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The effective action of (2+ 1)-dimensional quantum electrodynamics is considered in the one- 
loop approximation at nonzero temperature, chemical potential, and external magnetic 
field. It is shown that, besides the Landau oscillations in the parameter ( m 2 / e ~ ) ( , u / m  - I ) ,  the 
thermodynamic potential has an oscillatory dependence on the quantity TI@. O 1995 
American Institute of Physics. 

1. INTRODUCTION 

Investigations of a number of fundamental problems in 
strong-interaction physics, the construction of scenarios of 
the development of the early universe, and astrophysical 
problems dominated by the presence of strong magnetic 
fields, high temperatures and high matter densities require 
the preliminary solution and analysis of the largest possible 
number of models of the interaction of elementary particles 
and radiation, and of phase transitions which allow for the 
presence of an external field, nonzero temperature, and non- 
zero matter density. In recent years some of the stages in the 
solution of these problems have been successfully sur- 
mounted: The Weinberg-Salam-Glashow theory of the elec- 
troweak interaction and quantum chromodynamics has been 
constructed, the Higgs mechanism has been discovered, 
making it possible to give gauge fields mass while conserv- 
ing the properties of renormalizability and unitarity, and it 
has been found that a spontaneously broken symmetry is 
restored at a high temperature. The possibility of using the 
Furry picture to take exact account of the influence of an 
external field and to go beyond the scope of perturbation 
theory has turned out to be very important, and has opened 
up new possibilities for the study of physical properties of 
the vacuum. For example, while studying the polarization 
operator and mass operator in an ultrastrong field, Ritus' 
investigated the behavior of the vacuum at short distances. In 
Ref. 2, Fradkin developed a general technique for investigat- 
ing quantum field theory at nonzero temperatures and densi- 
ties by means of temperature Green's functions, derived a 
system of functional equations for the Green's functions both 
in the theory of quantized fields and in quantum statistics, 
considered renormalization and ways of eliminating diver- 
gences, and developed a method for the operator solution 
and continuous solution of the equations obtained. 

Despite the successes achieved in this field of investiga- 
tion, there are a number of questions that have not yet been 
answered because of technical difficulties or difficulties of 
principle. An important step on the path to realizing this 
program is the derivation and analysis of explicit analytical 
expressions for the one-loop effective potentials of the sys- 
tems under consideration at a nonzero temperature. This 
stage, which has been passed for most models in recent 
years, is fraught with particular mathematical difficulties as- 

sociated with the treatment of external fields and the nonzero 
temperature and density of the matter. Overcoming these dif- 
ficulties is an important task the urgency of which arises 
from the present state of quantum field theory at nonzero 
temperatures. 

Above, we have given arguments in favor of the study 
and analysis of the thermodynamic potential of a relativistic 
electron gas in a magnetic field on general theoretical and 
cosmological grounds. However, there is one further 
aspect-a study3 of Fermi surfaces that is based on the Lax 
model for an ellipsoidal nonparabolic model.4 Although this 
is a very approximate model, in a number of cases it permits 
one to make various quantitative and qualitative predictions. 
This model has received considerable experimental support 
from observations of so-called magneto-optical oscillations. 

On the other hand, the study of the thermodynamic po- 
tential of relativistic particles can be important in the inves- 
tigation of subtle quantum effects in solids. Recently, for 
example, in connection with the discovery of high- 
temperature superconductivity, the need to study various ver- 
sions of (2+ 1)-dimensional (three-dimensional) quantum 
field theories has arisen. The point is that this phenomenon 
can be described using only two spatial coordinates, since 
the conduction electrons in materials of the type La2Cu04 
are concentrated in planes formed by Cu and 0 atoms.5 As 
well as in high-temperature superconductivity, three- 
dimensional field theories can be used to describe the frac- 
tional quantum Hall e f f e ~ t , ~  and also to model other physical 
phenomena occurring in thin films. To describe the Hall ef- 
fect and high-temperature superconductivity, such param- 
eters as the external magnetic field H,  temperature T, and 
chemical potential ,u are usually used. As a consequence of 
this, the study of three-dimensional field theories in the pres- 
ence of these external factors is an urgent problem. The ther- 
modynamics of the three-dimensional nonlinear (T model7 
and the three-dimensional Gross-Neveu model8 has already 
appeared in the literature. In addition, three-dimensional 
quantum electrodynamics (QED,) at H+O and pf-0  has 
been considered in Refs. 9. 

