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Stationary solutions in the Rayleigh-Taylor instability for spatially periodic flow with C4 
symmetry (square lattice of bubbles and jets, lattice period=21r/k, k is the wave number) are 
investigated analytically. A one-parameter family of solutions S is found. The solutions 
are shown to converge on S as a function of the order of the approximation, and it is proved that 
the family S exists and is unique. We parametrize the solutions with the radius of curvature 
R at the stagnation point on a bubble. The ascent velocity v(R) of a bubble is found as a function 
of the parameter. Each point of S corresponds to an exact solution. The family has a 
termination point with kRc,-3.0 and v,,(Rc,) - 0.99&3, where g is the acceleration of 
gravity. A solitary jet is another terminal point of S and is localized in the limit kR+m with 
v(R)--+4 &%JkR. A comparison is made to the case of a stationary two-dimensional 
flow. O 1995 American Institute of Physics. 

1. INTRODUCTION and it is a smooth function satisfying the following condi- 

The instability of the boundary between a heavy top and 
light bottom liquid is known as a Rayleigh-Taylor instabil- 
ity. This instability arises in a compressible medium when 
the pressure gradient is oriented opposite to the density gra- 
dient. In recent experiments1 and in the earliest 
investigation2 it was shown that when the density of the bot- 
tom liquid is zero and the top liquid is incompressible, the 
"linear" stage of the Rayleigh-Taylor instability with 
growth rate 7-' = J;?.rrg/X, where g is the acceleration of 
gravity and X is the wavelength of the perturbation, lasts for 
only a short time and nonlinear effects come into play even 
with perturbation amplitudes (of the bubble) of the order of 
0.3X. A periodic system of "bubbles" and "jets" forms, the 
bubble velocity approaches a constant value asymptotically, 
and steady motion is established (Fig. 1). 

Finding a stationary solution in the theory of Rayleigh- 
Taylor instability is a classic problem. It was initially as- 
sumed that this solution is unique, i.e., it corresponds to a 
point in the state space. In 1955 ~ a ~ z e r :  proceeding from 
this assumption, investigated the stationary solution for two- 
dimensional flow. But in 1957 Garabedian and later 
 irkh hod hypothesized that this problem has a one- 
parameter family of solutions. However, the first quantitative 
results were obtained only very recently.5 The approach de- 
veloped in Ref. 5 made it possible to prove convincingly, on 
the basis of simple considerations about the spatial periodic- 
ity of a two-dimensional flow of bubbles and jets, the exist- 
ence of a one-parameter family F  in the solution of the prob- 
lem of stationary flow in Rayleigh-Taylor instability. 

2. STATIONARY SOLUTIONS. UNIQUENESS PROBLEM 

We present some qualitative arguments for the existence 
of a one-parameter family of stationary solutions. Consider 
two-dimensional (x,z) undetached flow of an incompressible 
liquid over some profile.6 The velocity of the liquid at infin- 
ity (z--++w) is fixed and equals -v*, and the width of the 
flow is X. The flow profile describes both a bubble and a jet, 

tions (Fig. 1). First, the flow has stagnation point (top of 
the bubble) and, second, the width of the jet at infinite depth 
z-i-M must approach zero. Consider motion in a gravita- 
tional field with a linear pressure distribution p = - pgz, 
where p is the density of the liquid. Since the velocity of the 
liquid (flow potential) and width h of the flow are fixed in 
the limit z-++m, the acceleration of gravity g,  whose dimen- 
sions are [(v*)~/x], is a free parameter. Therefore, in accor- 
dance with the similarity laws, our flow is associated with a 
family of pressure distributions corresponding to different 
values of g,  i.e., it is a one-parameter family. It is clear from 
physical considerations that this family must have two termi- 
nal points. The first (g-m) corresponds to a solitary jet (the 
radius of curvature of the bubble is infinite), and the second 
g*  limits the values of g from below, distinguishing from the 
entire range of possible values of the parameter only those 
values which describe a smooth profile with a physical, non- 
zero radius of curvature of the bubble, i.e., g E [ g * , + a ) .  
Generally speaking, since our problem contains three inde- 
pendent dimensional parameters g,  X, and v *, the "inverse" 
problem of flow around an object with g and X fixed can be 
studied, and the velocity v* (with dimensions G )  or 
Froude's number v * l a  can be varied. 

In Ref. 5 it is shown, in an analysis of the two- 
dimensional stationary flow in very high orders of nonlinear- 
ity, that the dimension of the stationary solution is indeed 
F =  1D and not F=OD, i.e., in some space of states F  is a 
curve (a function of one parameter) and not an isolated point. 

All preceding investigations were limited, however, to 
analysis of only two-dimensional flow, since great difficulties 
arise even in numerical modeling of the three-dimensional 
problem.7 We note that the existence and uniqueness theorem 
for the boundary-value problem for Laplace's equation holds 
for two- and three-dimensional cases, and the arguments pre- 
sented above about the dimension of the stationary solution 
can also be extended to three-dimensional flow. Here, the 
symmetry of the flow itself is found to be important; it must 
ensure that a unique characteristic length scale is obtained in 
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parameter family of solutions in the three-dimensional case 
( x , y , z )  and to prove that this family is unique. 

