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The quality of the information on the structure of the two-electron wave function of a target 
extracted from (e,3e) experiments involving fast electrons in various kinematic situations has been 
surveyed. It has been shown that, as in the case of binary (e ,2e)  experiments, the most 
direct information on the target structure can be obtained from reactions with a large momentum 
transfer. O 1995 American Institute of Physics. 

1. INTRODUCTION 

The ionization of a target (an atom, a molecule, a thin 
film etc.) by an electron with the formation of several elec- 
trons, whose angular and energetic distributions are mea- 
sured during the experiment, is a very complete quantum- 
mechanical experiment. It was shown more than 25 years 
ago in the work of Neudachin et  al.13* that the differential 
cross section for single ionization [a so-called (e ,2e)  pro- 
cess] in cases in which the final scattered and ejected elec- 
trons comprise a symmetric pair, i.e., have similar energies 
and scattering angles relative to the incident electron beam, 
contains direct information on the structure of the one- 
electron wave function in the atom. Since the time of the first 
(e,2e) electron spectroscopy has become an 
independent field of scientific study, which is of practical 
significance in quantum chemistry and in the physics of plas- 
mas, molecules, and thin films. 

The design and performance of experiments on double 
ionization [so-called (e,3e) processes] are considerably 
more complicated; therefore, the first measurements of the 
differential cross sections of (e,3e) processes were per- 
formed only in 1989,~ although theoretical arguments sup- 
porting the possibility of extracting information on electron 
correlations in a target from experimental data were ad- 
vanced in the mid-seventies.677 

The theory of (e,3e) collisions involves the scattering of 
four charged quantum particles, i.e., a complicated quantum 
mechanical problem, especially with respect to carrying out 
specific calculations. The presence of fast electrons permits 
some simplification of the calculations and, in some cases, 
reduction of the problem to the three-particle case. This is 
possible, for example, when the incident and scattered elec- 
trons have similar energies, i.e., the energy transfer to the 
target is much smaller than the energy of the initial beam: 

FBA ,,* 1 
Tb< (SO)= 

~e & 

ec 

The process described by diagram (Dl) presupposes the 
exchange of only one virtual photon y* between the incom- 
ing electron and the target, and the diagram itself corre- 
sponds to a matrix element written in the first Born approxi- 
mation (FBA). In principle, the momentum transfer 
Q=po-p, take on any value allowed by the laws of the 
conservation of energy and momentum; however, (e,3e) and 
(y,2e) (double ionization by a photon) processes have been 
described historically on a single theoretical basis. Therefore, 
it was assumed that the momentum transfer Q is relatively 
small not only in comparison with the momentum of the 
scattered electron p a ,  but also compared with the momenta 
of the ejected electrons pb and p,. In this case the matrix 
elements of (e,3e) and (y72e) processes in the limit Q+0, 
which have a definite physical meaning, could be compared. 

It was shown in Ref. 6 that if the kinematic conditions 
E,=E,SEb and E,SA.s07 are satisfied, where Ace is the 
binding energy of the pair of the ejected electrons e b  and e, 
in the target, the matrix element described by diagram (Dl) 
contains direct information even about a two-particle wave 
function [by analogy to a (e,2e) reaction]. However, it was 
theorized that e b  and e, can be properly represented by or- 
thogonalized plane waves (accordingly, this approximation is 
currently called the OPW approximation in the non-Russian 
literature), which at first glance seems logical when E b  and 
E, are large. 

The orthogonalized plane wave (OPW) approximation of 
the wave functions of the electrons e b  and e, in the field of 
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the A++ ion does not include their interactions in the final 
state. Back when (e,2e) collisions were studied it was noted 
that consideration of the postinteraction state of the electrons 
even when their ejection energies are comparatively large 
(say, of the order of 200-300 eV for the ionization of hydro- 
gen) results in an appreciable angular shift and distortion of 
the characteristic peaks in cross In recent years, a 
model wave function of the final state, which is known by 
the abbreviation BBK from the first letters in the names of 
the authorslo who first applied it to calculations of ionization 
processes, has been widely used to describe (e,2e) 
processes.') One special feature of this function is the 
"democratic" presence of all three interactions: both 
electron-ion interactions and the electron-electron interac- 
tion. This function was used in Ref. 12 in calculations of 
double ionization of the helium atom. The results were in 
complete disagreement with the angular distributions of the 
final electrons of the OPW model and even the more realistic 
distorted-wave model13 when the same model was used for 
the wave function of the helium atom. In other words, the 
consideration of electron correlation in the function of the 
final state has a significant influence on the result of calcu- 
lations of (e,3e) processes, which is not observed (except 
for some small corrections) in calculations of (e,2e) ioniza- 
tion. 

