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It is shown that one of the characteristic features of hopping conductivity in quasi-one- 
dimensional systems is the special form of the percolation paths. For the case of weak crosslinking 
of the one-dimensional filaments, this path consists of one-dimensional fragments located 
along the filaments and joined to one another by sparse transverse bonds. As a result, for the 
transverse conductivity the carrier paths determined by the optimum sequence of hops 
may extend beyond the limits of the critical subnet of bonds. This causes the exponential factor 
in the temperature dependence of the conductivity to become strongly anisotropic. One 
predicted consequence of the peculiar form of the percolation paths in these systems is that the 
anisotropy of the conductivity increases with decreasing temperature. O 1995 American 
Institute of Physics. 

1. INTRODUCTION AND STATEMENT OF THE PROBLEM 

Experimental studies of disordered quasi-one- 
dimensional systems, e.g., salts of TCNQ,',~ conducting con- 
jugated polymers,3 including those with oriented chains: and 
MOS field-effect transistors with narrow channels5 or with 
planar systems of narrow  channel^,^ indicate that it is not 
uncommon for the conductivity of such systems to be due to 
phonon-assisted hopping. Particular indications of this are 
the Mott type of temperature dependence of the conductivity, 
a temperature-dependent thermoelectric power, and an in- 
crease in the conductivity with frequency. The basic features 
observed in the kinetic phenomena exhibited by systems of 
this kind can successfully be described within the framework 
of a model with static disorder, in which local centers with 
random energies are randomly scattered along one- 
dimensional filaments, although in some cases a modification 
of the model is required (inclusion of fluctuations of the 
conductivity in mesoscopic systems~ polaron effects, and the 
effects of the Coulomb interaction7,'). It is likely that this 
model of a quasi-one-dimensional system can also be used to 
describe hopping conductivity in materials with filamentary 
structures such as porous silicon. 

There are several different approaches to the theory of 
hopping conductivity in disordered quasi-one-dimensional 
systems. An approach based on percolation theory was de- 
veloped in Ref. 9 (in the same reference, a review is given of 
earlier work on this question). As is well known, the perco- 
lation approach reduces the problem of calculating the con- 
ductivity of the system to the corresponding problem of 
bonds in percolation theory; the conductivity of this system 
is determined by the critical value of the transition rate that 
corresponds to the appearance of an infinite cluster of linked 
bonds in the system. It is known that for three-dimensional 
systems with a uniform distribution of local centers in space, 
transitions with rates lower than the critical rate have no 
effect on the basic exponential factor that multiplies the con- 
ductivity, but rather determine only the pre-exponential fac- 
tor (see Refs. 10-12). In Ref. 9, the percolation approach 
was extended to quasi-one-dimensional systems in which the 

local centers are randomly scattered along the one- 
dimensional filaments, which are regularly located in space 
(or on a plane). Within the framework of this approach it was 
found that, as in three-dimensional systems, the conductivity 
is essentially determined by the critical value of the transi- 
tion rate, while transitions at rates lower than critical can 
affect only the pre-exponential factor of the conductivity. In 
fact, this implies that the basic exponential dependences of 
the conductivity on concentration and temperature should be 
one and the same for the conductivities along the filaments 
and in the transverse direction. However, the authors of Ref. 
13 carried out an independent optimization of the transverse 
paths, and found that there was a certain range of tempera- 
tures for which the exponential temperature dependence of 
the conductivity along the filaments differs from the corre- 
sponding dependence for the transverse conductivity. Unlike 
quasi-two-dimensional systems where the exponential an- 
isotropy can be related to the presence of two percolation 
thresholds,14 in quasi-one-dimensional systems with periodi- 
cally distributed filaments there exists a single percolation 
threshold. Accordingly, the contradiction mentioned above 
suggests that the assertion that the conductivity is determined 
by a critical subnet of bonds may turn out to be incorrect for 
systems of this type. 

