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The excitation of a nonlinear oscillator by an external force with a varying frequency is 
considered. The use of classical formalism allows the excitation energy to be expressed as a 
function of the frequency of the external force for arbitrary potential and arbitrary level of 
excitation. The final result is expressed in terms of the dependence of the amplitude of the 
eigenfunctions on their frequency. This dependence takes a simple analytical form in the case of 
the Morse potential. The behavior of the limiting value of the oscillation amplitude is 
investigated in the presence of relaxation, and similarity expressions are found close to resonance. 
It is shown that an external force with varying frequency is very effective in exciting 
nonlinear oscillations, and the effect of the time dependence on the excitation process is 
studied. O 1995 American Institute of Physics. 

1. INTRODUCTION 

The efficiency with which an oscillatory mode can be 
excited by an external force sharply decreases away from 
resonance, which explains the considerable difference in the 
behavior of harmonic and anharmonic oscillators undergoing 
excitation. In the latter case increasing the shift away from 
resonance means that energy can no longer be transferred 
efficiently to the oscillator. Hence it is important to study the 
problem of excitation of molecular vibrations by an external 
force whose frequency sweeps over a region of nonlinear 
resonances, as a result of which a consistent excitation level 
and external force frequency are reached. 

Two factors account for the importance of this problem 
in appfications. First, the excitation of molecular vibrations 
is a means of dissociating molecules, ionizing them, produc- 
ing selective desorption, and controlling chemical 

The efficiency of such processes frequently 
rises considerably when they are acted on by multiple 
frequencies.4-8 Secondly, the substantial progress which has 
been made in developing free electron lasers (FELs) elimi- 
nates the question of finding a source of radiation with a 
tunable frequency. 

The International Center of Photochemical Research 
which will be established in Novosibirsk will use FELs with 
the following parameters: mean power 10 kW, pulse repeti- 
tion rate 45-180 MHz, peak power 10 MW, and individual 
pulse length 10-100 ns. The radiation frequency of this laser 
will span the region of vibrational transitions for practically 
all existing molecules. 

Radiation is generated in an FEL when an electron beam 
passes through a wiggler, a structure in which the direction 
of the magnetic field is alternating. The wavelength gener- 
ated in the wiggler has a strong dependence on the electron 
energy ( ~ x d l y ,  where d is the wiggler period and y is the 
relativistic electron energy), so fairly short wavelengths can 
be generated with moderate electron energies. Thus, for the 
Novosibirsk FEL with d- 10 cm and y- 100 we have A-10 
Pm. 

In principal, wigglers with shorter periods allow the 
beam electron energy to be reduced below the threshold for 
photonuclear reactions, which is advantageous both as re- 
gards the choice of the type of electron accelerator on which 
the FEL is based and in order to avoid radiation hazards. 

Thus, ~ a r ~ s h n i k o v '  proposed a way of producing radia- 
tion inside a cavity with arbitrary frequency dependence and 
the possibility of operational control of the radiation param- 
eters. Essentially, the idea is that the parameters of the elec- 
tron pulses injected into the wiggler and the optical cavity 
vary periodically, which allows optical modes to be accumu- 
lated in the cavity with the requisite frequency and time 
properties. The electron energy can be varied, e.g., using an 
auxiliary accelerating section of the h f cavity or by varying 
the phase of the electron injection into the underlying accel- 
erator. 

Let us say a few words about the classical approximation 
used in the present work. It is well known1' that the problem 
of exciting a harmonic oscillator with a resonant force can be 
solved exactly both in the classical and the quantum formal- 
isms, where the two are closely related. In particular, the 
average values of the momentum and position and of their 
squares are the same in the two approaches. The probability 
of exciting a particular quantum state is expressed in terms 
of the classical work done by the external force. The corre- 
spondence principle,11 which holds in the general case for 
large values of the vibrational quantum number n S l ,  holds 
here for arbitrary n.  Finally, as a result of the action of the 
resonant force the excitation "climbs up the staircase" of 
vibrational states as a compact packet, whose relative width 
decreases with n . 

In the case of an anharmonic oscillator for small values 
of n,  when the deviation from a harmonic oscillator is still 
small, we can use the above arguments in favor of the clas- 
sical treatment (see, e.g., Refs. 12-15, where the excitation 
of a nonlinear oscillator by a resonant force with constant 
frequency is treated classically). The classical treatment al- 
lows one to determine the field required to excite a given 
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level and shows that for a specified field the value of n = n,,, 
which is reached is bounded. 