The work in Refs. 12 and 13 had a purely theoretical 
character. In this paper we describe a qualitative physical 
investigation of this phenomenon and comparative evalua- 
tions of the cross sections in various regions of the charac- 
teristic peaks. It is shown, in particular, that the kinematics of 
the (e,3e) reaction represented by diagram (Dl) are not en- 
tirely successful from the point of view of the extraction of 
direct information on two-electron correlations in a target 
from an experiment in the case of small values of the mo- 
mentum transfer Q. Unlike (y,2e) reactions, (e,3e) reac- 
tions offer more suitable kinematics for this purpose with 
greater momentum transfer. 

For simplicity, a helium atom is considered as the target 
below. 

2. THEORY 

2.1. General formulas 

In the case of ~ e ( e , 3 e ) ~ e + +  collisions, the energy and 
momentum conservation laws have the following forms: 

Here (Eo,Po), (E, ,pa), (Eb ,pb), and (Ec ,PC) are, respec- 
tively, the energy and momentum of the incident electron, 
the scattered electron, and the first and second ejected elec- 
trons; e r =  -79 eV is the ground-state energy of the helium 
atom; q is the recoil impulse of the ion. The previously men- 
tioned energy transfer AE = E o  - E, and the momentum 
transfer Q = po- pa are also considered. 

Below we shall mainly consider the following kinematic 
conditions: 

1) the incident and scattered electrons have large ener- 
gies (for example, of the order of 5-10 keV), i.e., 
E,,E,+AE; 

2) the energy transfer to the helium atom is much greater 
than the binding energy of the electrons in the atom, i.e., 
AE+I~FI (for example, on the order of 300-500 eV); 

3) the ejected electrons have approximately equal ejec- 
tion energies; 

4) the momentum transfer is much smaller than the en- 
ergy transfer, i.e., Q ~ < A E .  
Such kinematics have not yet been realized experimentally: 
the requirement for large ejection energies is basically not 
satisfied; however, this model reveals the physics of the in- 
teraction mechanisms. 

In atomic units the differential cross section has the form 

Such a form of the cross section is a consequence of the fact 
that the spin part of the wave function of the helium atom is 
antisymmetric and the coordinate part is accordingly sym- 
metric. In the absence of spin-spin and spin-orbit coupling, 
the same symmetry requirements are imposed on the final 
wave function. 

The amplitude Tbc in the first Born approximation, 
which is depicted in diagram (Dl), has the following analyti- 
cal expression 

where 

The functions 14-(pb ,pc)) and I&) in (5) are eigenfunctions 
of the Schrodinger equation 

The ground-state function I&) and the function 
IcfP(pb ,p,)) describe two electrons in the field of a point 
source with a charge Z = 2  and have the energies E =EF and 
E = E b + E c .  Owing to the property of orthogonality 
(4-(pb , ~ ~ ) l 4 ~ ) = 0 ,  the presence of the double integral in (5) 
is not of fundamental significance; however, it is usually re- 
tained, since during the construction of some models this 
property may be violated and the finite character of the func- 
tion M may accordingly be violated in the limit Q--+O with 
the resultant appearance of false peaks in the cross section. 