In this paper we will discuss the relation between hop- 
ping conductivity in quasi-one-dimensional systems and the 
critical value of the transition rate corresponding to the 
threshold for the appearance of an infinite cluster. We will 
discuss the standard model with static disorder commonly 
used to describe hopping conductivity in quasi-one- 
dimensional systems. We will assume that local centers 
(nodes) with random energies are randomly scattered along 
the one-dimensional filaments, which are regularly distrib- 
uted in space. As is customary, we choose transition rates 
between localized states i and j in the form 

where Wji  is the transition probability, f i  is the equilibrium 
probability for filling of the state i, r, is a pre-exponential 
factor that usually is taken to be constant, 
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rij  is the distance between local centers, a is the localization 
radius of the state, and cij is a known function of the state 
energies E ~ ,  cj .  For one-phonon transitions, 

where p is the Fermi level. An analogous expression was 
obtained for multiphonon transition rates in Ref. 15. 

In general, the transition rates can be anisotropic. For a 
three-dimensional system with a uniform spatial distribution 
of hopping centers, the anisotropy of the transition rates does 
not lead to anisotropy of the conductivity exponential." Ac- 
cordingly, here we will limit our discussion to isotropic tran- 
sition rates (1) for simplicity. 

As is well known, calculating hopping conductivity with 
hopping probabilities given by Eq. (1) is equivalent to find- 
ing the conductivity of a network of Miller-Abrahams resis- 
tors: 

(see Refs. 11 and 15). For a three-dimensional system with a 
random distribution of centers in space, the exponentially 
wide spectrum of resistances of the net allows us to reduce 
the problem to one of bonds on random nodes, if we define a 
bond for any preset value of 7 by the condition vij<v. In 
this case, we obtain for the conductivity the expression 
u=uo exp(- vcr), where uo is a pre-exponential factor and 

is the threshold value corresponding to the appearance of 
an infinite cluster of linked bonds. 

For a quasi-one-dimensional system, a critical subnet of 
the infinite cluster need not always determine the conductiv- 
ity of the corresponding quasi-one-dimensional disordered 
system. This may be due to the presence of special features 
in the structure of the infinite cluster, e.g., a spatially non- 
uniform distribution of local centers. Features of this kind 
were discussed in Ref. 16; however, it was also shown in that 
paper that when the percolation is r-type, for which the 
spread in energy is negligible, they cannot give rise to an- 
isotropy of the conductivity exponential. 

In what follows, we will show that for quasi-one- 
dimensional systems under conditions of r-e percolation 
and weak linking between filaments, a situation is possible 
that cannot happen for the problem of r percolation. In this 
case, there is a certain range of temperatures for which the 
standard relation between the exponential factor of the hop- 
ping conductivity and the critical value of the transition rate 
may be violated for the transverse conductivity, and the con- 
ductivity exponential can become anisotropic even in cases 
where only one percolation threshold exists. 

In the next section we will discuss the peculiarities of 
hopping conductivity in quasi-one-dimensional systems that 
follow from a spatially nonuniform distribution of local cen- 
ters. In Section 3 we present a more detailed analysis of the 
basic characteristics of the critical subnet when the number 
of transverse bonds is small, while Sec. 4 deals with pecu- 

liarities of the conductivity anisotropy that follow from the 
special features in the structure of the critical subnet de- 
scribed above. 

2. CERTAIN FEATURES OF HOPPING CONDUCTIVITY IN 
QUASI-ONE-DIMENSIONAL SYSTEMS 

When the distances d between neighboring filaments are 
large enough, we should expect the longitudinal hopping 
conductivity of the system to be determined by hops between 
centers along the filaments, and to leading order we can find 
the conductivity by treating the filaments as insulating. For 
an insulating filament, the average number of centers whose 
transition rates Ti, away from the given center i of the fila- 
ment in a given direction exceed T=To exp(- v) (i.e., for 
which v i j < ~ ) ,  equals (1/110)2, where ?lo = and p 
is the density of states per unit length of the filament (in the 
case we are interested in, %%I). Accordingly, the probabil- 
ity density for a filament having no centers whose transition 
rates from a certain prespecified center of the same filament 
exceed r is given by ~ ( ~ ) = e x ~ [ - ( ~ l ~ ) ~ ] .  Since there is no 
way for a carrier to circumvent the blocked positions, we can 
estimate the resistance of the filament by using the Miller- 
Abrahams procedure, i.e., by assuming that the path of a 
carrier consists of hops whose probability at each step is 
maximal.17 Accordingly, for the average resistance corre- 
sponding to an individual hop we have 

Recall that on an infinite filament we will always en- 
counter blocking segments corresponding to transition rates 
smaller than any a priori given value. Hence, an infinite 
upper bound here reflects the possible existence of arbitrarily 
small transition rates on certain segments of the filament. 
However, since the contribution of these segments to the 
resistance is small, the primary contribution to the integral 
comes from the vicinity of p &2, in which the expression 
under the integral sign has a sharp maximum. Accordingly, 
for an infinitely long insulating filament we have 

i.e., the temperature dependence of the conductivity is acti- 
vated. It is not difficult to estimate the average length of a 
hop along the filament as well: 

where (...),i denotes an average over the initial states (we 
have omitted a numerical factor of order unity here). 

