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The QED thermodynamic potential in a constant magnetic field is calculated in the two-loop 
approximation. The two-loop contribution to the amplitude of electron-gas magnetization 
oscillations is shown to be much higher than the monotonic part of the magnetization in the one- 
loop approximation. The applicability of perturbation theory in the limit of a strong 
magnetic field and a degenerate electron gas is investigated. O 1995 American Institute of 
Physics. 

1. INTRODUCTION 
%42)=zl  dxdxrt r [  ypGo(x,xr ) ypGo(xr ,x)]Do(x-xr ), 

Akhiezer and Peletminskii were the first to use the two- 2 
loop approximation with relativistic effects to calculate the (1) 
QED ;hermodynamic potential without an external field. 
Other  researcher^^'^ have also examined this problem. The 
QED one-loop thermodynamic potential in a constant mag- 
netic field, i.e., the thermodynamic potential of an ideal gas 
of electrons, positrons, and photons, has also been studied in 
detail (see, e.g., Refs. 4 and 5). 

The effective Lagrangian of an arbitrary constant field 
has been calculated in the two-loop approximation by   it us.^ 

- - -  

The analogous problem in QED at a finite temperature and a 
nonzero chemical potential in a constant magnetic field is 
important. For instance, it would be interesting, from the 
standpoint of specific physical applications, to resolve the 
question posed by Akhiezer and Peletminskii for a model 
problem about the way in which the electron-electron inter- 
action influences the Landau magnetization oscillation effect 
in an electron gas. Leaving the scope of the one-loop ap- 
proximation makes it possible to solve the problem of the 
limits of applicability of perturbation theory methods in 
strong external fields. Also, calculating the two-loop thermo- 
dynamic potential in a constant magnetic field will help to 
establish the ranges of the characteristic parameters outside 
which the higher order terms in the known asymptotic ex- 
pansions for the one-loop thermodynamic potential lose all 
physical meaning.' 

In this paper we employ the method of temporal Green's 
functions to calculate the QED thermodynamic potential in a 
constant magnetic field to within terms on the order of the 
fine-structure constant (Sec. 2). In Sec. 3 we use the example 
of a degenerate electron gas to arrive at asymptotic represen- 
tations of the result in the limit of a strong magnetic field and 
in the case of a relatively weak magnetic field. We study the 
oscillating part of the two-loop thermodynamic potential and 
examine the question about the perturbation-theory expan- 
sion parameter in a strong magnetic field. In conclusion we 
discuss the results. 

2. THE TWO-LOOP CONTRIBUTION TO THE 
THERMODYNAMIC POTENTIAL 

The effective Lagrangian of a constant homogeneous 
field in the two-loop approximation at absolute zero T and at 
zero chemical potential p is given by the following 
f ~ r r n u l a : ~  

where Go(x,xr) and Do(x-xr )  are the electron and photon 
Feynman propagators at T= p = O (the two-loop thermody- 
namic potential is the statistical analog of this Lagrangian). 

To allow for finite-temperature effects we employ the 
real-time approximation, in which the Green's function is 
represented as a sum of two terms, the causality propagator 
at T=p=O and a purely temperature-dependent 

where p= T-I is the reciprocal temperature, and the summa- 
tion in (2) is over all the quantum states s = (n,p3 ,p2  ,t) of 
the electrons ( E  = + 1) and the positrons ( E  = - 1).  

Note that in our case of a constant homogeneous mag- 
netic field HIIOZ, specified by the potential 

the electron wave function defined by the four quantum num- 
bers n ,  p3 ,  p 2 ,  and 5 has the form" 

where 
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L is the normalization length along the x2 and x3-axes, and 
U,(v)  is the Hermite function with argument 

with the explicit form of the coefficients Ci  ( i =  1,2,3,4) not 
given here (see Ref. 12). 

The quantum numbers specifying the electron state have 
the following physical meaning: n =0,1,2, ... is the principal 
quantum number determining the magnitude of the trans- 
verse momentum p, and hence the radius R of the quasiclas- 
sical orbit (for n S 1 ), 

p3 is the momentum projection in the direction of the mag- 
netic field H; p2 fixes the position of the orbit center, 

and the spin quantum number & determines a state with the 
spin oriented along the field (&= + 1 )  or opposite the field 
((= - 1).  