We consider stationary flow in a space with translational 
symmetry in the ( x , y )  plane {x+x+  Am, y + y  + An) and 
the 4 symmetry axis directed along the z axis {x+ - x ,  y  + 

- y ,  x + y ) .  The square lattice in the ( x , y )  plane forms a 
spatially periodic flow of bubbles and jets (Fig. 2) .  We now 
transform to a coordinate system moving together with a 
bubble at constant velocity v  . The potential @(x,y  , z )  of this 
flow is determined by Laplace's equation, periodic condi- 
tions, and the boundary condition at infinity, 

and two conditions at the free boundary of the liquid 
FIG. 1. Stationary flow-asymptotic stage of the development of the Z ' z * ( x , ~ ) :  
Rayleigh-Taylor instability. 

the problem of flow around an object. It is easy to show that 
for this to occur, the order of the flow symmetry axis, di- 
rected along the z axis, must be greater than 3: n=4.6,  i.e., 
the solutions of the problem of a stationary state in 
Rayleigh-Taylor instability in three-dimensional space must 
form a one-parameter family for the case in which the flow is 
invariant with respect to a possible symmetry axis oriented 
along the z axis: 4,6 (we consider only "simple" planar unit 
cells). 

In the present paper we investigate analytically the sta- 
tionary solution for a three-dimensional, spatially periodic 
flow. The objective of this investigation is to find a one- 

According to the first (kinematic) condition, there is no 
fluid flow through the free boundary. The second (dynamic) 
boundary condition (Bernoulli's equation) expresses the fact 
that the pressure is constant on the free surface. In the 
dimensionless coordinates {kx+x ,  ky  + y  , k z + z ,  
Jkgt- t ,  v / m + v ) ,  where k=21r/A is the wave vector, 
the Fourier expansion of the potential has the form 

FIG. 2. Spatially periodic flow of bubbles and jets. The stationary 
flow is invariant with respect to translations in the xy plane and 
rotations relative to the C ,  axis, which is directed along the z axis. 
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i exp( - Jm2+n2z) 
Q = C  Qmn cos mx cos ny 

mn JX7 

The matrix of unknown amplitudes (6) is symmetric: 
Qmn= Qnm ; without loss of generality, we set @oo=O. In the 
laboratory coordinate system the velocity of the bubble is 
v = - Zm,,Qmn . In a moving coordinate system, however, 
the top of the bubble (0,0,0) is a stagnation point (Fig. 2). 
Expanding the potential in powers of x, y, and z near the 
stagnation point, we substitute this potential into the bound- 
ary conditions and obtain in this manner a system of equa- 
tions for the unknown Fourier amplitudes. We introduce to- 
gether with the amplitudes the moments { M }  as linear 
functions of {a,,): 

then 

Not all moments determined in this manner are linearly in- 
dependent. As a result of the symmetry, 

Let zd=Zi, jYij~2iy2J be the free surface corresponding 
to the dynamic condition, and let z k = Z i , j ~ i j ~ 2 i y 2 i  corre- 
spond to the kinematic condition (on account of the symme- 
try, yij= yji, Pi j= Pji). Then, the expansions of the bound- 
ary conditions near the stagnation point have the form 

The functions - corresponding to the dynamic boundary 
condition (spq) are, generally speaking, quadratic in the mo- 
ments of the functions. The relations for them have the form 

- - 
(spq) = (psq) in view of the symmetry, and in addition 
here 

The (spq) determined from the expansion of the kine- 
matic conditions are functions of Pij and lineai functions of 
the moments. Indeed, in order N of the expansion the kine- 
matic condition has the form 

where 

2i 2(1-i) P i -  Y R ~ + Q I  

We underscore that (spq), = ( p ~ q ) ~  and (000)1 = (000)2= - 
k(001)o=-M(001), but (spq)l+ ( p s q ) ~  and (spq),+(psq), 
for all other s ,  p ,  and q. 

It follows from the expansions of the dynamic and kine- 
matic conditions that for N a 2  

and 

where FN are quadratic and GN are linear in the moments of 
the functions, and they are polynomials in yij and Pi, with 
1 S i + j S N  - 1,  respectively. 

For N = l ,  
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The solution of the system of algebraic equations 

zd=zk=z* or yij=Pij for Vi , j , i+ j=N 

determines the matrix of unknown amplitudes (6) and the 
form of the free surface z*. We seek a solution of this 
infinite-dimensional system and investigate its convergence 
by the method of successive approximations. In this fashion, 
we obtain the sequence of equations 

whose order increases linearly as a function of the order N of 
the approximations. 

In the first approximation, y l o = / 3 1 0 ~ ~ 3 ( 0 ~  1 )  
= M(002). 

The structure of the equations (2.7) is such that, as is 
easily shown, all pij are "dimensionless" as functions of the 
moments, i.e., P ~ + ~ = ~ - M ~ ( ~ ) / M ~ ( ~ ) ,  and K(N) is a posi- 
tive integer that depends on the order N of the approxima- 
tion. Moreover, it is easy to prove that since (001) 
= 2, (OOl), = -M(001) and ( E ) / ( 0 0 1 ) ~  = M-' 
and Vi, j , i+j>2,  all equations yij=Pij for V i , j , i+ j22  
will be homogeneous in the moments. Therefore, for arbi- 
trary N the first equation xo=Plo will be the only equation 
of the system (2.8a) that is inhomogeneous in the moments. 

We underscore two obvious properties of the system 
(2.8) which are important for what follows. First, according 
to Eq. (2.7), the form of the equations of this system does not 
change as the order of the approximation increases. Second, 
the equations yij= Pi, depend only on the moments and not 
(by the definition of the moments (2.2), where the summa- 
tion extends over all @,,) on which amplitudes from the set 
{a,,) are chosen to approximate the boundary conditions in 
order N. 