The average number of hops confined to a filament of 
finite length L is of order L/a 70, while the fraction of bonds 
with transition rates no greater than T=roexp(- 7) is 
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FIG. 1. Structure of a critical subnet (schematic). The solid lines 

--- show bonds between centers; i is the average length of a longitu- 

I 
dinal chain of linked bonds, s, is the average length of a longitu- 

I dinal macrobond. The heavy lines indicate a transverse path con- 
- - sisting of bonds of the critical subnet; the dashed lines show its - -  - 

straightened transverse transitions. 

Accordingly, for a filament of length L, the number of hops 
whose rates do not exceed roexp(-&4) equals 
(Lla vo)exp(- &4). Only when 

does the average resistance corresponding to a hop have the 
value R of Eq. (3); in the opposite case (even when 
Lla '70+1) the resistances of those filaments that are prima- 
rily determined by minimal transition rates can fluctuate 
strongly.17 

In a strictly one-dimensional system, an electron is un- 
able to avoid blocking segments corresponding to small tran- 
sition rates; however, in a quasi-one-dimensional system it is 
possible to do this via transitions to a neighboring filament. 
Inclusion of these lateral transitions (which make the paths 
three-dimensional) leads to finiteness of the lengths of non- 
branching segments of the paths and to finiteness of the up- 
per limit of the integral (3) due to the new possibility of 
avoiding blocking segments. The upper limit corresponds to 
the maximum value of the quantity '7 at infinity for the op- 
timal trajectory (i.e., the one that traverses the entire system); 
we may estimate it by using the percolation bond problem. 

It follows from the standard theory of hopping 
conductivity" that because of the low density of the infinite ' 

cluster in the immediate vicinity of threshold, the conductiv- 
ity is determined by the infinite cluster that arises for values 
of 7- 7jc. of order unity, which we call the critical subnet. In 
this case, for a three-dimensional system with a random dis- 
tribution of centers in space and a hopping probability given 
by Eq. (I), the pre-exponential factor can be written in the 
form 

where A is a number of order unity and Lo is the correlation 
length of the critical subnet. 

As in three-dimensional systems, for the quasi-one- 
dimensional system under discussion we define a bond for 
any chosen value of '7 by the condition vi,< '7. Let Q, be the 
percolation threshold corresponding to the appearance of an 
infinite cluster of linked bonds in the system. In the presence 
of this infinite cluster (i.e., for p - ~ ) ,  the quantities vi, 

along any infinite path lying in the cluster do not exceed 7. 
For such paths the upper limit in (3) equals 7. 

For quasi-one-dimensional systems we can use the one- 
strand net model proposed for three-dimensional systems. 
Here we assume that we can identify a skeleton net in the 
critical subnet for which the segments between neighboring 
nodes (macrobonds) are one-strand (see Ref. 11). Actually, 
for large d the distinctive features of the structure of the 
critical subnet are associated with the existence of long lon- 
gitudinal unbranched chains of bonds whose characteristics 
are analogous to those of a one-dimensional filament of the 
corresponding length. The characteristic length of un- 
branched fragments of these chains (longitudinal macro- 
bonds) is defined to be the average distance between lateral 
macrobonds, which consist of simple bonds (crosslinks) that 
join centers located on neighboring filaments. For large dis- 
tances d between the filaments, these longitudinal macro- 
bonds can be extremely long (see Fig. 1). 