The integral (5 )  is nonzero specifically because Eq. (6) 
contains the electron-electron interaction V12= - Irl -r2(-', 
which is responsible for the electron-electron correlations in- 
vestigated here. 
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2.2. Qualitative physical model 

If we consider the classical "billiard ball" model in the 
case of E b =  E, and a small value of Q ,  the angle of emission 
of a pair that was at rest before impact relative to the direc- 
tion of the momentum transfer vector Q would be equal to 

- BQPh - BePC = rr12 - Q 1 2 m .  A similar result follows 
from (1) and (2), if the binding energy in (1) is neglected and 
the recoil impulse q in (2) is set equal to zero. There would 
then be no residual ion. Hence it follows that in the case of 
fast particles the region 9-0 gives the largest possible value 
for the double-ionization amplitude. The same conclusion is 
also valid for (e,2e) processes, but (e,3e) collisions are far 
more informative with respect to the kinematics of the mo- 
menta, as was noted in the early work of Neudachin et al. 

In the general case the wave function of two interacting 
"free" electrons in the field of a residual ~ e "  ion may be 
represented in the form 

In Eq. (7) the coefficient D(pb ,p,) appears as a result of 
renormalization of the divergent terms of the perturbation 
theory series with respect to V12, and its absolute value 
equals 

2 rrx 
I P , P ~ I ~ = ,  *= /pb-p,I-' 

The details were presented in Refs. 14 and 15. The functions 
cp-(p,r) are functions of the continuous spectrum of the one- 
particle Coulomb Hamiltonian with a charge Z = 2  and sat- 
isfy the equation 

(the superscript minus sign points out the characteristics of 
the converging wave at r-+m). Finally, the function I in- 
cludes information on the rescattering of the ejected elec- 
trons in the final state. 

The first term in (7) actualizes the so-called "shake-off" 
(SO) mechanism, which was described earlier by Migdal for 
nuclear particles and was examined for atomic reactions in 
Refs. 16 and 17. In our case it may be described by the 
diagram 

As in diagram (Dl), the asterisks on the wavy lines show 
that the electrons eb and e ,  are described by distorted waves. 

The second term actualizes the two-step (TS1) mecha- 
nism, which has been described, for example, in Ref. 18. Its 
matrix element in a first approximation with respect to V12 is 
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depicted in the diagram 

When Eb and E, are large, the one-particle function 
cp-(p,r) may be represented in the eikonal approximation: 
(P-(p,r)=exp(ipr)l(p,r), i.e., in the form of a rapidly oscil- 
lating function and a smooth function. Plugging the first term 
from (7) into integral (5), we see that the rapidly oscillating 
character of the integrand is maintained, since pb and p, are 
not compensated by Q. The shake-off mechanism does not 
realize the classical condition q = O  in this case, and a small 
contribution of its matrix element to the total amplitude 
T F : ~  should be expected. A more detailed, although simple, 
investigation shows that the characteristic peak in the cross 
section d 5 a  from diagram (D2) is concentrated around the 
direction of Q and 

although just this term represents the double Fourier trans- 
form of the function of the initial state &(rl ,r2), i.e., it gives 
the most direct information on the wave function of the tar- 
get. 

The second term in (7) allows mixing of pb and p, dur- 
ing the interaction of the electrons with one another in such 
a manner that the condition 4-0 is realized. This is possible 
when Q-pb+p,. The angle of the peak from the second 
term differs from the angle of the peak of the shake-off 
mechanism, and at large ejection energies they scarcely in- 
terfere. Evaluation of the contribution of the two-step mecha- 
nism gives 

Details on the derivation of estimates (9) and (10) are 
given in Appendix 1. 

To confirm the estimates obtained from the model of 
successive approximations, which is fairly crude for Cou- 
lomb potentials, as well as to visualize the situation, Fig. 1 
presents the results of calculations of the differential cross 
section d50-(3) for the following three models of the wave 
function of the final state, which are presently widely used: 

a) the orthogonalized plane wave (OPW) approximation: 
@(pb ,P, ;rl ,r2) = [exp(ipbrl) - (~bl(P~)(Po(rl)lCex~ (ipcr2) 
-(~,l+o>(Po(r2)1, 

b) the orthogonalized Coulomb wave (OCW) approxi- 
mation: 6 ( p b  ,p, ;rl ,~z)=[ 'P-(P~ , r~) - ( (~- (~b) l (Po) (Po( r l ) l  
x['P-(p, 4-21 -((P-(~~)l(PO)(Po(r2)1, 

c) the Brauner-Briggs-Klar (BBK) approximation: 
6 ( p b  ,PC ;rl ,r2) = ID (pb ,pc)12(P-(pb ,~I) 'P-(PC ,r2)F[i/2~bc ; 