The following recurrence relation simplifies the deriva- 
tion of the equations in the approximation of order N. Con- 
sider the series Zs,p,q{spq}~2~2pzq with arbitrary coeffi- 

2' 2(j-i) then in cients {spq). If z=ZW~.=Z~Z{ , , rp i i j  jix y , ! J  
order kO in x and y this series has the form 

where only terms of order jO in x and y are chosen in 
(2; Tj)? 

Using this relation we easily obtain successive approxi- 
mations of yij and Pij only as a functions of the moments 
{M} from the expansion of the dynamic condition 

and kinematic condition 

respectively. The expressions for yij and Pi, with i + j =3 are 
quite complicated and will not be presented here. 

We choose among the moments {M) the linearly inde- 
pendent moments (2.3). In first order there are two linearly 
independent moments M(001) = M  and M(002) =M2. 
But, on the basis of Eq. (2.3), one could chose instead the 
moments M(20-1)= (1/2)M(001) or M(200)=(1/ 
2)M(002). In second order the moments M(220), M(400), 
M(22-I), and M(40-1) are added to the moments M1 and 
M2 (or, for example, the moment M(003)=M(22-1) 
+ M(40- 1)). In third order the moments M (420), M (600), 
M (42-I), and M(60-1) appear, and so on. 

We now express the functions (spq), (spq),, and 
(spq) [Eqs. (2.5) and (2.6)] that appear in (2.9) and (2.9a) 
in terms of the following linearly independent moments: M I ,  
M2, M(220), M(400), M (22-I), M (40-I), M(420), 
M(600), M(42-I), M(60-1). Then, the equations (2.8) have 
the form 
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+5M(400))+M(40- l)(lOM(220) our system (2.8) AN(t,&)=O, then as N increases, these 
solutions of (2.8) (points) must converge to an isolated limit 
(or limits). 

= 0, Setting N,= N, + 1,  we find in each order N a solution as 
a curve-a function of one parameter in the space a,,. If 

Y 3 0 = ~ 3 0 * 1 5 ~ ~ ~ ~ ( 9 ~ ( 2 2 0 )  + 181M(400)) the dimension of the solution of the system (2.8) AN(t,&) 
= 1 ,  then the solutions (2.8a) must form a family of curves 

+40M?M2(9M2(22- 1 )  +36M(22- 1)M(40 that converges with increasing N to a one-parameter function 

- 1) -  13M2(40- 1))-  15M1M;(147M(22 in the space am, . 
If, however, the dimension of the solution of the system 

- 1)  - 1 7 ~ ( 4 0 -  1 ) ) - 3 6 ~ : ~ , ( 2 3 ~ ( 6 0 -  1 )  (2.8) AN(t,&) = O  and in solving Eq. (2.8a) we set 
N,= N, + 1,  then as N increases, the curves obtained will 

+5M(42- 1))-80MlM(400)(3M(22- 1 )  converge only in a neighborhood of an isolated point (solu- 

The equations yij = Pi, obtained for i + j =2,3 in the first 
three orders of approximation are, as expected, homogeneous 
in the moments: third order for i+ j = 2  and fifth order for 
i + j =3. As follows from the derivation, in the higher orders 
the first two moments M1 and M2 (or, as follows from Eq. 
(2.2), the leading amplitudes Qlo, Qll, and QzO), appear in 
them. 

tion). 
On the basis of qualitative considerations for a three- 

dimensional spatially periodic flow with C4 symmetry, we 
seek a one-parameter family S of stationary solutions. 

Let such a family of solutions S exist and be unique. If p 
is a parameter, then there must exist a functional limit with 
respect to this parameter of the Fourier amplitudes a,,@) 
as the order N of the approximation increases: 

{@P))= lim {@P))N. (3.1) 
N+m 

The absolute value of the amplitudes a,,@) must de- 

3. DIMENSION OF THE SET OF SOLUTIONS IN THE crease as the number m + n of the amplitude increases: 

PROBLEM OF THE STATIONARY STATE 
II@mn(P)Im+n=~+l-@rnn(P)Im+n=lII*II@mn(P)Im+n=~II 

A solution of any system of equations exists, generally 
speaking, when the number of variables N, is not less than 
the number of equations N, in this system, N,>N,. The 
difference AN(t, e )  = N,- N, , however, determines the 
number of free parameters or the dimension of the solution 
of the system. If AN(t,&) = 0, then the solution of the system 
of equations is a point in the space of the variables of the 
system, for AN(t,&)= 1 the solution is a curve, and for 
AN(t,&) = 2 the solution is a surface. 

We seek a solution of the system (2.8) 
{ yij= Pi, ,i + j = N =  1,. . .,m}. It is interesting that the equa- 
tions of this system, which were derived in "dimensionless" 
variables, do not explicitly contain any additional param- 
eters. The dimension of the solution of the system (2.8) is 
therefore not known in advance. Since we seek a solution of 
our infinite-dimensional system by the method of successive 
approximations (finite-dimensional approximation of the 
problem of determining a function in function space), the 
dimension AN(t,&) of the solution must be such that con- 
vergence with increasing N occurs on the set of solutions of 
the system of equations (2.8a) { yij = Pij ,i + j s N ) .  

As we have already mentioned above, for an approxima- 
tion of order N, the equations (2.8) for all N depend only on 
the moments {M) and not on the specific choice of 
variables-the unknown Fourier amplitudes @,, from the 
set {&)-and thus on the number N, of these variables. 
These equations therefore make it possible to find in order N 
a solution of any dimension. 