The energy levels of an electron in a constant homoge- 
neous magnetic field are given by the formula" 

E(n,p3) = dm2+ 2 e ~ n  fp;  (10) 

and are independent of p2 and &, i.e., the levels are infinitely 
degenerate. 

The two-loop contribution to the effective Lagrangian at 
a finite temperature is obtained by replacing the Green's 
functions Go(x,xl) and Do(x-x')  in Eq. (1) with their ex- 
pressions (2) and (3) for T#O and p # O  (Ref. 8). After this 
replacement we are interested only in the temperature- 
dependent part of (1). As noted in the Introduction, the 
temperature-independent part has been studied in detail by 
  it us.^ 

If we use the temporal Green's functions approach in the 
proper-time representation obtained by Gavrilov et a1.,lo the 
physical meaning of the quantity of interest to us is not as 
clear as it is in the approach employed below, where the 
quantum numbers determining the energy spectrum of a par- 
ticle are explicitly incorporated into the general expression 
for the two-loop thermodynamic potential. This requires cal- 
culating the quantity 

where the matrix K(xl ,x i )  has the form 

To evaluate (11) we expand K in the complete set of matrices 
{ # ~ = { l , Y 5 , ~ ~ , i ~ ~ ~ , i ~ ~ " ~ :  
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We then have 

where 

Calculating the quantities specified in Eqs. (15), combining 
(11) and (14), and integrating with respect to x l  and x i ,  we 
get 

F=(c;-c;)(c;~-c;~)I~-, , , ,- ,  + ( C ~ - C ; ) ( C ; ~  

where the argument of the Laguerre functions I , , , ,  is 

As a result the two-loop contribution to the QED thermody- 
namic potential in a constant magnetic field can be written as 
follows: 

The electron-positron contribution in (18) is 

The last term in the numerator is the radiative shift of the 
energy of an electron ( E  = + 1 )  or a positron ( E  = - 1 )  in a 
constant magnetic field and has been studied in detail (see, 
e.g., Ref. 11). For the other two terms we have 

Equation (20) describes the temperature shift in the energy of 
an electron (E = + 1 )  or a positron ( E  = - 1 )  caused by the 
interaction with the plasma electrons ( E  = + 1 )  and the 
plasma positrons (E = - 1) .  Equation (21) describes the shift 
in the energy of an electron or a positron caused by the 

. Zhukovskii et a/. 159 



interaction with equilibrium radiation. The two contributions 
to the shift in the energy of an electron in a constant mag- 
netic field were studied in Refs. 9 and 13. As for the quantity 

in (18), which is the two-loop contribution to the ther- 
modynamic potential of the photon gas, it has already been 
discussed in the literature (see, e.g., Ref. 14), so we do not 
consider it here. 

3. LIMITING CASES 

We start with the two-loop contribution to the thermo- 
dynamic potential of a nonrelativistic degenerate electron gas 
in which the following conditions are maintained: 

where H o  = m2/e = 4.41 X 1 0 1 3 ~  is the Schwinger magnetic 
field. Note that the effect of magnetization oscillations in an 
ideal electron gas is discussed in classic treatments (see, e.g., 
Ref. 15) precisely using the example of a nonrelativistic 
electron gas in conditions specified by (22). Then the main 
contribution to (19) is provided by the exchange part of the 
shift in the electron energy, and in the first approximation we 
can ignore S E F - Y )  and SE, ( T =  ,u= 0 )  in comparison to 
8 ~ : ~ ~ ~ ) .  Using the Poisson summation formula,15 we can 
write (19) in the form 