Taking into account what has been said, in this paper we 
calculate the thermodynamic potential in the one-loop ap- 
proximation in QED3 in the presence of an external magnetic 
field and nonzero temperature and chemical potential. We 
note that the problem of the construction of a general expres- 
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sion for the thermodynamic potential in spectral form in 
quantum field theory for a relativistic electron gas in a mag- 
netic field has been discussed previously in Ref. 10. In the 
present paper, for the first time in the relativistic case, we 
construct for the thermodynamic potential a representation 
that makes it possible to obtain corrections to the oscillations 
in the external field to any order in the parameter e ~ l m ' ,  
demonstrate explicitly the existence of a new type of oscil- 
lations in the parameter TI@, investigate the high- 
temperature ( e ~ / 2 ~ ~ < 1 )  behavior of the thermodynamic 
potential, obtain the Stefan-Boltzmann law in QED, and the 
corrections to it that are due to the magnetic field and chemi- 
cal potential, and consider the situation describing the low- 
temperature limit ( e ~ l 2 ~ ~ ~ 1 ) .  

2. QED, IN AN EXTERNAL MAGNETIC FIELD FOR T=O AND 
p=O 

We consider first (2+ 1)-dimensional quantum electrody- 
namics in an external magnetic field for nonzero values of 
the temperature and chemical potential. The Lagrangian of 
the model has the form 

We use the formalism in which the Dirac spinors @ are four- 
component spinors, and f=diag( yP, - yP), where yo= a3 
and y1.2- -za1,,. . Here ak are the Pauli matrices, and the field 
tensor F,,= d d  .- d,,A,. 

We shall place the initial model (1) in an external uni- 
form constant magnetic field H.  It is obvious that in the 
zeroth approximation the effective action of this field is 

where v=$d3x. Next we shall calculate the one-loop quan- 
tum correction to the action (2), which has the form 

Sl(m,H)= - i  In det A+C,  (3) 
A A 

where A=id-eA -m, A ,  is the vector potential of the ex- 
ternal magnetic field H,  and we will choose the constant C 
(which is independent of H )  so that the following condition 
is fulfilled: 

S,(m,H)=O for H=O. (4) 

The role of the constant C is to eliminate ultraviolet diver- 
gences from the expression (3). Without loss of generality, 
we can assume that A, has the form 

Ao=Al=O, A2=xH. 

We differentiate (3) with respect to the mass of the 
spinor field: 

For simplicity, in Eq. (5) we have omitted the term dCldm, 
which will be restored later. To obtain (5), we used the rela- 
tion detA=exp(Tr lnA), and also introduced the causal 
Green's function of a fermion in an external magnetic field: 

For it we can use the following representation:11912 

where 8(x) is the Heaviside step function, and d:$(x) are 
the positive- and negative-frequency orthonormalized solu- 
tions of the Dirac equation in the presence of an external 
field: 

In Eqs. (6) and (7) {n) denotes the set of both the discrete 
and the continuous quantum numbers over which the sum- 
mation and integration are performed in Eq. (6). It follows 
from (7) that these solutions can be represented in the form 
(the symbol T denotes the operation of transposition) 

1 
@(l;iT(t,x,y)= - 6 exp(F is,t+ iky) 

1 
*;:iT(t7x,y) = -jzq; 

exp(? is,t+ iky) 

Here E,= J-, n =0,1,2, ...; the parameter k takes all 
real values, and t = x  + kleH. In addition, for n 2 0 ,  

where H,(x) are Hermite polynomials. These functions sat- 
isfy the normalization condition 

In (8) it is also assumed that I - ,  =O. If now we make use 
of the obvious relationship 

it is possible, taking (6)-(8) into account, to write (5) in the 
following form: 