Setting N,=N,, we obtain in each order N of approxi- 
mation of the solution a point (or points) in the space of the 
Fourier amplitudes @,, . If the dimension of the solution of 

for all m, n7 and 1. Such behavior of @,,@) would indicate 
convergence and it would prove the existence of a unique 
one-parameter family S of solutions for a three-dimensional 
spatial flow of bubbles and jets. The family S itself would 
then be completely determined by the matrix {&@)I. Each 
point of this one-parameter family S would correspond to an 
exact solution. We show below that the absolute value of the 
amplitudes am,@) decays exponentially as m + n increases. 

Since in finding the one-parameter family of solutions S 
the number of equations N, in the system (2.8a) in each 
order N and the number of variables N, (unknown Fourier 
amplitudes @,,) must be related by N,= N, + 1,  we obtain, 
for example, in the first approximation N =  1 a single equa- 
tion (N,=l) xo=Plo and two variables (or, 
equivalently, {@lo,@ll)), i.e., N,=2. One of these variables, 
Qlo, is the first-order amplitude and the other ( a l l  or a,,) is 
a second-order amplitude. In the second approximation 
N=2, we obtain a system of three equations (NE=3): 
{ yl0=Plo, yll =Pll,  y20=P20) and four variables N,=4: 
{@10,@11,@20 ,@30) (or {@I0 ,@I1 ,@20,@21)). In the third ap- 
proximation N=3 we obtain a system of five equations 
(N,=5): {Ylo=Plo, 3 / 1 1 = & 1 7  3/20=P20, y21=&1, Y3o=P3017 
and six variables: {alo , a l l  ,@20,@31 ,Q30 (either 
{@10,@11,@20,@31,@30 ,@31I, Or {@10,@11,@20 ,@31,@30 2 

@,,I). This process can be continued. The choice of the 
additional amplitude is arbitrary. Generally speaking, in Nth 
order any (6) and more than one amplitude of the next (N 
+l)st order can be chosen as the additional amplitude. But 
this, in accordance with Eqs. (3.1) and (3.la), would reduce 
the domain of convergence. 
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In the Nth approximation the value of the parameter for 
which all additional amplitudes vanish corresponds to the 
solution of the system (2.8a) in the case N,=N, and 
AN(t,&)=O. This value of the parameter will obviously be 
the point of intersection of the curves in the N-th approxi- 
mation which correspond to different choices of the addi- 
tional amplitude. The case AN(t,&)=O in each order N, in 
principle, therefore requires no further analysis, since it is 
automatically contained in the solution of the system (2.8a) 
in the case N,=N,+ 1. 

We now consider in greater detail a method for solving 
the system (2.8a). In each order N the number of linearly 
independent moments {M(a,P, y)) is greater than the number 
of linearly independent amplitudes {a,,). Since 

we easily obtain for each moment M(a,P,y) in the case 

@20+ 0 

x(m2+n2)  , i (3.2) 

where a =oa+oP and b =2Y(2a0P+2P0a). The case @20=0 
will in fact appear only in the first approximation N =  1 if in 
solving the system (2.8a) the amplitude a,, is chosen as the 
additional amplitude. Then 

Substituting the expression (3.2) into the system (2.8a), 
we obtain in order N a system of equations in the variables 

Since the transformation (3.2) is linear, all homogeneous 
equations of the system (2.8a) become homogeneous in the 
variables {MI , ,M2 ,{@mn)m+n,2) of the equations of 
the system (3.3), and the first equation ylo=Plo will remain 
unchanged. The degree of nonlinearity of the system (3.3) in 
the variables am, is comparatively low. 

On the other hand, the radius R of curvature of the free 
surface of a bubble at the stagnation point and the velocity v 
of the bubble in the laboratory coordinate system are physi- 
cal variables that describe our steady flow (the surface is 
described by two radii of curvature, but in this case, in view 
of the symmetry, they are identical and equal to R). The 
radius of curvature R is obviously related to the moments M, 
and M2: R =  - 1 / 2 ~ l o ( @ m n )  or R=4MllM2. 

We also call attention to the fact that all amplitudes and, 
according to Eq. (2.2), the moments {M) have the dimen- 
sions v of the bubble velocity. We define 

introducing the velocity v as a scale factor. This transforma- 
tion changes the form of only the first inhomogeneous equa- 
tion (M:-M,=o) of the system (2.8a) or (3.3), which will 
contain, besides the variables m, and m2, the velocity v. 
However, this approximation will not affect the form of the 
homogeneous equations of the system (2.8a) or (3.3) and 
therefore Eq. (3.3) will have the form 

The condition (2.2a) becomes 

Together with the expression for the radius of curvature of 
the surface R=4mllm2, the first of the equations (3.5) 
v2 = m:lm2 defines the change of variables from the variable 
moments {m, ,m2} to the physical variables {v,R), the ve- 
locity v playing the role of "length" and the radius of cur- 
vature R playing the role of "angle": 

Therefore, in order N, we finally obtain on the basis of 
Eqs. (3.2), (3.4) and (3.6) a system of equations in the vari- 
ables {m1,cp11 ,m27{cpmn)m+n>2): 
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where the velocity u and the radius of curvature R in Nth 
order are related to the solution (3.7) by the transformation 
(3.6). The first equation in Eq. (3.7) is once again inhomo- 
geneous, but now this equation is linear. 

