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The spectrum of bound states of a Dirac spin 112 field near a rotating gravitational cosmic string 
in four-dimensional spacetime has been investigated. A model of a finite-thickness string is 
considered. The spectrum of bound states of a spin 112 particle in the field of a thin string has been 
calculated under quite general assumptions about the internal string structure. The spectrum 
is demonstrated to be independent of the internal string structure. 0 1995 American Institute of 
Physics. 

1. INTRODUCTION This basis is orthonormal: 

A cosmic string is a set of singularities of physical fields g p $ r E b " = ~ a b ,  V a b = d i a g ( l , - l , - l , - l ) .  
concentrated on a line. The existence of cosmic strings is 

Then the equation of a spin 112 field can be written in the 
usually linked to some of the topological properties of physi- 

form 
cal fields. It is generally believed that cosmic strings were 
generated in the early stages of the development of the Uni- ( i y E r D , -  p)$= 0 ,  (4)  
verse. Gravitational cosmic strings have been studied exten- 
sively in recent years.132 They are generated by gravitating where ,u is the particle mass, y are Dirac matrices 

matter concentrated on a line. In the general case, the matter {p, PI = 2  T O +  = y-J . j /k+ = - y-, ( 5 )  
constituting string may have angular momentum, in addition 
to the mass. Such strings are called rotating cosmic and D, is the covariant derivative in the metric of Eq. (2): 

The coefficients which determine the torsion of the basis are 

2. INFINITELY THIN COSMIC STRING 

Let us start with an infinitely thin string. The metric of 
an infinitely thin rotating cosmic string can be written as 
 follow^:^^^^^ 

ds2=  ( d t + 4 G ~ , d c j b ) ~ - d r * -  ( 1  - 4 G ~ ) ~ r ~ d c j b ~ -  ( d z  

where M  is the string mass per unit length. If the boost is in 
the ( t , z )  plane, the quantities ( J ,  ,J,) transform as a two- 
dimensional vector. Usually strings in which this vector is 
timelike are considered. For such a string, there is a preferred 
reference frame in which J,=O. In this case the string metric 
can be written as 

W p ; a b = E ~ ~ b ~ V p e ~  9 (7)  

where e$ is the basis dual to E f , e ; = g , , ? 7 a b ~ l .  The only 
nonzero components of the tensor are 

~ 2 ; ~ 2 =  - ~ 2 ; 2 1 =  1  - 4 G M .  (8) 

Because the metric of Eq. (2 )  and the basis (3 )  are invariant 
under a displacement along the t  and z axes and under rota- 
tion about the z-axis, the solutions of Eq. (4 )  can be ex- 
panded in terms of eigenfunctions of the corresponding op- 
erators 

p = -iEf+ip,+im+ 
$ ~ , p ,  , m ( ~  ) e cC/E ,p , ,m(r ) .  ( 9 )  

A rotation through the angle 271 changes the sign of the wave 
function $, so rn should be half-integral: 

, . 
(2)  Thus m  is the projection of the total angular momentum onto 

Now J  is simply the rotational angular momentum of the the z-axis. The equation for the radial function in (9 )  is 
string per unit of its length. 

d  rn + 4GJE In order to investigate the bispinor field in the metric of [ E ? ' + i j 1  -- j2-p , j3+ - z j l- ,u $=O. 
Eq. (2),  let us select a tetradic basis in this metric d r  ( 1 - 4 G M ) r  2  r 

1  

I 
/ 

(11) 

1  
We take the Dirac matrices in the form 

\ As a result, we have the wave functions of the free state 
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e r n -  1/2)(kr)  j -iE m ~ e ( r n ~ + l / 2 ) ( k r )  \ 
sufficient to impose some linear constraints on the Hamil- 
tonian domain to make it self-adjoint. As concerns the prob- 
lem discussed, these constraints are as follows: the admis- 
sible solutions of Eq. (4 )  are 

where 

and E may assume two values, +1  or -1 .  Equation (13) 
includes two column vectors corresponding to two string 
states. If me is an integer, a similar solution is possible and 
can be expressed in terms of Neumann functions Y,, but it 
does not satisfy the quadratic integrability condition. 

The wave modes (13) found by solving Eq. (11) should 
satisfy the quadratic integrability condition. When lmel 3112 
holds, this condition unambiguously determines the sign of E 

But if we have lme1<1/2, all modes in (13) are quadratically 
integrable, regardless of the sign of E, with the implication 
that the basis consisting of the of functions (13) is linearly 
dependent. However, this is not the only difficulty. Let us 
rewrite the Dirac equation (4 )  

by explicitly separating the time derivative and the Hamil- 
tonian. In the space of the derived solutions, the Hamiltonian 
is not symmetric 

The following device is u ~ e d ~ - ~  in order to bypass this 
difficulty. First we can limit the set of admissible functions 
by the condition +(0)=0 and make the Hamiltonian symmet- 
ric (Hermitian). Then all solutions with lme1<1/2 are ex- 
cluded and the Hamiltonian becomes nonself-adjoint, i.e. the 
domain of H' is wider than that of H. The next step is to 
construct a self-adjoint extension of the Hamiltonian. 