Integrating here over the variable k [see (9)], and going over 
to Euclidean space (w-iw), we obtain 
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m 
dSl(m,H) VeHm 

dm n=O 

where V is given in (2), and a n = 2 -  Sno. In Sec. 3 this 
formula will serve as the basis for introducing the tempera- 
ture and chemical potential. But here we shall continue the 
calculation of S1.  First we use in (10) the familiar equality 

and, in the resulting expression, integrate over w and sum 
over n .  As a result, restoring the previously omitted term 
dCldm, we have 

Besides the condition (4) at H=O, of course, the derivative 
dSlldm should also vanish. By virtue of this, it follows from 
(11) that 

Now, in order to obtain the expression for the one-loop 
correction to the effective action, it is necessary to integrate 
Eq. (11) over the fermion mass in the range (m,m). Taking 
into account (12), and also the rather obvious physical re- 
quirement that S1(m,H)-+O as m-+m, we have the final ex- 
pression 

We note that this can also be obtained by Schwinger's 
proper-time method.13 It is clear that for S1 from (13) the 
condition (4) is fulfilled. 

3. ALLOWANCE FOR THE TEMPERATURE AND CHEMICAL 
POTENTIAL 

In order to calculate SIT,(H), the one-loop correction to 
the effective action at nonzero temperature T and chemical 
potential p ,  we shall use the method of summation over Mat- 
subara frequencies. We shall assume that for T=O and p = O  
a physical quantity can be represented in the form of an 
integral over the Euclidean energy variable. Then to obtain 
the corresponding quantity for T, p # O  it is sufficient to 
make the following transformation: 

where p = l / T  and k=O,-f1,+2, ... . Now, making use of (lo), 
by means of (14) we can write an equation for the one-loop 
correction to the effective action for T, p#O: 

m m 
dSITp(H) VeHm - -- a n  

dm n-P k = -  ' [ ( ~ k + l ) n - T - i p ] ~ + ~ i .  
m n=O 

(15) 

Here, as in (lo), for simplicity we have omitted the term 
dCldm, which has the form (12). After straightforward alge- 
braic transformations in (15) we can sum over k. For this it is 
necessary to invoke the relation14 

As a result, we obtain 

m 
dSIT,(H) VeHm - -- 

dm 271 ,,=o E 5 - ~ ( ~ , ~ , C ) r  E n  (16) 

where 

VeHm 
F ( T , H , ~ ) =  - E 4 {[I + e x p ( - ~ ( s ,  2n- 

n = O  " 

Note that the first term in the right-hand side of (16), 
together with dCldm, coincides with dS,ldm. This is easy to 
show if we integrate over w in (10). Consequently, after in- 
tegration of both sides of Eq. (16) over the fermion mass in 
the range ( m , ~ ) ,  we obtain 

where Sl(m,H) does not depend on T or p and is repre- 
sented in (13). Henceforth, we shall be interested only in the 
second term in (17): 

m 
VeH 

s 1 T 7 H  - 2n-P ( 0 )  k )  (18) 
k =  I 

where 

@(k) = ln[l + exp(- P(E,- p ) ) ]  + ln[l + exp(- P ( c k  

+PI)]. (19) 

Using the Poisson summation formula15 

m 

@ ( 0 ) + 2 E  @ ( k ) = 2  @(x)dx 
k =  1 I," 

(20) 

we transform (18) to the form 

The first term here (apart from the sign) is the thermody- 
namic potential of the (2+1)-dimensional electron-positron 
ideal gas for H =0: 
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In correspondence with (19) and (20), the function W in (21) 
is a sum of two terms: 

where W- = W+ (p+-p), and 

We first perform a Laplace transformation of the logarithmic 
function in (22) (Ref. 16): 

where O<u<l and z = pp - pJm2+2eHx,  and then, in 
order to get rid of the square root in the exponent, make use 
of the integral representation17 

After this, in (22) we can integrate over x,  using the 
formula14 

As a result we obtain 

Up to now, we have not assumed any restrictions on T, 
p ,  and H. We now assume that the temperature is low, i.e., 
that p m % l  and u p m + l ,  where u=Re s .  Consequently, to 
estimate the integral over the variable t in (23) we can apply 
the method of steepest descent, since the exponent contains 
the large parameter s p m .  The saddle point in this case can be 
taken in the form to=l ,  and the function W+ becomes equal 
to 