Different variables can be chosen as the parameter p of 
our family S of stationary solutions. For example, the param- 
eter can be an amplitude or a moment. We choose as the 
parameter of the family S a physical variable-the radius of 
curvature-p = R . 

We set the number of variables N, in the system (3.7) to 
one greater than the number of equations N,, i.e., 
N,=N,+ 1.  Solving any N,- 1 equations of the system 
(3.7), we obtain the amplitudes qmn= cpmn(ml ,m2) as func- 
tions of the variables ml and m,. Substituting these expres- 
sions into the remaining equation (3.7), we obtain a function 
f(ml,m2)=0, which determines a curve in the (m1,m2) 
plane and, after the transformation (3.6), the velocity 
v = v(R) and then the amplitude qmn= cpmn(v(R),R) as 
functions of the parameter R in the Nth approximation. As N 
increases, convergence must occur to some "ideal" functions 
of the velocity and amplitudes corresponding to N=a .  

We note that among the solutions of the system (2.8a) or 
(2.10), there are always "identity" solutions {M,=O, M2=0) 
or {m,=O, m,=O}. For such solutions the Jacobian of the 
transition from variables {m, ,m,) to variables {v,R) is zero; 
this means that branch points appear on the curve in the 
(m, ,m2) or (v ,R) plane. In what follows we shall not study 
such "identity" solutions. 

4. ONE-PARAMETER FAMILY OF SOLUTIONS 

Our investigation was limited to the first three orders of 
approximation with N= i + j = 1,2,3, and with N, = 1,3,5 and 
N,=2,4,6, respectively, in view of the complexity of the sys- 
tem (2.8a), which for orders higher than third must be solved 
numerically. 

1) In the first approximation (N=l),  the system (2.8a) 
consists of one equation (N, = 1)-the linear inhomogeneous 
equation (3.7). 

We choose as the variables of the system (2.8a) the Fou- 
rier amplitudes (N,=2). Then, after the transfor- 
mations (3.2), (3.4), and (3.6), we obtain 

whence we easily find as the solution of the linear equation 
of the system (3.7) the velocity and amplitudes as functions 
of the parameter R: 

and, correspondingly, 

Choosing the Fourier amplitudes {@lo,@ll) as the vari- 
ables (in this case @zo=O) results in [after the transforma- 
tions (3.2a), (3.4), and (3.6)] a somewhat different depen- 
dence of the velocity and amplitudes on the radius of 
curvature: 

We now analyze the expressions (4.la) and (4.lb). First, 
irrespective of the choice of the additional amplitude, the 
velocity and the amplitude in the first approximation N =  1 
have the form v(R), @ m n ( ~ ) - ~ ( ~ ) l ~ 1 ~ 2 ,  where W(R) is a 
rational function of R. In the limit R + a  v(R)-+3/@, 
cplo(R) + -213, cp20(R)-+1/6 in Eq. (4.la) and v (R)+ (2 
+ f i ) / @  - 3.4141@, cplo(R)-+-1, cpI1(R)+1 in Eq. 
(4.lb). 

Moreover, the "additional" amplitudes aZ0(R) and 
@,,(R) in Eqs. (4.la) and (4.lb) vanish (the velocity and the 
amplitudes from Eqs. (4.la) and (4.lb) become equal) at the 
same value of the parameter Ro=4: @20(4)=@11(4)=0. This 
corresponds to a zero-parameter solution (AN(t,c) = 0) of 
the system (2.8a) in the first approximation N=l :  

2) In the second-order approximation, the velocity and 
amplitudes can be determined as functions of the parameter 
by solving the system (2.8a), which for N=2  consists of 
three equations (N, =3) for four variables (N, = N, + 1) =4 
({@lo ,@,I ,@zo,@~o) or {@lo,@ll ,az0 ,@211) or, taking into ac- 
count the relations (3.2) and (3.4), from the system of equa- 
tions 

fortheun~~owns{m,,cp,l,m,,cp30) (0r{mI,cpll,mz,cp211). 
As follows from Eq. (2.10), the variables {cp,,) appear in the 
equations of this system linearly. We solve any two of the 
three equations (4.2) for { ( ~ ~ ~ , 9 ~ ~ }  (or {cpl1,cpZl), respec- 
tively), and then, using Eq. (3.6), we transform from the 
variables {ml ,m2) to the variables {v,R} in the remaining 
equation (4.2). Irrespective of the choice of the additional 
amplitude, the velocity as a function of the radius of curva- 
ture will be determined by the expression 

where q(R) and p(R) are polynomials in R, and both poly- 
nomials have the same degree. Hence, we easily find v(R) = 

- 4 ( R ) l p ( ~ )  @. 
In choosing m2, as the "additional" amplitude, the func- 

tions q(R) and p(R) have the form 
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TABLE I. Asymptotic behavior of the velocity ( v ( R ) )  and the amplitudes 
(@,, , , ,(R)lv(R)) as functions of the parameter R in the limit R+m. 

v(R)= - 4 [ 2 l l ( ~ ) l P [ 2 l I ( ~ ) f i .  