- i~bcr12+~bcr12) l~ 
Here pbc=(pb-pc)/2; r12=rl-r2; F is a confluent hyper- 
geometric function. In all three cases the target function q50 
was chosen in the simplest approximation in the form of the 
product of two exponential functions [see (A@]. The kine- 
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d 5 a  .lo4, at. units 

s t  

- 
FIG. 1. Differential cross section (d5u)  of the He(e,3e)He+' 

3 - reaction as a function of I?, for fixed values of I?, and Bb 
(E,=5279 eV, E,=5000 eV, 8,=O0, 8,=84.4"; Eb=E,=  100  
eV). The angle I?, is measured from the direction of p,, which 
coincides in the present kinematic situation with the direction 
of pa and Q. Notation used: solid trace-Brauner-Briggs-Klar 
(BBK) model; dashed trace-orthogonalized Coulomb wave 
(OCW) approximation (X 1000); dotted trace-orthogonalized 
plane wave (OPW) approximation. 

0 36O 72' 108' 144O 180' 216O 252O 288O 324O 360~  
ec 

matic conditions are as follows: E b = E c  ; the vector pb is 
fixed in space, and its angle with respect to the momentum 
transfer vector Q is specified by the relation 

which allows the condition q = O  when p, rotates in the plane 
of Q and pb. It is clearly seen from the figure that the addi- 
tion of a correlator to the BBK model in the form of a hy- 
pergeometric function significantly alters the structure of the 
differential cross section, and the system of peaks is again 
concentrated around the direction of the recoil impulse, 
while the contribution of the OCW model in the scale chosen 
may be neglected. 

Thus, the contributions of the shake-off and two-step 
mechanisms differ by four orders of magnitude in the 
amount of energy transferred. However, the size and shape of 
the peak of the two-step mechanism depend on both the 
model of the initial wave function and the model of the 
final wave function I+-(pb ,pc)), i.e., "the two-model depen- 
dence" of this peak should be specified. 

This implies that if any model of the target wave func- 
tion gives a theoretical result agreeing with experiment, say, 
in the OPW or OCW approximation, the BBK function or 
another function including the postinteraction state of the 
electrons may utterly destroy this agreement, and the conclu- 
sion regarding the target structure would then be untrue. 
Therefore, in our opinion, the process described by diagram 
(Dl) with a small momentum transfer is not entirely satis- 
factory from the point of view of obtaining direct informa- 
tion on the target structure, and other kinematic schemes are 
required. 

2.3. Binary kinematics 

get, was formulated in the cited papers by Neudachin et al. 
However, this idea, as well as Berkadar's interesting argu- 
ments on this subject,19 were discussed on the basis of kine- 
matics with a small momentum transfer Q ,  i.e., on the basis 
of similarity between (e,3e) and (y ,2e)  collisions. But, a 
(e,3e) process permits consideration particularly of the op- 
posite case of large momentum transfers that are comparable 
to the momentum of the scattered electron p a .  An example 
of such a reaction in the plane-wave impulse approximation 
(PWIA) is depicted in the diagram 

The differential cross section in this case may be written 
in the following form, which differs somewhat from (3): 

The following notation was adopted in Eq. (11): 

is the Mott cross section for e e  scattering; 

A theory on a hierarchy of momenta, i.e., a phenomenon 2 

in which the energy transfer AE is redistributed in a highly 
asymmetric manner between e b  and e ,  and permits the ex- 
traction of new information regarding correlations in the tar- is the distribution density of the fluctuation function 
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whose properties were described in Ref. 20. 
Some simple estimates obtained from (11) show that 

According to the meaning of the approximation, the 
smaller the values of p, and q, the better it should work. The 
maximum of the differential cross section (11) should be 
expected when the vector p, is equal in magnitude to q, but 
opposite in direction. 

Diagram (D4) is equivalent to an (e,2e) collision in 
so-called binary kinematics, which, as was stated in the in- 
troduction, is presently used in several applications as a tool 
for directly studying one-electron distributions. In our case a 
(e,3e) process having binary kinematics with respect to e, 
and e b  provides a similar possibility for studying the proper- 
ties of the projection of the target ground state onto the con- 
tinuum function cp-(p, ,r) with the "soft" momentum p, . 