If p<m holds, in the calculation of the integral overs in (24) 
the integration contour must be closed in the right half-plane 
of the complex variable s. In this case the integral will be 
equal to the sum of the residues of the integrand at the points 
s ,=n,  with n=1,2, ... . It is obvious that for p<m the func- 
tion W+ is exponentially small at low temperatures. For 
p>m the integration contour in (24) must be closed in the 
left half-plane. In this case, for each fixed value of k the 
integrand in (24) has simple poles at the real points s, = - n 
(n=0,1,2, ...), and also at two points on the imaginary axis, 
s, = + i27rkmlpeH. The contributions from the residues at 
the real points s, form the monotonic part of the thermody- 
namic potential (this is discussed in more detail in Sec. 5). If, 
on the other hand, we sum the residues at the points s,, we 
can obtain the oscillatory part of the thermodynamic poten- 
tial: 

VeH w c o s ( 2 . r r $ ( i - l ) k )  
w",""= - d(p-m)  - 2 

2.rr2mk .rrP 1 k sinh - ( BeH ' 

For the function W -  , which is obtained from W+ by the 
replacement p+-p,  we can again use the method of steep- 
est descent to obtain an approximate expression for T+O. 
Taking into account what has been said above, and the obvi- 
ous relation xlsinh x + l  as x+O, we have for w"+= from (25) 
as p + ~ :  

where B,(x) is a periodic function with period unity, which, 
for xs[O,l], is the ordinary second-order Bernoulli 
polynomial17 

From this it follows that, for sufficiently low temperatures, 
the effective action of QED, (i.e., apart from the sign, the 
thermodynamic potential of the electron gas in an external 
magnetic field) in the one-loop approximation has an oscil- 
latory dependence on the parameter (m2/eH)(p/m - 1). 

This is the usual way of obtaining the oscillations. How- 
ever, the question of the accuracy of the approximate calcu- 
lations and the question of whether physically significant 
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terms are lost in such calculations remain open. In the non- 
relativistic case this question was posed in the original paper 
of ~ a n d a u , ' ~  while in the relativistic case this question is no 
less important, as indicated by the recent publication Ref. 19. 

4. EXACT EXPRESSION FOR THE OSCILLATORY PART OF 
THE THERMODYNAMIC POTENTIAL OF A RELATIVISTIC 
ELECTRON GAS IN A MAGNETIC FIELD 

To solve this problem we propose the following proce- 
dure for exact calculation of the thermodynamic potential 
W+ of the electron component of the system. In Eq. (23), 
after expanding in a series the denominator of the fraction in 
the integrand over the variable t ,  and performing the integra- 
tion over t ,  we obtain 

Next, for the modified Bessel function K21+312(~mp), we 
make use of the representation17 

From (27), using (28), we obtain the following expression 
for the thermodynamic potential of an ideal electron gas 
(without interaction) in a magnetic field: 

The representation (29) that we have obtained for the 
thermodynamic potential makes it possible to carry out a +... +...+12 (21+1) I (42)21+ ] (30) (21+ 1)!(8~rnfl)~ '"  ' 
complete analysis of this potential. It immediately becomes 
obvious that the method of steepest descent, used by various It is easy to see that in (30) the following types of sums over 
authors, corresponds to just the first term in the curly brack- the index 1 appear: 
ets in the expression (29). For greater clarity in the investi- 
gation of (29), we represent this expression in the form 

m 

(x2)' C ( -  1)ll" 7- 
(21). - i X 2  $1" cosx, 1=0 

Here, n =0,1,2, ..., and x =  27~mklspeH. It is entirely evident 
that the expression for W+ can be represented in the form 

where the value of the index n corresponds to the power of 
the index 1 in (31)-(33), and it is easy to obtain the follow- 
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ing improvement of the answer (25), (26) containing Landau 
oscillations that we found above by the method of steepest 
descent: 

m 
VeH 

= - ~ ( p - m )  - C 
=p k = l  

In the zero-temperature limit (T-+O) we obtain 

This improved form (34) contains a field correction in the 
parameter eHlm2. Terms from (30) of an analogous type, 
containing sums of the form (31), are obtained by differen- 
tiation and contain higher powers of the parameter eH/m2 
and Bi Bernoulli polynomials of higher degrees. 