If, however, is chosen as the additional amplitude, then 

The expressions for the amplitudes @,,(R) are quite com- 
plicated and will not be presented here. We merely note that 
just as in the first-order approximation, the ratio 
@,,(R)Iv(R) is a rational function irrespective of the 
choice of the additional amplitude. If (PZ1 is chosen as the 
additional amplitude, then @,,(R)Iv (R) = P7(R)IQ7(R) for 
all @,,(R). When is chosen as the additional amplitude, 
@,,(R)lv(R) = P8(r)lQ8(R) for all @,,(R), except 
@lI (R)I~(R)  = P,(r)IQ,(R) (here and below Pi(R) and 
Qi(R) are polynomials of degree i). The asymptotic behavior 
of the ratio @,,(R)Iv(R) in the limit R - m  is presented in 
Table I. 

The zero-parameter solution of the system (2.8a) in the 
second-order approximation (N=2) corresponds to solutions 
of the system (4.2), in which the "additional" variables 
( P ~ ~ ( R )  = q30(R) = 0, and the number of unknowns 
{m, ,cpl,,m2) equals the number of equations: AN(t,e)=O. 
'Jbo of the possible solutions are complex conjugates of one 
another; for their real parts 

[@11(R2)I~(R2)]=1.346, [@20(R2)lv(R2)]= -0.078 

only the solution with R, = 10.641 is physically meaningful. 
3) In the third-order approximation the system (2.8a) 

consists of five equations (N,=5) and six unknowns, since 
N, = N, + 1 =6. As the "additional" amplitude, we choose 
one fourth-order amplitude: aZ2,  @31, or @40. Taking into 
account the relations (3.2) and (3.4), the system (2.8a) in this 
case is equivalent to the system (3.7) with N=3: 

with one of the following sets of variables: 
{ m l , ~ l l , m 2 , ~ 2 1 ~ ~ 3 0 ~ ~ 2 2 > ,  { m 1 , ~ 1 1 , m 2 , ~ 2 1 , ~ 3 0 , ~ 3 1 } ,  Or 
{m, ,cpl ,m2 ,cpZ1 , ( P ~ ~ , C ~ ~ } .  In accordance with Eqs. (2.8a), 
(2.10), and (3.2) the equations Ulo=O, Ull=O, and Uzo=O of 
this system are linear and the equations U2,=0 and U,=O 
are quadratic in the variables {rp,,). We shall solve the linear 
subsystem Ulo=O, Ull=O, and Uzo=O for any three of the 
variables {Q,,). As one can easily see from Eq. (2.10), the 
determinant of this subsystem is proportional to a function 
which is quadratic in {m, ,m2}. In {v,R), its zeros are there- 
fore roots of a quadratic equation in R. It is of interest that 
for any choice of the variables {q,,,,), the zeros of the deter- 
minant of the subsystem (4.3) correspond to real values of 
the parameter R*. These values of the parameter, however, 
are not distinguished in any way from a physical standpoint, 
and a solution of the system (4.3) exists for R=R*. Thus, 
solving the linear subsystem Ulo=O, Ull=O, and Uzo=O for 
any three of the variables {cp,,), we substitute the expres- 
sions obtained into the equations Uzl=O and U3,=0, which 
now depend on %,,n2 and the remaining, fourth, variable 
Q,, as follows: 
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FIG. 3. One-parameter family of solutions. The velocity v(R) (a) and the 
amplitude @IO((R)~V(R) (b) are shown as functions of one parameter-the 
radius of curvature R of a bubble at the stagnation point in the first three 
orders of approximation N = l ,  2, and 3. The different parameter depen- 
dences of the velocity and the amplitudes correspond to the choice of the 
"additional amplitude" @,,(R) in each order N of the approximation. The 
asterisks designate zero-parameter solutions in the first R0=4 and third 
Ro=3.486 approximations. The circles mark the region of the critical value 
of the parameter R,=3?0.3. The velocity and the radius of curvature 
are expressed in dimensional coordinates IRI = l lk ,  lv 1 = m. 

2 
A2(m1,'"2)(Prnn+C2(mi 7m2)~mn+D2(ml ,m2)=07 

(4.3a) 

where A , ( m l  ,m,),Ci(ml ,m,), and Di(ml ,m2) are polynomials 
in m, and m2. We easily find from Eq. (4.3a) 

?m2)D2(ml 7m2)-A2(ml ,m2)D1(m1 7m2) 
(Pmn= - 

A,(m1 ,m2)C2(m, ,m2) -A2(m1 ,m2)Cl(ml ,m2) ' 

The condition that the system (4.3a) be compatible, 

FIG. 4. Functional convergence of thl velocity with increasing order of the 
approximation of the boundary conditions at the free surface of the liquid. 

determines in the third-order approximation the solution 
(curve) of Eq. (4.3) in the {m, ,m2) or {v,R) plane. Irrespec- 
tive of the choice of the additional amplitude for N =3, v (R) 
is the solution of the equation 

where the Pi(R) are, once again, polynomials of degree i in 
R. Only the specific form of these polynomials depends on 
the choice of the additional amplitude [this is easily under- 
stood by analyzing Eq. (2.10)]. We note that the exact ex- 
pressions for Pi(R) in Eq. (4.3b) are extremely complicated. 
It is interesting, however, that over practically the entire 
range of R, to determine the solutions of Eq. (4.3) it is suf- 
ficient to expand first the expressions (2.2)-(2.10) and (3.2)- 
(3.7) with prescribed accuracy. This would both greatly sim- 
plify the expressions for the polynomials Pi(R) and make it 
much easier to find the solution v(R) in Eq. (4.3b). Extended 
(high!) precision is required here only near the values of the 
parameter R* for which the determinant of the linear system 
(4.3) vanishes. 

