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The transverse and longitudinal conductivities of an electron gas in a quantizing magnetic field 
with electron scattering induced by randomly distributed zero-radius potentials are 
calculated using the exact expression for the scattering amplitude. We use an approximation that 
is linear in the electric field strength and impurity concentration (which is common 
practice in such calculations). Both degenerate and nondegenerate gases of charge carriers are 
examined. In the quasiclassical limit the transverse conductivity is shown to have sharp, 
deep minima, and the longitudinal conductivity, sharp and high maxima at intersections of the 
Landau levels with the Fermi level. These extrema are shown to be related to the 
singularities in the scattering amplitude rather than to those in the density of states. O 1995 
American Institute of Physics. 

1. INTRODUCTION 

Studies of the conductivity of charge carriers in a quan- 
tizing magnetic field with scattering by the short-range po- 
tential of impurities have been carried out in Refs. 1-4. Ad- 
ams and ~olstein'  allowed for scattering in the Born 
approximation. To remove the divergences appearing in this 
approximation, skobov5 suggested a method of calculating 
the scattering amplitude based on ideas lying outside the 
scope of the Born approximation. Using this method, he 
calculated2 the transverse conductivity of the electron gas in 
terms of the scattering amplitude of a single center in the 
absence of a a magnetic field. Note that in finding the scat- 
tering amplitude, skobov5 used an approximate expression 
for the Green's function obtained by truncating the perturba- 
tion series according to the number of the Landau level. As 
noted in Ref. 6, the scattering potential used in Refs. 2 and 5 
is a zero-radius potential. The exact expression for the elec- 
tron scattering amplitude in a magnetic field and a zero- 
radius potential, allowing for the sum of all terms in the 
series for the Green's function, has been found by Demkov 
and ~ ruka rev .~  Since the use of the exact expression of the 

We consider the linear approximation in the electric field 
strength and the impurity concentration, which is the stan- 
dard approach in such calculations. Both degenerate and 
nondegenerate gases of charge carriers are examined. 

2. ELECTRON TRANSITION PROBABILITY 

The exact expression for the electron scattering ampli- 
tude of a zero-radius potential in a magnetic field7 is 

where E = h wc(n + 112) + h2k:/2m * is the Landau-level en- 
ergy, a= A1 &1, is the pseudopotential coupling constant, 
A is the scattering length, and l H  is the magnetic length. 
Introducing ao ,  the zero-energy scattering amplitude for a 
zero-radius potential in the absence of a magnetic field, we 
have 

Green's function for point potentials in a magnetic field may 
Here l(s,v) is the generalized Riemann zeta function, and 

lead to physically interesting ~onse~uences ,~ - '~  it would ap- 
a o = 2 r r h 2 ~ / m * .  

pear to be worthwhile to find a formula for the conductivity 
We introduce the notation E = hwc(N+ S+ 1/2), with N 

of the electron gas that allows for the exact expression for 
an integer and 0 s  S< 1. Then the exact expression (2) can be the scattering amplitude. As demonstrated below, using such 
compared with Skobov's result5 if we use the shift theorem an expression leads to significant differences from some of 

the results of Ref. 2. Specifically, it appears that for for 3(s,v): 
- - 

p s h o , ,  the transverse conductivity exhibits sharp, deep N 

minima, while the longitudinal conductivity exhibits sharp, 
1 

l(112, -N-S)=l(112, 1 - S ) + i x  
high maxima at the points where the Landau levels cross the n=O J%T=T 
Fermi level; these extrema are related to singularities in the (3) 
scattering amplitude rather than in the density of states. In Ref. 5 the exact expression (3) is actually replaced by 

The goal of the present investigation is to find the trans- iK(E), where 
verse and longitudinal conductivities of an electron gas in a 
quantizing magnetic field H, where the electrons are scat- 1 

N 1 
tered by randomly distributed zero-radius potentials, by in- ~ K ( E ) =  - + i x  

n=,, JxG-zG' 
(4) 

corporating the exact expression for the scattering amplitude. 
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From Hermite's formula for the generalized 5 function13 one 
can easily obtain6 

where n, is the electron concentration. 
2 Representing ax, as ax, = e2n,/m * w, T and combining 

(10) with ( l l ) ,  we have 

- 8 .rr2h2nihoc ,- - 2 ] s i n h ( 2 )  
m * ~ J m '  

Comparing (3) and (4) and allowing for ( 9 ,  we see that the 
last three terms in (5) are absent from (4). The second and 
third terms in (5) play an important role for values of S not 
too close to unity. 

To find the electron transition probability (transition 
rate), we use the Lippmann formula14 relating the probability 
to the scattering amplitude: 

where 

dxexd-x) 
~nrn(a)=  j 

o Jx[x + h w J T ( ~  - m)] 

Next we calculate a,, in the ultraquantum limit n = m = 0. In 
this case h o, /T% 1 and hence 

the scattering matrix elements in our case being 

Here V is the normalization volume, qk is the oscillator 
function, and y: locates the center of the cyclotron orbit. 
Combining (6) and (7), we obtain 

which yields 

In estimating the integral in (14), we take into account the 
fact that because of the exponential factor in the integrand, 
the important range of variation of x is x 6 1 ,  and hence 
xTlh wc4 1. Then (5) yields 

where a and b label the initial and final states in an electron 
transition. 

3. TRANSVERSE CONDUCTIVITY 

To calculate the transverse conductivity uxx we use the 
well-known formula274 obtained in the linear approximation 
in the electric field and the impurity concentration: 

Using this estimate, we obtain 

Then 
Here la) = ln,kx ,k,), fo(sa) is the equilibrium distribution 
function, and ni is the impurity concentration. 