We shall now analyze the consequences of structures of 
the type (32). First we shall consider the case that is obtained 
for n=O, i.e., 

To calculate this we shall use a procedure that effectively 
corresponds to Bore1 summation (or to one of the types of 
regularization). Instead of (35) we sum the expression 

sinh a 
lim 2 ePka cos(k6) = lim - 
a-0 [ ) a+o i [ coth 6-'1 

Terms of this type make no contribution to the final result. 
The third type of term, of the form (33), after summation 

over the index k, leads us to Bernoulli polynomials that are 
periodically continued along the entire axis, i.e., 

where x l  = . r r l ( 2 s ~ @ ) ~ .  Thus, we have oscillations in 
the new parameter TI@. This answer is strictly valid in 
the low-temperature region, i.e., for mp%=l ,  in which the use 
of the procedure we have proposed is correct. 

5. MONOTONIC PART OF THE THERMODYNAMIC 
POTENTIAL OF AN ELECTRON GAS IN A MAGNETIC FIELD 

Above, we have investigated the oscillatory part of the 
thermodynamic potential of an ideal electron gas in a uni- 
form and constant magnetic field. We now discuss the mono- 
tonic part of the thermodynamic potential, for which it is 
convenient to use the following ideas. 

In the high-temperature region (mp<l  and 
 IT.\/^ 4 1)  it is convenient to transform the expression 
(23) to the form (see, e.g., Refs. 20 and 21): 

+ m 2 ) 1 1 4 ~ 1 1 2 ( l p ~ ~ )  

-- 

2 

find 
after which, using a contour-integral representation,22 we 

where 2Fl(x,y; a ; P )  is a hypergeometric function and <(x) 
is the Riemann zeta-function.17 A detailed description of the 
choice of integration contour is given in, e.g., Refs. 22 and 
23. As a result of straightforward transformations we obtain, 
for e ~ / 2 ~ ' ~ 1 ,  
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m m 
TeH ( -  l ) j r ( 1 / 2 -  j )  

'IT + - ' ' j !k ! r (k+  112) [(-2(k+ j )  
k = l  j = O  

As can be seen from (36), we have the Stefan- 
Boltzmann law in (2+ 1)-dimensional theory (the first term), 
and also corrections to it due to both the nonzero density of 
matter and the influence of the magnetic field. Taking into 
account the zero-temperature contribution, i.e., the terms So 
(2) and S1  (13), we find that the general expression for the 
effective potential at the level of the one-loop approximation 
is described by the following formulas. In the high- 
temperature region ( e H / 2 ~ ~ 4 1 ) ,  

In the low-temperature region ( e H / 2 T 2 ~ 1 )  we can obtain 
the expression 

e H T  
VeE=So+S1(m,eH)- - exp 

4lT [" T m  ("-I)] .  

6. CONCLUSION 

Thus, we have analyzed completely the thermodynamic 
potential of a relativistic ideal electron gas in a magnetic 
field in (2+ 1)-dimensional QED, and have shown that, be- 
sides the usual terms oscillatory in the parameter 
( m 2 / e ~ ) ( p l m  - 1),  discussed by ~ a n d a u "  and ~ e i e r l s , ~ ~  
there exist terms that have oscillations in the parameter 
TI@. It should be noted that oscillations in the parameter 
TI= were noted previously in our paper25 on the thermo- 
dynamic potential of the gluon gas in an SU(2) gauge theory 
in the presence of an Abelian chromomagnetic field. This 
fact (the oscillations) was attributed by us to the presence of 
a tachyon mode in the gluon spectrum. However, the above 
analysis indicates that this type of oscillation is not deter- 
mined by the statistics of the particles (the statistics is im- 
portant for the Landau oscillations) but is a consequence of 

the discretization of the spectrum in the given field. We note 
one further fact that follows from our analysis. A number of 
 author^'^,^^ suppose that the presence of the Riemann zeta- 
function [(- 112, m 2 / e ~ )  in the expression (36) for the ther- 
modynamic potential is evidence for oscillations of this 
quantity in the parameter eHlm2. At the same time, from an 
estimate of the magnitude of the field it becomes clear that 
eHlm2-1 even for fields on the order of the characteristic 
Schwinger field, i.e., H=4.41x1013 G,  and this field can 
increase to H-1018 G is only in cosmic conditions, e.g., on 
the surface of Thus, in laboratory conditions the 
only types of oscillations of the thermodynamic potential 
that can actually be observed and distinguished are those in 
the two parameters ( m 2 / e ~ ) ( p / m  - 1)  and TI@. 