We now consider the solution of the system (4.3). It 
follows from Eq. (4.3b) that as R+m, one solution v(R) of 
this equation approaches zero, v (R) - 11 fi, while the three 
other solutions behave as a. For small values of the param- 
eter, however, irrespective of the choice of the additional 
amplitude, two of the four possible solutions of Eq. (4.3b) 
are always complex conjugates of one another, and physical 
values of the amplitudes of the real solutions amn(R)  corre- 
spond to only one. For a specific choice of the "additional" 
amplitude in Eq. (2.8a), the functions v(R) and 
@,,(R)Iv(R) for small values of the parameter R and the 
asymptotic behavior of these functions in the limit R+m are 
displayed in Fig. 3 and in Table I, respectively. 

The zero-parameter solution of the system (2.8a) with 
N=3  corresponds to the solution of the system (4.3) with the 
variables {ml ,cpl, ,m2 ,cp2,, (P,,)(AN(~,E) = 0). In this case 
the system (4.3) has five real solutions: R1=1.995, 
R2=3.486, R3=20.067, R4=32.762, R5=51.715. Of these 
solutions, the one with 

corresponds to physical values of the amplitudes. As is 
clearly seen from Fig. 3, this value of the parameter is the 
point of intersection of the curves v(R) (and, naturally, 
@,,(R)Iv(R)) which correspond to different choices of the 
additional amplitude for N=3. 

140 JETP 80 (I), January 1995 S. I. Abarzhi and N. A. lnogamov 140 



FIG. 5. Decrease of the absolute value of the amplitudes with increasing 
number of the harmonic. ~ h i ~ d - ~ ~ d ~ ~  approximation of the boundary condi- FIG. 6 .  One-parameter family of solutions for three-dimensional (s) and 
tions. The "additional amplitude" is Q4,,(R). two-dimensional (F) flows. The roman numerals designate the order of the 

approximation of the boundary conditions. 

5. DISCUSSION. QUESTIONS OF CONVERGENCE 

The solution of the system (2.8) is exact and satisfies 
Laplace's equation, periodic boundary conditions, the bound- 
ary condition at infinity, and dynamic and kinematic condi- 
tions on the free surface of the liquid. We have derived ana- 
lytically the velocity and the amplitudes as functions of a 
parameter-the radius of curvature of a bubble at the stag- 
nation point-in the first three orders of approximation, i.e., 
we have found the solutions of the system (2.8a) with N = l ,  
2, and 3, respectively. The most important question is the 
functional convergence of these solutions as the order of the 
approximation increases, i.e., whether or not the solutions 
obtained satisfy (3.1) and (3.la). 

The condition (3.1) means that for curves of each ampli- 
tude and velocity, the curves must not differ by too much, 
and as the order of the approximation increases, they must 
approach the boundary conditions on the free surface of the 
liquid. We now discuss in greater detail the behavior of the 
velocity v(R) as a function of N, noting immediately that 
any amplitude @,,(R) behaves similarly. In each order of 
approximation the velocity v(R) is represented by several 
curves, corresponding to a possible choice of the additional 
amplitude for the solution (2.8a). In the first approximation, 
there are two such curves (the additional second-order am- 
plitudes are @,, and aZ0); in second order there also two 
curves and a30); and, in third order there are three 
curves (@22, @31, or Q40) (Fig. 3a). All curves lie close to- 
gether. From their relative position it should be noted, first, 
that the curves are close to one another in the first approxi- 
mation. Second, the curves corresponding to different orders 
of approximation can also be classified according to symme- 
try, i.e., according to the symmetry of the additional ampli- 
tude a,, : {@20, @30, and @40}, and @31}, and finally 
{@,, and @,A (Fig. 3a). Figure 4 demonstrates the conver- 
gence of the curves with increasing order N of the approxi- 
mation of the boundary conditions on the free surface of the 
liquid. For simplicity here, we show the convergence of 
curves with the same symmetry as the order of the approxi- 
mation increases; the additional amplitudes are @20, a30, 
and respectively. For the functions 
log1 vN+ l(R) - vN(R) I presented in Fig. 4, vN(R) converges 
exponentially as N increases; this indicates that the "ideal" 

solution (N=m) is a smooth function of the parameter. The 
amplitudes @,,(R) behave similarly and they do not have 
any additional peculiarities. 

As we have already mentioned above, it follows from 
physical considerations that the "ideal" (N=w) one- 
parameter family of solutions should have two singular 
points. One point corresponds to a solitary jet (if the param- 
eter is the radius of curvature of the bubble at the stagnation 
point, which is R=w). The other one, R=Rc,, is an upper 
bound on the Froude number of order unity. This point is 
probably the termination point of the "ideal" solution with 
N=w. For finite values of N, however, as R,, is approached, 
the functional convergence of the velocity and amplitudes 
with increasing order of the approximation worsens mark- 
edly. Analyzing in our case the functions v(R) and @,,(R), 
we obtain in the third-order approximation the following cri- 
cal value of the parameter: 

We emphasize that this value of the velocity agrees sat- 
isfactorily with the experimental data obtained in Ref. 8 for 
the ascent velocity of a bubble for which the ratios ,u of the 
densities of the heavy top and light bottom liquids are p=0.2 
with v =0.92 and p=0.1 with v =0.93. 