The question of the correspondence between the quan- 
tum and classical approaches in the problem of exciting a 
nonlinear oscillator with an external force of constant fre- 
quency was addressed directly in Ref. 15. By solving the 
corresponding equations numerically for the Morse 
potential16 they were above to show that the classical and 
quantum solutions coincide with the exception of narrow fre- 
quency ranges in which multiple resonance occur. These 
considerations along with (naturally) the difficulty of the 
quantum treatment are decisive in our choice of the classical 
approach for solving this problem. 

Note that for weak anharmonicity or small values of n 
the solution of this problem is well known (see, e.g., Ref. 
17). It follows in particular that when the frequency of the 
external force changes, considerably higher states can be ex- 
cited than in the case of a fixed frequency. Here, however, 
we arrive at a certain contradiction, since when n grows the 
power-series expansion of the oscillatory potential usually 
employed is no longer valid. In the present work we have 
derived a solution for arbitrary potentials, including the 
Morse potential, and for arbitrary levels of excitation. 

We also show that this problem is very close to that 
treated by Gorchakov and savonov,13 in which the excitation 
of a nonlinear oscillating rotator by a circularly polarized 
wave was treated classically. The rotator is turned by the 
circular wave, as a result of which the anharmonic shift from 
the resonance in the problem is balanced by rotational tran- 
sitions whose frequency increases with the rotational quan- 
tum number. In the case of arbitrary polarization this effect 
naturally does not arise. In the present work rotation of the 
molecule is disregarded, and the deviation from resonance is 
balanced by the change in the frequency of the external 
force. 

2. THE NONLINEAR CLASSICAL OSCILLATOR MODEL 

We assumed that a molecule represented by the one- 
dimensional classical nonlinear oscillator with mass M ,  po- 
tential U(x), and rotating force f(x)= -dUldx is acted on 
by the external force F cos R t ,  where R can vary slowly on 
the scale of the molecular oscillations. In the case of ho- 
meopolar molecules this force is the result of the interaction 
of dipoles induced by the laser radiation, while in the case of 
heteropolar molecules we are concerned with the effect of 
the external field on the effective molecular charges.' Note 
that in Ref. 1 different forms of excitation of the molecular 
oscillations were proposed, among them the version with a 
time-dependent frequency discussed below. We will neglect 
the rotation of the molecule and the interaction with nearby 
vibrational modes, assuming that this is small because the 
oscillations have different symmetry or because the fre- 
quency difference is large. 

The equation of the oscillations takes the form 

M x +  f ( x ) = F  cos R t .  (1) 

To lowest order in the external force F in Eq. (1) only the 
first harmonic of the frequency S1 is important, and we can 
use a procedure equivalent to linearization (Ref. 18; see also 

Ref. 19). If we are not interested in frequency-doubling ef- 
fects, then we need only retain the first harmonic in Eq. (I), 
which yields a new linear equation with coefficients that de- 
pend on the amplitude a of the oscillation: 

F 
x + 2  yx+ w2(a)x= - cos $, 

M (2)  

where $=R and we have formally introduced the term 2 yx 
to take into account the possible relaxation of the excitation 
through various processes. In accordance with the lineariza- 
tion procedure we have for 4 a )  

As shown by ~ a ~ n u s , ~ '  this procedure turns out to be 
unexpectedly accurate even in the case of very nonlinear 
oscillations. Thus, the error in determining the eigenfre- 
quency and the amplitude of the oscillations of a ball in an 
angular groove (with a discontinuity in the rotating force)20 
is a few percent. But if we use for the frequency w(a) not the 
approximate formulate (3) but the exact classical expression 

where the integral is taken between the turning points and E 
is the energy of the oscillations, then the solution of the 
linearized equation for this example coincides with the exact 
solution. 

In what follows we will need the amplitude a(w) as a 
function of the eigenfrequency. This dependence can be de- 
termined either from (3) or from (4). In the latter case, using 
the first integral of the linearized equation and assuming that 
the relaxation is small, we can write 

where E(w) is the dependence given by Eq. (4). 
We will look for a solution of Eq. (2) in the form 

x = a sin cp, where cp= $+ 6. Then, neglecting second deriva- 
tives and assuming ylSZ41, we find19 