However, de Sousa Gerbert and ~ a k i w ~ ,  who studied a 
similar problem in three-dimensional spacetime, demon- 
strated that this technique cannot be applied to rotating cos- 
mic strings because the quantity which serves as a time- 
invariant inner product of two functions is negative for the 
domain r < 4 G J / ( 1 -  4 G M ) ,  in which the causality prin- 
ciple is violated. Still, the same authors proved that it is 

Here y~ and yl are constants which characterize the internal 
properties of the string. These constants in fact determine the 
boundary conditions on the wave functions as r+O. 

Solving Eq. (11) for IEl<,u, we can also obtain the 
bound-state wave functions 

where 
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and me is determined by Eq. (15), as previously. The bound- 
ary conditions at r--+O should be now applied to the solutions 
of Eq. (11). An additional difficulty in this case is that both 
me and the order of Bessel functions are functions of energy. 
These difficulties can be overcome by making additional as- 
sumptions about the energy dependence of the boundary 
 condition^.^ One way or another, these conditions prohibit 
existence of bound states, except at some discrete energy 
values. 

3. NON-ZERO-THICKNESS STRINGS 

It has been shown above that we are forced to introduce 
some additional constants into the theory when studying the 
behavior of particles near an infinitely thin cosmic string. 
These constants are functions of the internal string structure. 
They cannot be determined a priori and have to be found by 
considering realistic models of finite-thickness cosmic 
strings. Similar models of nonrotating strings have been 
studied elsewhere.12913 

Any attempts to construct a rotating cosmic string gen- 
erated by real gravitating matter run into difficulties because 
causality is violated near the string.14'15 These difficulties can 
be overcome in the following way. It is known that parallel 
cosmic strings do not interact. The spacetime metric gener- 
ated by several strings is given by the 

N 

wA=d,i!+4~x Jf 
(x-x,)dy - (Y -y;)dx 

( r -  ri)' 9 (21) 
i =  1 

where Mi  and J: are the linear mass and angular momentum 
densities of the strings. In the exterior this metric is identical 
to that of a single rotating string (1) with total angular mo- 
mentum and spin M = C.;=,M, and JA = C.~=~J:. 

We can position an infinite number of parallel strings 
with zero thickness and infinitesimal parameters M i  and 34 
to obtain a completely static configuration which is equiva- 
lent to a finite-thickness cosmic string. Assuming that the 
string is axially symmetric and J?=O holds (the string com- 
ponents are fixed with respect to one another), we can write 
the string metric as 

Here S(r)  represents the angular momentum distribution and 
a ( r )  the string mass distribution. In the limit r+O we have 
S(r)-+O and a(r ) - r ,  which corresponds to the metric of 
free space. At infinity the metric corresponds to that of an 
infinitely thin rotating string (2). Assume that beyond some 
radius R these two metrics coincide. Then for r>R we have 

Thus R can be treated as the radius of the string core. We 
assume that the string thickness is small in comparison with 
the typical radius determined by the angular momentum 
(RG14GJI), as well as with the particle mass and energy 
( p R  G 1 ,ER 4 1). Moreover, the natural conditions in this 
problem are that the density of the string mass distribution is 
nonnegative throughout space and the sign of the string an- 
gular momentum density is identical to that of the total string 
momentum. In this case da ( r ) /d r  should drop monotoni- 
cally from 1 at r=O to 1-4GM at r = R ,  and S(r)  should 
rise monotonically in this region from 0 to 4GJ .  

Let us select an orthonormal tetradic basis in the metric 
of (22) similar to that in Eq. (3), i.e., 

The equation for the bispinor field in this case is similar to 
(4), but the coefficients which determine the basis torsion are 
different: 

S f  SS '  
W Z ; ~ ,  = - w2;10= - - 

2 ' 
w ~ ; ~ ~ =  - 02;21 = a '  - - 

2 a  ' 
(24) 

The other components of w,;,, are equal to zero. The equa- 
tion for the radial function (11) should be rewritten in the 
form 

d m + S E  ~ , j , O + i ? l  -- --- is' ~ 0 ~ 1  
d r  a , j ,2-~,i2+ 4, Y Y Y 

i a '  + - 7'-p $=O. 
2 a  I 

Now let us investigate bound states of particles in this 
metric. The general problem for an arbitrary metric (22) is 
rather difficult. Before investigating its general form, let us 
first consider a simplified string model. Let 

This model corresponds to the configuration in which the 
total mass and angular momentum are concentrated on the 
cylinder surface r = R. Without rotation this metric would 
correspond to the "flower-pot" m0de1.'~"~ For r < R  space is 
absolutely flat. In this region the radial part of a bound-state 
wave function is expressed in terms of the Bessel function of 
imaginary argument I ,, 
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where k2 = p2 - E: . It follows from Eq. (25) that when pass- 
ing through the point r = R  the wave function changes as 
follows: 