We recall also that in the l i terat~re '~-~'  allowance has 
been made for the Landau-level splitting due to the electron 
spin. However, in these papers this effect was reduced to the 
semiphenomenological introduction of a phase difference be- 
tween the oscillations induced by electrons with different 
spin orientations relative to the field. As a result, the semi- 
classical result of Refs. 32 in this approach should be multi- 
plied by the quantity c o s ( n A ~  TIH), where Ae=gefiH/2mc 
is the energy difference between levels with different spin 
orientations (g=2.0023 is the g-factor). From this it can be 
seen that the parameter introduced in those papers, despite its 
dependence on the temperature, differs from the parameter 
that arises in our work. 

It is easy to see that our procedure for analysis of the 
present model problem does not depend essentially on the 
dimensionality of space, and the results can be carried over 
straightforwardly to the theory in any number of dimensions. 
This may be important in connection with the fact that in 
(3+1)-dimensional QED in the investigation of metals and, 
especially, semimetals at liquid-helium temperatures one 
uses the entire series corresponding to the Landau 
oscillations-a series that has been obtained by the method 
of steepest descent and, as we have seen, does not take into 
account all the characteristic features of the interaction of the 
electrons with the magnetic field. 

The difference between the relativistic problem of the 
determination of the thermodynamic potential of an electron 
gas in a constant uniform magnetic field H ,  which we have 
solved with the electron spectrum E,, 

= Jm2+2eH(n + s )  (s= 2 1 ,  n =1,2, ...) from the nonrelativ- 
istic problem, the spectrum of which has a quadratic depen- 
dence on the m ~ m e n t a , ' ~ " ~ " ~ ' ~ ~ , ~ ~  is extremely interesting 
from the point of view that, apart from changes of notation 
for the variables, we have effectively solved the Lax 

Thus, it is possible that the additional oscillations 
that appear in this case at the semiclassical level can be ex- 
plained in terms of ellipsoidal constant-energy surfaces but 
not in terms of parabolic bands. The corresponding semiclas- 
sical explanation of the phenomenon of Landau oscillations 
is proposed in, e.g., the paper by Lifshits and ~ o s e v i c h . ~ ~ A s  
is well known, in the first approximation the semiclassical 
description works with smooth functions. From a geometri- 
cal point of view, we have a simple topological surface-a 
sphere (or, apart from scale changes, an ellipsoid). The in- 
clusion of higher orders leads us to the need to consider 
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more-complicated topological structures-the torus, the pret- 
zel, etc. In this case it is clear that the number of possible 
periods in the physical interpretation of the result obtained 
on such a surface is increased.34 In quantum mechanics, a 
very simple but nontrivial example is the anharmonic 
o ~ c i l l a t o r , ~ ~  for which the deviation from a harmonic law 
leads to nontrivial consequences. It is evident that we are 
also dealing with an analogous situation in the present ex- 
actly solvable problem, in which the electron spectrum dif- 
fers from a quadratic spectrum. Taking into account what has 
been said, it would be interesting to find further exactly solv- 
able problems with analogous nontrivial results. It is possible 
that this will throw light on the manifestation of nontrivial 
topological effects in physically observable situations. 

Note also that we have considered the ideal electron gas. 
It is possible that allowance for the interaction will distort 
the picture that we have described and make the observation 
of oscillations of the conjectured type substantially more dif- 
ficult. This depends, on the one hand, on the intensity of the 
magnetic field in the sample, and, on the other, on the degree 
of uniformity of the sample, i.e., the question of the limits of 
applicability of the model described to a real physical situa- 
tion becomes important. 
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