It is easy to find a stationary solution of Eqs. (6), corre- 
sponding to a slow variation in the frequency of the external 
force for which the excitation can be adjusted by means of 
this variation. Since in real molecular systems relaxation of 
the excitation requires passing through the resonance region 
fairly fast, one must raise the question as to whether it is 
possible to use the time-independent solution when the ex- 
ternal force changes rapidly. It is clear qualitatively that if 
the eigenfrequency of the oscillation does not exceed the 
frequency of the external force, the oscillator goes out of 
dynamic resonance and the effective exchange of energy 
with the external force ceases. In fact, when we estimate this 
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effect we arrive at the problem of exciting a single resonance 
with an external force having variable frequency. This prob- 
lem was investigated numerically by ~ i t r o ~ o l ' s k i i , ' ~  who 
showed that when the frequency of the external force varies 
sufficiently slowly the system is described well by the time- 
independent equations, where the efficiency of excitation de- 
creases as a function of the speed with which the resonance 
is passed through. Most of the energy is transferred to the 
system near the resonance, and the faster the system passes 
through this region the less energy it can get from the exter- 
nal source. Below we will show that 6-0 holds near reso- 
nance in the quasisteady limit. If 6 begins to vary due to the 
time dependence of the frequency, the efficiency with which 
energy is transferred from the exciting force changes accord- 
ingly. Let us estimate the magnitude of this change from the 
second of Eqs. (6). For estimating purposes we set 6-0, 
drop the first term, and assumed that the frequency difference 
is a linear function of time, i.e., f l -w=/; l t .  As a result we 
find 6-ict2/2. Setting 6-1, for the time 6t required to pass 
through the resonance and the frequency width 6w we find 

If a (R )  is the time-independent solution of Eqs. (6), then 
in order for the time-dependent solution to be tuned to the 
steady or slowly varying frequency we must have 

where da ld f l  must be estimated in the region determined by 
(7) and h is determined from (6). 

Let us write down the time-independent solution of Eqs. 
(6). Setting a =O, 6=0 we find 

w2-f12 
tan 6= -. 

2 Y f l  

Solving Eq. (9) for f12 we have 

Expression (10) determines the amplitude of the steady os- 
cillations as a function of the frequency of the external force, 
a = a ( f l ) .  Let us rewrite Eq. (10) in a form more convenient 
for analysis. We introduce the dimensionless variables 
y = ( f i ~ w , ) ~ , x =  ( w l ~ , ) ~ ,  r = 2 ( y l ~ , ) ~ ,  b  =(ma)', 
E = ~ F I M ~ ~ ~ ,  a = Jk/2D, where w=w(a), wo=w(0), a-' 
is the characteristic dimension of the potential well, and D is 
the dissociation energy. By virtue of the above assumptions 
we omit a term 4 y4 from (10) and obtain 

The function w(a) is generally monotonic, so b (x )  is a 
single-valued function of x .  From (11) we can obtain useful 
results without specifying the form of the potential or the 
function b(x)  . 

3. GENERAL RESULTS 

Equation (11) explicitly determines the dependence of 
the amplitude of the forced oscillations as a function of the 
frequency of the applied force for arbitrary potential and ar- 
bitrary level of excitation. The details of a specific function 
enter only through b(x) ,  which is what makes this form of 
the solution convenient. By following the usual quantization 
procedure'5 we can easily find the probability of exciting 
particular quantum states; here, however, we restrict our- 
selves to analyzing the classical expressions. 

The multivalued behavior of the function (11) is typical 
for nonlinear oscillations excited by an external force.' In the 
limit of small excitation force there are two branches of the 
solution of (11) close to the so-called skeleton curve,'* y = x  
and w(a)= f l .  For large relaxation it follows from (11) that 
the value of x cannot be arbitrarily small, i.e., the amplitude 
of the oscillation is bounded. As we move away from the 
limiting point the role of damping decreases, and in the limit 
r=O for x-y - 1 a similarity formula follows from (11) 
close to resonance. We will prove these assertions. 

The restriction on the amplitude when relaxation is taken 
into account arises from the condition xb(x)>e2/2r. Since 
we have xb(x )  = E / D ,  we find that the maximum excitation 
energy E* is determined by the relation 

Under the condition c2 /2 f> l  this restriction naturally no 
longer holds. Condition (12) in ordinary units acquires a 
clear physical meaning: 

i.e., under resonant conditions in the presence of damping 
the external force interacts with the oscillator only over an 
effective time y-'. 

Let us determine the behavior of the function (11) 
near E = E *  (or x=x* ) .  We expand xb(x )  
= e 2 / 2 r  + (xb) '  ( x - x * )  and find from (11) 

where the expression in parentheses is evaluated at x =x  *. 
Equation (14) determines the behavior of the excitation func- 
tion near the maximum of the amplitude. It follows from (11) 
that for small excitation energy the role of the damping de- 
creases. Consequently, the relaxation, which has a critical 
value near x=x * ,  can be omitted when we treat the region 
x= y - 1 near resonance. 