Arguments advanced in Refs. 8 and 9 make it possible to 
search for corrections to Eq. (11) in the form of angular 
shifts of the cross section due to bending of the trajectories 
of e, and eb as a result of their interaction. 

3. DISCUSSION AND CONCLUSIONS 

Experiments with A(e,2e)Af, A(e,2e)A+*, and 
A(e,3e)A++ processes set up under binary kinematics, i.e., 
when the scattered and ejected electrons form a symmetric 
(or almost symmetric) fast pair with a large momentum 
transfer, yield the most direct information on the momentum 
distribution of one-particle fluctuations of the form 

where cp, is the spectral Coulomb function. 
A combined study of the results of symmetric binary 

experiments with single and double ionization by a beam of 
fast electrons makes it possible to obtain new and, perhaps, 
unexpected information on the target structure. 

A few words on the applicability of the conclusions 
drawn in this work to many-electron atoms are in order. For 
the He atom, Eq. (6) is exact in the context of dipolar kine- 
matics. For heavier atoms, it should be assumed that the core 
is immobile during the collision and that the interaction of 
the impinging electron with the correlated atomic pair takes 
place on its background. It should also be roughly assumed 
that both the initial and final wave functions are products of 
the function of the pair and the function of the residual ion. 
This is a fairly strong assumption, especially in the case of 
small ejection energies, and is thus an additional argument 
against dipolar kinematics for (e,3e) experiments. At the 
same time, binary kinematics, under which the ejection en- 
ergies are large, permits consideration specifically of a (core 
+electron pair) system when, of course, the necessary sym- 
metrization procedures are performed. 

We thank V. G. Neudachin for some useful discussions 
of the material underlying the present research. The work 
was performed with support from the Russian Fund for Fun- 
damental Research. 

APPENDIX 

1. For the purpose of obtaining estimates (9) and (lo), 
we utilize Eq. (7), in which we take into account the function 
I(p, ,pb ;rl ,r2) in the first order of the renormalized perturba- 
tion theory series with respect to V12. In addition, we or- 
thogonalize the function +- in (7) to &,, i.e., we consider the 
function 

Bearing in mind these two circumstances, we write the dif- 
ferential cross section (3) in the form 

+B(pb,pC ;Q)+[P~-P,II~.  ( ~ 2 )  

The following notation was adopted in Eq. (A2): 

Each of the functions cp, in (A3)-(A7) is a spectral hy- 
drogenic wave function of a one-particle Coulomb Hamil- 
tonian with a field charge 2 = 2  (the minus sign refers only to 
the continuum functions). The summation gds ,  is carried 
out over the entire spectrum of one-particle excitations, in- 
cluding the continuum. 

2. In section 2.2 we were primarily interested in the in- 
fluence of the correlations in the final state on the form of the 
differential cross section; therefore, we take the function 
&,(rl ,r2) in the very simple separable approximation: 

+o(rl,r2)=(Po(rl)'Po(r2), (A81 

where &(r2) = &%exp( - ~ r )  and ~ = 1 . 6 8 .  Also, tak- 
ing into account that pb = p c %  Q, we set cp-(p,r)=exp(ipr). 

In this case y(Q) = ( 1  + e 2 / 4  K ~ )  -2  and 
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The asymptotic estimate (9) follows from (A9) when 
E , = E , ~ E ~ .  

3. When (A8) is taken into account, the amplitude for the 
shake-off mechanism Aa,p(Q) takes on the form 

It is not difficult to show that the integral with respect to r' 
in (A10) is proportional to (2 - where np is the 
principal quantum number of the excited state, i.e., it should 
be expected that the main contribution to sum (A4) over P is 
made by the ground state with P=O. In this approximation 
the function B is written in terms of the one-electron Cou- 
lomb Green's function g c ( r , r ' ~  + iO) as 

where PI  = -EF + ET+ = 24.6 eV is the ionization 
potential. 