The amplitudes averaged over all third-order curves at 
the crical point Rc,=3.1 are- 

and the free surface is given by 
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For comparison, if the amplitude is taken as the "addi- 
tional" amplitude, then for R =3.0 we have 

and the free surface is given by 

Therefore, the condition (3.1) holds for R s R ,  . 
The decrease in the absolute value of the amplitudes 

@,,(R) with increasing amplitude number m + n [condition 
(3.la)l is most easily demonstrated by constructing for 
RsR,, in the leading third-order approximation the function 
logl@,,(R)/v(R)l. Irrespective of the choice of the "addi- 
tional" amplitude, the first amplitude Qlo(R) is always larg- 
est in absolute value, and the I@,,(R)I decrease exponen- 
tially with increasing m + n (Fig. 5). In addition, on account 
of the symmetry of the "additional" amplitude (which gen- 
erally determines the form of the free surface) the higher- 
order harmonics of different symmetry decay. For example, 
choosing @,,(R) as the "additional" amplitude, the absolute 
value of the amplitudes alo(R) decreases exponentially with 
increasing 1 (Fig. 5), and the amplitudes @,,(R) and aZ1(R), 
in addition, are small compared to the amplitudes aZ0(R) 
and a3O(R), respectively (Fig. 5). Similarly, choosing 
(D3,(R) as the "additional" amplitude, the amplitudes 
aZ0(R) and (P30(R) will be small compared to amplitudes of 
the same order. 

Thus, the condition (3.la) also holds for RsR,. 
The fact that the decay of the higher-order harmonics 

depends on the symmetry of the additional amplitude means 
that even for radii of curvature R%RcI, right up to values 
R+m [asymptotic behavior of the amplitudes in the limit 
R+m (Table I)]. 

The point R=m is another finite point of the one- 
parameter solution and corresponds to a solitary jet. 

In other words, in low orders of approximation a solu- 
tion exists only for RcrSRGR, (for very large values of R, 
the jet is localized in a small region, and this requires that a 
large number of harmonics be introduced to obtain a correct 
description of the free surface). In particular, the second- 
order approximation (N=2) is bounded by the values (Fig. 3) 

The solution for the solitary jet therefore cannot be ob- 
tained in the first three orders of approximation. However, 

because the amplitudes decay exponentially with increasing 
order of the harmonic, the velocity of steady flow defined as 
v(R) = - C,,,@,,(R) depends least on the order of the ap- 
proximations. In the limit R-403, the asymptotic velocities 
(Table I) therefore form a series which converges as N in- 
creases: 

so that 

lim CN=4.  
N + m  

In addition, it can be expected that in the limit R+m the 
velocity of a solitary jet will approach zero as follows: 

v(R) = lim VN(R) =4/&. 
N + m  

Completing our discussion of convergence for the one- 
parameter family of solutions (2.8a), we note that the zero- 
parameteric solutions obtained for this system in the first 
three orders of approximation obviously do not converge to a 
limit (or limits) with increasing order of approximation (Fig. 
3). 

Finally, we shall compare the basic features of our one- 
parameter family S for a three-dimensional C, "lattice" of 
bubbles and jets and the family F for a periodic plane flow5 
(Fig. 6).l) In both cases functional convergence of the fami- 
lies with respect to a parameter and the critical singular 
points (finite point of the solution and a solitary jet) exist. 
For the same wavelength X of the disturbance, the bubble 
ascent velocity as a function of the radius of curvature is 
higher for a three-dimensional flow. The radii of curvature at 
the critical point in the three- and two-dimensional cases 
differ by the factor RcI,3DlRcI,2D~1.5 and the velocity ratio 
is ~ ~ , , ~ ~ / ~ , , 2 D = 1 . 7  (Fig. 6). In the limit R+m (solitary jet) 
the bubble ascent velocity approaches zero as =1/ 
&: v3D+4/ & in the three-dimensional case and 
vZD+2/f i  in the two dimensional case5 (see footnote also). 

6. CONCLUSIONS 

It follows from what has been said above that the dimen- 
sion of the stationary solution in the Rayleigh-Taylor insta- 
bility is completely determined by the number of indepen- 
dent physical dimensional parameters. In the cases presented, 
in view of the symmetry of the problems, these parameters 
are g, A, and v*; the number of parameters is the same; and, 
the dimension of the set of stationary solutions is 1D for both 
two- and three-dimensional periodic flows. 

The question of which solution from the continuum of 
solutions will be observable remains open. ~arabedian? who 
was the first to hypothesize the one-parameter nature of the 
family of solutions in the Rayleigh-Taylor instability, sug- 
gested that only one solution will be realized: the solution 
that corresponds to the maximum Froude number of the 
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flow; all other solutions are in reality unstable. In accordance 
with Ref. 5 and the results presented in the present paper, this 
conjecture means that the observable shape of the free sur- 
face and bubble ascent velocity will be completely deter- 
mined by the critical value of the parameter [R, ,  
This is also supported by the results of a computational 
e ~ ~ e r i m e n t . ~ , ~  However, it has never been shown that only 
the "end" solution is stable and all others are unstable, and 
the problem of the stability of a one-parameter family has 
not, generally speaking, been studied. 

The investigation of the evolution of the continuum of 
solutions obtained, the criterion of the stability of the solu- 
tions, and the choice of a particular solution are largely ques- 
tions for future investigations of the classical problem of the 
Rayleigh-Taylor instability and the problem of why and how 
water pours out of an overturned cup. 
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"~es ides  the results already published in Ref. 5, Fig. 6 also contains new 
data on the velocity of two-dimensional steady flow as a function of the 
radius of curvature in very high (VI, VII, and VIII) orders of approxima- 
tion; these were obtained on the basis of the formalism developed in Ref. 
5. 
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