Let us show that in this region under the conditions 
e241 and r = 0  expression (11) can be rewritten in the form 
of a similarity formula. Near resonance (x-1) from xb(x )  
= E I D  we find b(x )=EID.  We assume that E I D  approaches 
zero near x = l  as C ( l  -x)" ,  where C and rn are constants 
determined by the form of the potential. We introduce new 
variables 
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FIG. 1 

1 - x  1-Y & 2  l / ( m + 2 )  

X = - ,  Y = - ,  where x=(.c) 
X X 

It follows that Eq. (11) can be rewritten in parameter-free 
form as 

The upper and lower signs in (15) correspond to those in 
(11). Equation (15) is noteworthy not only because of its 
universality and simplicity but because it gives a complete 
description of the excitation by a resonant force with con- 
stant frequency. Equations (14) and (15) are useful in the 
limits of small and large excitation. Figure 1 shows the quali- 
tative behavior of y ( x ) .  For constant frequency the point 2 
corresponds to maximum excitation. The point which repre- 
sents the state of the system as a function of frequency 
moves along the curve 12756. When the frequency varies the 
phase point moves along the curve 123456, reaching maxi- 
mum excitations at point 3. The reverse motion follows the 
route 65721. Under the conditions c2>2r  and e2<1 the ex- 
citation at point 3 is considerably greater than that at point 2, 
which is responsible for the practical interest in this excita- 
tion regime. 

4. THE MORSE POTENTIAL 

The Morse potential'6 is widely used to describe mo- 
lecular vibrations." It takes the form 

Using (4) we find the frequency as a function of the excita- 
tion energy E :  

where w ; = 2 D a 2 / ~ .  The amplitude of the oscillations and 
the excitation energy are expressed in terms of x  as follows: 

The general expression (11) can be written in the form 

Following (8) we can estimate the allowable rate of change 
of the frequency: 

From x b ( x )  = e2/2r we find the maximum values of x  *: 

There is no restriction on the amplitude due to relaxation of 
the excitation in the case ~ ~ / 2 r > 1 ,  or 

In the region where the amplitude is restricted we find from 
(14) 

Near resonance in (15) we have m = C = 1 and the char- 
acteristic parameter is 6 = ( ~ / 2 ) ~ / ~ ,  for which the similarity 
formula can be written in the form 

Near the phase point Z =  ( X , Y )  we find in accordance with 
Fig. 1 

5. DISCUSSION 

Let us apply these results to estimate the excitation of 
molecular vibrations. We will start with the following typical 
values of the molecular constants (see, e.g., Ref. 5): 
w,-ln-10~ cm-', y = l ~ - ~ - l O - '  cm-' in the range of pres- 
sures from 1 to 100 torr, where the resonance defect for 
neighboring levels is A-10 cm-'. For the dissociation en- 
ergy we take 0 - 3 . 1 0 ~  cm-'. We will assume that a-lo8 
cm-' holds, which corresponds to the atomic length scale. 
We have E = ~ F / M ~ ; = E ~ / E , ,  where E L  is the strength of 
the laser field and E ~ = ~ D ~ / ~ - I O ~  V/cm is the typical in- 
tramolecular field. For comparison we will estimate the field 
necessary to excite the level N-3 when the frequency is 
constant (see the analogous estimates in Refs. 5 and 12). For 
a fixed frequency the excitation of large N requires ex- 
tremely large laser fields, so we use the time-independent 
approach, which is probably applicable only to multiatomic 
molecules for which a quasicontinuum of molecular states is 
adjacent to the low-lying levels. Using (24) we find 

Such fields are typical for collisionless dissociation of mul- 
tiatomic molecules by a laser field. 
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Returning to the dynamical resonance regime, we start 
by considering the double inequality which determines the 
allowable range for the rate of change of the frequency i [cf. 
Eq. (20)l: 

The dynamical range for K broadens as the parameter 
, U = E ~ / ~ W $ N ~ A  increases. Setting p-1 we find the maxi- 
mum field strength for which the time-independent regime 
applies. For purposes of obtaining an estimate we assume 
N-5-10, i.e., we treat molecules with few atoms: 

NyA 3/4 
-10'-10~ V/cm, 

which is much smaller than (27). 
It is useful to directly compare the maximum oscillation 

amplitudes a d  and a ,  in the dynamic and static regimes. We 
estimate a s  from the similarity formulas (24) and a d  from the 
expression for x*, Eq. (21). We include the fact that if 
e2>21' holds then ad and ad/as both diverge. But if z2<2I' 
holds, then 

For realistic parameters it can easily be shown that this ex- 
pression is much larger than unity. 

