes stronger: 

which always holds. Thus, we arrive at the conclusion that 
the inequality (42) is a weaker condition than (36), and the 
lower bound pmin on the absorber density is not exceeded 
[see Eq. (38)l. 

In this section we have analyzed the stability of a 27r 
pulse against the onset of continuous generation at the lead- 
ing and trailing edges of the pulse. The stability criterion is 
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expressed by the inequality (38). We have also shown that if 
the condition for the suppression of a small field fluctuation 
holds at the leading edge of the pulse, then the same condi- 
tion is automatically satisfied at the trailing edge of the pulse 
also. However, the approach developed in the foregoing dis- 
cussion does not include processes by which the time- 
independent values of the absorption and amplification coef- 
ficients are established, since in the relevant equations (5) 
and (7) for the inversion we have set Tlp,Tlg+a. In the real 
case the finite time for TIP and Tlg to be reached causes the 
coefficients in inequality (42) to be time-dependent: 

ANg exp( - tlTlg) and AN, exp( - tlTlp). 

We will not dwell in detail on the changes introduced by 
relaxation effects in the expression for the threshold density 
of the absorber. We note only that for Tlg>Tlp the value of 
the threshold does not change. In the opposite case Tlg<Tlp, 
after the pulse has passed, a temporal window can develop 
within which conditions hold for a weak signal to be ampli- 
fied. It remains an open question as to how this affects the 
generation of 277 pulses. 

6. DISCUSSION 

The present work, together with Ref. 1, constitutes a 
complete study of the basic processes by which laser radia- 
tion interacts with a wide-band amplifier and coherent ab- 
sorber inside the cavity. On the basis of these calculations we 
can make specific recommendations in order to experimen- 
tally produce self-induced transparency pulses. The most 
promising possibilities for stable mode synchronization ap- 
pear in connection with the use of solid-state active and pas- 
sive media. Aside from the obvious advantages associated 
with the developments of these materials as radiation sources 
for fiber-optic communication systems, there is one addi- 
tional important factor. It is well known that the coherent 
interaction of the strong field of a pulse with an absorber 
results in beam instability against transverse 
perturbations,8-10 which ultimately leads to self-focusing of 
the beam as a whole or causes it to break up into 

The instability mechanism is related to the 
dependence of the beam velocity on the field strength, which 
causes the outside of the beam to lag behind the central part. 
Consequently, the depth to which a pulse penetrates into a 
medium without undergoing substantial distortion is limited 
to (10-20)~,~1, (here 1 is the length of the absorber cell). It 
has recently been show$5316 that this instability can be elimi- 
nated by making the transverse field profile of the pulse con- 
sistent with the transverse density profile of the absorbing 
atoms. Making the velocity with which the field propagates 
the same in all parts of the beam suppresses the instability.'' 
In fact, there has been discussion about creating a new struc- 
ture, a resonant optical waveguide. Its technological imple- 
mentation is directly related to the technology for preparing 
ordinary optical waveguides with various resonant impurities 
(e.g., with erbium ions). The key requirement, which is de- 
termined by the coherent effects of propagation, is that the 
density of the absorbing atoms have the right profile. 

There are bright prospects for employing optical 
waveguides with resonant impurities to study coherent phe- 

nomena: the propagation of .rr pulses in an amplifier and 2rr 
pulses in an absorber, which have been demonstrated 
e ~ ~ e r i m e n t a l l ~ . ' ~ " ~  References 18 and 19 observed all of the 
manifestations of SIT in their "pure form," uncomplicated 
by hard-to-control spatial variations. 

In Ref. 20 a program for creating a source of SIT soli- 
tons was proposed, using as an active medium a length of 
fiber with erbium ions at room temperature and as an ab- 
sorber a section of waveguide with erbium impurities at 
4.2 K. 

The reasons given above are convincing evidence that it 
makes sense to shift the main thrust of research toward solid 
media in which it is relatively easy to create the conditions 
for suppressing transverse instability mechanisms. Here 
questions immediately arise which require attention: the ef- 
fect of the nonlinearity in the index of refraction and group- 
velocity dispersion on the processes by which SIT solitons 
form; the effect of the profile of the index of refraction of 
nonresonant atoms on the conditions that the transverse field 
and absorbing atom densities have consistent profiles; the 
choice of optimum parameters for the absorber, amplifier, 
and optical filter, from the standpoint of obtaining the short- 
est possible light pulses. Continuation of these studies will 
lead to development of a new mechanism for forming soli- 
tons, distinct from the Schrodinger mechanism. 

'kt is obvious that small corrections to the solution E, (u)  which arise due to 
the action of amplification and absorption processes (found in the linear 
approximation) can in no way effect this perturbation theory. As a result of 
the linearization procedure the terms containing the corrections vanish 
identically. 
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