To obtain the main contribution to the monotonic part of 
(19) it is enough in the first term in (23) to use the well- 
known expression for the shift in the energy of a nonrelativ- 
istic electron at T=O and H=O (Refs. 13 and 16): 

where pF is the Fermi momentum. 
Allowing for (24), we see that Eq. (23) yields 

This result (25) coincides with the exchange correction to the 
thermodynamic potential of a nonrelativistic degenerate gas 
in the free case with H=O (Refs. 1 and 15). The main con- 
tribution to the oscillating part of (23) is provided by elec- 
trons whose energies are in the vicinity of p0 = p- m with a 
spread of order T. Also, the smearing of the discrete energy 
levels of an electron in a constant magnetic field caused by 
the Coulomb electron-electron interaction can smooth out 
the oscillations. Hence we assume, in addition to the condi- 
tions specified in (22), that the energy of this interaction 
e2/a,  where a is a quantity on the order of the mean electron 

separation, is small compared to the distance between energy 
levels of an electron in a constant magnetic field: 

Then, using the dispersion law near the Fermi surface (see 
Eq. (24)), from (23) we find the following representation for 
the oscillating part of the two-loop thermodynamic potential: 

where ,ug= e/2m is the Bohr magneton. 
We now turn to the case of a completely degenerate 

electron gas in a relatively strong magnetic field, 

i.e., a situation in which the electrons fill only the ground 
level with the principal quantum number n = 0 and their spin 
points in the direction opposite the magnetic field. Here the 
electron number density is related to the Fermi energy by 

and (28) is equivalent to the condition 

which is realized, for instance, in the magnetosphere of pul- 
sars. 

In this case it is possible to express the contribution of 
the exchange interaction to the thermodynamic potential of 
the electron gas as a one-dimensional integral: 

where Ei(-x) is the exponential integral, and the parameter 
a is related to the Fermi energy by 

sinh a = d m .  (32) 

In the limit of an ultrahigh magnetic field the condition (30) 
yields 

In addition to the exchange correction (30), an essential con- 
tribution to the two-loop thermodynamic potential of a de- 
generate electron gas is provided by the correction caused by 
the radiative shift of the electron energy at T =  ,u = 0, i.e., the 
last term in Eq. (19). 

When the conditions 
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are satisfied simultaneously, the radiative shift in the electron 
energy in the principal logarithmic approximation is given 
by1' 

Combining this with (19), we arrive at the following expres- 
sion for the correction: 

ln2(2H1Ho) H 
fl!,Fd= v a m 4  -In -+ sinh a . 

8rr3 Ho [L ] (36) 

4. DISCUSSION 

Akhiezer and Peletminskii showed that the correlation 
correction to the one-loop thermodynamic potential is small 
compared to the exchange correction at fairly low tempera- 
tures, 

Hence there is every reason to believe that our results in the 
limit (37) give the main contribution to the QED one-loop 
thermodynamic potential in a constant magnetic field. 

We now compare (27) and (33) with the similar results 
of the one-loop approximation. The oscillating part of the 
one-loop thermodynamic potential is given by14 

(38) 

For p a -  T the ratio of the amplitudes of the oscillating 
parts (27) and (28) is 

P F  
r - a  - 

P&'  

Allowing for the fact that pFxn1'3 (here n is the electron 
number density) and the average distance between the elec- 
trons amn-'I3, we conclude that the condition r <  1 coin- 
cides with the condition (26) that the electron-electron Cou- 
lomb interaction is low compared to the distance between the 
energy levels of an electron in a magnetic field. 

At the same time the ratio of the amplitude of the two- 
loop contribution to the oscillating part of the magnetic mo- 
ment, to the monotonic part of the one-loop magnetic mo- 
ment (see Ref. 15) is of order ~ u m ~ ; ( e H ) - ~ ' ~ .  In other 
words, the two-loop contribution to the amplitude of 
magnetic-moment oscillations may be considerably higher 
than the monotonic part of the electron-gas magnetization, as 
it is in the one-loop approximation. 

In the limit of a strong magnetic field, where the condi- 
tion (28) is met, the one-loop thermodynamic potential of a 
degenerate electron gas is 

If we assume that p2- m 2 s 0 ( m 2 ) ,  which agrees, for in- 
stance, with the estimates in the literature17 of the density of 
a degenerate electron gas in astrophysical conditions, we find 

Thus, z= a ln[eHl(p2-m2)] is the perturbation-expansion 
parameter, and the result (33) is valid for z< 1. 
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