Let us estimate the time t=NAlK over which the exci- 
tation process takes place. For the estimate we used the in- 
equality (28) and find 

For moderate fields ~ , - 1 0 ~ - 1 0 ~  V/cm it follows from (29) 
that 

As can be seen from (30) there is a broad range of du- 
rations which satisfy the condition for optimum dynamical 
excitation. This fact is significant when specific accelerators 
and free-electron lasers are used with a specified electron or 
light-pulse length. Note that the typical pulse lengths in mi- 
crotron accelerators, which are regarded as very promising 
for use in FELs, lie in the range defined by (30). 

In conclusion we briefly discuss some particular ques- 
tions which are important for practical applications. 

Why have we chosen the regime in which nonlinear 
resonances are encountered in succession? The reason is that, 
first, the nonlinear resonances are quite closely spaced and 
can easily be swept over with a relatively small frequency 
change. The typical value of the anharmonic detuning 
amounts to -1% (Ref. 5). The operational frequency tuning 
range for FEL radiation can be considerably larger than this 
value, and depending on the type of tuning and accelerator 
may reach a value of 5-10%. The range over which the 
frequency varies should not, however, include neighboring 
vibrational modes, so as not to reduce the excitation effi- 
ciency. 

The quality of the excitation resonance in this case is 
determined by the change in the frequency, not the strength 
of the laser field, which allows one to use moderate laser 
field strengths. 

Competitors with this regime include: a) multifrequency 
excitation with constant-frequency fields;'73 b) excitation 
through several levels; c) direct excitation above a threshold, 
e.g., dissociation. 

In regime a) it is necessary to determine the energy of 
the vibrational states with greater accuracy than in the 
present case or to correct for the possible detuning from the 
resonance due to field broadening, i.e., large laser fields. In 
regime b) for intramode excitation the dipole moment is 
small, and hence large laser field strengths are again re- 
quired. For arbitrary excitation in the general case it is diffi- 
cult to achieve resonance of the excitation within the limits 
of available FEL tuning. In regime c) excimer lasers or dis- 
charges of various types are ordinarily used, which have a 
low energy efficiency. In principle an FEL can also generate 
fairly short wavelengths, but for various reasons the effi- 
ciency is low except in the IR region. 

There is one more question which is important in prac- 
tice: To what extent does the time-independent nature of ex- 
citation by realistic laser pulses actually affect the quasista- 
tionary results of this work? It is clear that the excitation 
must be relatively fast so that relaxation cannot take place. 
On the other hand, the rate of change of the frequency cannot 
be arbitrarily large because the excitation level and the fre- 
quency of real lasers would be inconsistent [see Eq. (29)]. If 
the laser pulse length is greater than the value determined by 
the inequality (29), then the temporal profile of the pulse can 
be taken into account in the quasisteady approximation. In 
the opposite case, as can be seen from (29), the excitation 
efficiency decreases. 

The question of the role of rotation in real molecules in 
the process of exciting vibrations is not out of place. In the 
case of a circularly polarized wave, as shown in Ref. 13, the 
molecule can become "unspun," which gives rise to qualita- 
tively new effects which were not mentioned above. For lin- 
ear polarization this unspinning does not occur, but here also 
rotational effects can prove important. 

The rotational broadening ho, itself probably does not 
affect the excitation, since it is generally smaller than the 
typical anharmonic shifts (see, e.g., Ref. 5) and even more 
because it is smaller than the range of variation of the fre- 
quency. An important role may be played by collisional re- 
laxation of rotational states, which leads to loss of coherence 
of the energy. The necessary condition for effective excita- 
tion of a molecule is yrt<l, where t is the excitation time 
determined by (29) and yr is the rotational relaxation con- 
stant. In the opposite limit yIt=l we must have t A w , s l  in 
order to preserve the coherence of the excitation; this is gen- 
erally incompatible with the previous inequality. From the 
information given in Ref. 5 we can make the following esti- 
mates: AmI-5 cm-', yr-10-3-10-' cm-' in the pressure 
range from 1 to 100 torr. For this value of yI we find from the 
condition yrt-1 the typical time t-10-~-10- '~ s, which 
agrees with one of the limiting values in (30). 
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