Substituting (8) into (9), some simple manipulations 
yield 

For a degenerate gas in the ultraquantum limit at T=O, 
the range of the Fermi level is determined by 
1 /26p /h  wCs3/2, so that Eq. (10) yields 

Using the estimate (5) and the expression for the transverse 
conductivity (19), and introducing the chemical potential 
po of the electron gas in the absence of a magnetic field, we 
can easily show that 

Let us first examine a Boltzmann gas. Here we know 
that 

&+hoc (n+  112) 

T (11) 

101 JETP 80 (I), January 1995 

where 

Geiler et a/. 101 



FIG. 1. The dependence of transverse conductivity on p o  Ihwc in the ul- FIG. 2. The dependence of transverse conductivity on p l f i o ,  at 
traquantum limit at u o = e 2 h n i l ~ m * p o .  uo=(16/3?r)e2fini /m*p and p / T = 5 0 .  

where 

Figure 2 shows a,, as a function of p l h o , .  

Figure 1 shows a,, as a function of po l h  o, . 
When hwc<<p, it is convenient to write Eq. (10) as 

4. LONGITUDINAL CONDUCTIVITY 

where 

Evaluating the sums in (20) via Poisson's summation 
formula and allowing, via (5), for the asymptotic behavior of 
the generalized f function as 6-0 in the product of Fourier 
series, we obtain after lengthy but fairly simple calculations 

To calculate the longitudinal conductivity a,, , we use4 

where 

(24) 
Combining (23) and (24), we obtain 

For a nondegenerate gas in the ultraquantum limit with 
hw,S T ,  Eq. (25) yields 

where 
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FIG. 4. The dependence of longitudinal conductivity on p/fiwc at 
FIG. 3. The dependence of longitudinal conductivity on p, lfio, in the 8e2fip13m*a;n, and 
ultraquantum limit at ~ , , = e ~ m * ~  p;/4$n,fi5. 

Evaluating J ( a )  via ( 9 ,  we obtain 

where $(a, b,x) is a confluent hypergeometric function.13 
Bearing in mind the asymptotic behavior of $(a,b,x) for 
large values of x and combining (26) with (27), we obtain 

For a degenerate gas with n = m = 0 and T =  0, Eq. (23) 
yields 

Making use of (5) and introducing p o ,  Eq. (29) yields 

where a and b were defined earlier. Figure 3 shows uzz as a 
function of po l h  w, . 

We now examine the Shubnikov-de Haas effect in lon- 
gitudinal conductivity. We use Poisson's summation formula 
to evaluate the sum in (25): 

C.,(N-n + 8)'" 

z , (N-  m + 

Multiplying the numerator and denominator in (31) by 

we have 

Combining (5) with (32), we obtain 

where 

Figure 4 shows uzz as a function of p l h  w, . 

5. DISCUSSION 

Comparison of the results obtained above for the trans- 
verse conductivity axx in the ultraquantum limit and the for- 
mulas of Ref. 2 suggests that in the case of a nondegenerate 
gas only the argument of the function Ei(x) in (17) is 
changed by the factor 2/(2 - 3a)'. In a degenerate gas, the 
dependence of uxx on the field strength H and the scattering 
length, Eq. (19), is more complicated than that obtained in 
Ref. 2, and is determined by the factor ( ~ ' + b - ~ ) - ' .  For 
magnetic field strengths p%hwc,  a situation emerges that is 
quite different from that discussed in Ref. 2, where the H 
dependence of the scattering amplitude is taken into account 
only by a term -hw,lp, which is small compared to the 
leading term. This small term corresponds to the product of 
series. Furthermore, as Eq. (22) suggests, the leading term 
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contains the factor I a-' + 4'(1/2,1/2- plho~,)l-~, which van- 
ishes at points where p= hw,(n + 112) (since the general- 
ized zeta function has a root singularity at those points). 
Hence the conductivity near these points is determined only 
by the second term, corresponding to a product of Fourier 
series. This suggests that allowing for the H dependence of 
t(E) is important when studying the Shubnikov-de Haas 
effect in the vicinity of the region where a Landau level 
crosses the Fermi level. 

Note that the behavior of a,, near the points where 
p = hwc(n + 112) is quite different, as Eq. (33) implies. At 
those points the denominator of the second fraction in (33) 
becomes small (-a2hwclp), and hence the conductivity 
a,, at those points is high. The height of the peaks in a,, can 
easily be estimated. If we assume that the energy of the 
bound state in a delta-like well formed by a point potential is 
equal to that of the second level of the hydrogen atom,15 
a-0.1 for H-10 kOe. Then at the maxima determined by 
the singularities of the zeta function, the values of u,, in- 
crease by two orders of magnitude for plhw,-10. The 
depth of the minima in axx are of the same order, as Eq. (22) 
implies. 

These estimates and Eqs. (22) and (23) (Figs. 2 and 4) 
suggest that allowing for the exact scattering amplitude in a 
zero-radius potential drastically changes the physical picture 
of the Shubnikov-de Haas effect in both the transverse con- 
ductivity (axx) and the longitudinal conductivity (a,,). In 
either case, the curves are nonsinusoidal. In uxx (Fig. 2) the 
curve near the maxima is sinusoidal, while the minima are 
extremely sharp. The behavior of axx(plh w,) is asymmetric 
with respect to the horizontal axis, since the height of the 
peaks grows faster (m(,~lhw,)~) than the depth of the 

minima (m( ,~ lho , )~ ) .  In a,,(plhwc) (Fig. 4), the sharp, 
high peaks are separated by broad minima, where the con- 
ductivity is low. The maxima in a,, and the minima in ax, 
are equidistant from one another at points where 
p= hw,(n + 1/2), and are determined by the singularities of 
the scattering amplitude t(E) at those points. 
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