$(R + 0 )  = exp 

Assume J > O .  Since the string radius is assumed to be small, 
R G 4 G J ,  the factor in the exponent of (28) is much greater 
than unity. Therefore at r = R + 0 we have 

and Eq. (29) is accurate, neglecting exp(-RIGJ). Consider- 
ing that R < 4 G J  holds, this is quite good accuracy. Outside 
the string core ( r>R) ,  the space metric coincides with the 
metric of (2). Therefore the wave function of (29) should be 
smoothly joined to the wave functions of bound states in Eq. 
(19). Taking into account that R < 4 G J  and using the asymp- 
totic forms of the modified Bessel functions of the second 
kind, we obtain 

By virtue of Eq. (15), this equation uniquely determines the 
energy 

Moreover, only one of the two modes defined by (19) can 
exist. At p z = O  this is the mode with the spin projection 
a,=-1. If the string angular momentum has the opposite 
sign (J<O), the result is similar, namely, the energy is deter- 
mined by the same equation (31), and only one of the two 
modes of (19) is realized. At p,=O this is the mode with the 
spin projection u3=+1. In addition to (31) of course, the 
energy must lie between - p and + p. 

Now let us consider the general string model. The radial 
function $(r) is described by Eq. (25). We rewrite it in the 
form 

In the limit r ~ 0 ,  $(r) scales as a power. By integrating Eq. 
(32) over the interval from 0 to R, we can find f i r )  at r = R.  
It must be a linear combination of the bound-state wave 
functions in (19). If the integration interval is extended to 
infinity, the wave function should vanish exponentially. 

We may omit the term a r / 2 a  from Eq. (32) because it 
yields a common coefficient (which is approximately a 
power of r)  to the wave function. We will also temporarily 
neglect terms with E ,  p,, and p because their absolute val- 
ues are bounded over the entire region. Then we arrive at 

This equation can be split into two independent ones for the 
two pairs of components. For one pair of components it can 
be rewritten (after substituting Q4 for i$4) as 

and in a similar form for the other pair of components. We 
can reduce the case J < O  to that with J > O  by swapping the 
components and $r4, so we assume J > O  in what follows. 
Similarly, substituting fi4 with - 9b4, we can reduce the prob- 
lem to the case in which rn>O. Now we will separately con- 
sider two options. First assume that 
rn,=(rn +S(R)E)/( l  - 4GM)>O. Then using Eq. (34) we 
can prove that in all cases Oc$l/$4cl. Then, in the domain 
r>R the wave function diverges and does not represent a 
bound state. The case rn +S(R)E<O is more complicated. 
Let us calculate the value of R ,  at which rn +S(Rl)E =O. 
Then for r < R l  we have rn +SE>O and in all cases 
Oc$l/$4c1. Besides, unless the entire string angular mo- 
mentum is concentrated near r =0, $](R 1)/$4(R is of an 
order of unity, i.e. it does not tend to zero at small string 
radius R -0. In this case the condition rn + S E  <O is satisfied 
in the domain r > R , ,  and the ratio increases monotoni- 
cally, whereas the opposite is required. Thus we can see that 
for rn, (rn + S(R)E)/(  1 - 4GM) $;O the wave function 
does not represent a bound state. A bound state is thus pos- 
sible only in the transitional region rn,=O. 

Finally, we will consider the terms with E ,  p, ,  and p in 
Eq. (32). Their total contribution is bounded by a constant, 
which we denote as C. Then we can prove that for rn,>O and 
for m,<O and r < R l  the relative error due to these terms is 
less than 2 C r G l .  If m,<O and R1 < r < R ,  this error can be 
estimated [using the condition $l(R i,k4(R l )  - 1 and a 
similar one for the other pair of components] to be of the 
same order of magnitude. Hence the contribution these terms 
make to the wave function for r<R is negligible. The spec- 
trum of bound states is determined by smoothly joining the 
exterior wave functions $(R) to the bound states given by 
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Eq. (19) in the interior of the r =  (R) surface. The resulting 
spectrum is therefore identical to that derived from the sim- 
plified equation (26). 

We can also estimate the accuracy of Eq. (31) for the 
energy spectrum. In the simplified case (26) the error esti- 
mate is obtained by joining smoothly the functions from Eq. 
(29) to those in Eq. (19): 

P + E  
In - 

AE- 
P - E  

1 '  
1 6 G J  In - 

kR 

Thus the accuracy of Eq. (31) is rather poor (the error ex- 
pression involves logarithms of the energy), especially at 
small binding energies ( E  ( = p .  

The author is grateful to D. V. Gal'tsov for helpful dis- 
cussions and to M. I. Zel'nikov for help in preparing the 
manuscript. 
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