It was shown in Ref. 21 that for large values of E the 
Green's function g C ( r , r ' ~ +  iO) may be described formally 

by 

where v is a free parameter that is close to unity in the sense 
of an approximation. When (A12) is taken into account, ex- 
pression (All) takes the form 

where xo(r1) = ' p o ( ~ l ) S d r ' ~ ~ ( ~ ~ ) ' P o ( " ) .  
With the asymptotic estimate (A13) we again take ad- 

vantage of the plane-wave approximation and perform the 
replacement of variables R= (rl + r2)/2, p=rl -r2. Then 

If Q is small and we consider the region 9-0, the dif- 
ference 

is large. Therefore, since ,yo and cp, are smooth functions, we 
can set p=O in them, according to the rules for calculating 
rapidly oscillating integrals. From (A14) we ultimately ob- 
tain 

whence estimate (10) also follows in the vicinity of 9-0. 

' I ~ h i s  function was previously proposed in papers by ~erkur 'ev,"  but was 
not used for specific calculations. 

' Yu. F. Smirnov and V. G. Neudachin, Pis'ma Zh. Eksp. Teor. Fiz. 3, 298 
(1966) [JETP Lett. 3, 192 (1966)l. 

'v. G. Neudachin, G. A. Novosel'tseva, and Yu. F. Smirnov, Zh. Eksp. 
Teor. Fiz. 55, 1039 (1968) [Sov. Phys. JETP 28, 540 (1969)l. 
U. Amaldi, A. Egidi, R. Marconero, and G. Pizzella, Rev. Sci. Instrum. 40, 
1001 (1969). 

4 ~ .  Ehrhardt, M. Schulz, T. Tekaat, and K. Willmann, Phys. Rev. Lett. 22, 
89 (1969). 

5A. Lahmam-Bennani, C. Dupr;, and A. Duguet, Phys. Rev. Lett. 63, 1582 
(1989). 

'YU. F. Smirnov, A. V. Pavlitchenkov, V. G. Levin, and V. G. Neudatchin, 
J. Phys. B 11, 3587 (1978). 

7 ~ .  G. Neudatchin, N. P. Yudin, and F. A. Zhivopistsev, Phys. Status Solidi 
B 95, 39 (1979). 

"u. V. Popov and J. J. Benayoun, J. Phys. B 14, 3513 (1981). 
'YU. V. Popov, L. Avaldi, R. Camilloni, and D. Stefani, Zh. Eksp. Teor. Fiz. 
90, 1191 (1986) [Sov. Phys. JETP 63, 694 (1986)l. 

'OM. Brauner, J. S. Briggs, and H. Klar, J. Phys. B 22, 2265 (1989). 
" S. P. Merkuriev, Ann. Phys. (New York) 130, 395 (1980); S. P. Merkur'ev, 

Teor. Mat. Fiz. 32, 187 (1987). 
"B. Joulakian, C. Dal Cappello, and M. Brauner, J. Phys. B 25, 2863 

(1992). 
I3c. Dal Cappello and H. Le Rouzo, Phys. Rev. A 43, 1395 (1991). 
14yu. V. POPOV, J. Phys. B 14, 2449 (1981). 
l5 Yu. V. Popov and L. Frost, in Proceedings of the International Conference 

on Few-Body Problems in Physics (Adelaide, Australia), edited by I. R. 
Afnan and R. T. Cahill, North-Holland, 1992, p. 2. 

1 6 ~ .  W. Byron, Jr. and C. J. Joachain, Phys. Rev. 164, 1 (1967). 
1 7 ~ .  J. Tweed, J. Phys. B 6, 398 (1973). 
"T. A. Carlson and M. 0. Krause, Phys. Rev. 140, A1057 (1965). 
1 9 ~ .  Berkadar, J. Phys. IV C6, 135 (1993). 
"YU. V. POPOV, C. Dal Cappello, B. Joulakian, and N. M. Kuzmina, J. Phys. 

B 27, 1599 (1994). 
"Yu. V. Popov and N. M. Kuz'mina, Vestn. Mosk. Univ., Ser. 3: Fiz., 

Astron. 33, 29 (1992) [Mosc. Univ. Phys. Bull. 47, 30 (1992)l. 

Translated by P. Shelnitz 

184 JETP 80 (2), February 1995 Popov et a/. 184 