The distinctive features of the structure of the critical 
subnet mentioned above can have a very strong influence on 
the characteristics of the optimal sequence of hops in direc- 
tions along and across the filaments, and accordingly on the 
longitudinal and transverse conductivity of the system. In- 
deed, if the optimal path lies in the critical subnet, the lon- 
gitudinal displacement of a carrier and the length of the path 
are quantities of order unity, whereas the ratio of the trans- 
verse displacement to the length of the path is of order dlLl,  
where L1 is the characteristic length of a longitudinal mac- 
robond. For large L,ld, it may turn out that the optimum 
sequence of hops in directions perpendicular to the filaments 
corresponds to straightened paths that include transitions 
with small rates which do not belong to the critical subnet. 
This implies that the standard percolation approach to hop- 
ping conductivity will be inapplicable. As a result, not only 
the magnitudes but also the exponential factors of the longi- 
tudinal and transverse conductivities (i.e., their exponential 
temperature and concentration dependences) can turn out to 
be different. 

3. CRITICAL SUBNET OF AN INFINITE CLUSTER FOR 
QUASI-ONE-DIMENSIONAL SYSTEMS 

Let us discuss the structure of the critical subnet in more 
detail for a quasi-one-dimensional system under conditions 
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where the concentration of bonds between centers on differ- 
ent chains is small. For a given 7, the average number of 
bonds in longitudinal chains of linked bonds located on the 
same filament is 

(for 7S-170 we have i.>l). The average length of unbranched 
segments of this chain (macrobonds) is determined by the 
number of transverse bonds between centers of different fila- 
ments. We call the average number of transverse bonds con- 
necting a given center with centers on one of the neighboring 
filaments v, . Then the average number of nodes lying on a 
filament between neighboring crosslinks in the critical subnet 
is s1-v;l. 

It is obvious that only centers with energies such that 
I E  - ,uI <&,(I - dlr,) can form transverse bonds; here, as 
usual, &,=kTv is the maximum hopping energy, while 
r,=(a/2) 7 is the maximum length of a hop for a given 7. 
As far as the situation we are interested in goes, where the 
number of transverse bonds is small, we may assume that 
le-,ul<A, where A is the width of the band of localized 
states. In this case, for the number of bonds averaged over 
initial energy, we find from calculations for a single center 
that 

where 

and K = d m Z .  In the range of temperatures that are 
not too low, for which we may neglect transitions to all fila- 
ments except neighboring ones, i.e., for r,<d,, where dz is 
the distance to the next-nearest neighbor, we have K 

< JR. The leading terms of the expansion of the 
function F(K) in K have the form 

For ~<0 .5 ,  the error connected with using the approximate 
Eq. (9) does not exceed 3.5%. Retaining only the first term 
increases the maximum error in this region to around 15%. 

For 6 2 d l a  there are no lateral bonds, and percolation 
does not take place in the system. The threshold for appear- 
ance of an infinite cluster corresponds to a concentration of 
lateral bonds for which the number of such bonds between 
longitudinal chains of conjugate bonds reaches the critical 
value. The threshold value for the transition rate can be 
found with the help of the modified bond criterion (compare 
with Ref. 15) ziv,= vcI, where z is the number of filaments 
close to a given filament (for filaments in a plane 2=2), 
while the critical concentration of lateral bonds vcI is a num- 
ber of order unity. Taking into account (7), (9), and (6), we 

find from the condition ziv,=v, the critical value of the 
quantity 7 corresponding to the appearance of an infinite 
cluster: 

Since 2dla voS l ,  the critical value 7cr differs from 2dla by 
a quantity considerably less than unity. 

Note that for values of 7 close to threshold, the average 
number of lateral bonds per center v, in this calculation is 
small, and the value of i is large. When 

the infinite cluster is strongly anisotropic, consisting of long 
longitudinal fragments with rare lateral crosslinks (see Fig. 
1). As long as the average distance between lateral bonds 
remains large, for values of 7- 77, of order unity the critical 
subnet has the same anisotropic structure as well. 

As we approach the critical subnet of an infinite cluster, 
i.e., as the parameter 7, increases to a value of order unity 
above the critical value vCI from (lo), we have K - 6, and the average number of lateral bonds per center 
(7) becomes of order 

the number of transverse bonds between centers of the criti- 
cal subnet (in the calculation for one center) is small. In this 
case, the critical subnet consists of long longitudinal macro- 
bonds with infrequent transverse bonds (crosslinks). Since 
there is significant correlation between the occupation num- 
bers of nodes located on macrobonds, the correlation length 
determined by the distance between endpoints of a macro- 
bond is different for directions along and transverse to the 
filament. 

Thus, under these conditions the critical subnet is 
strongly anisotropic. In this case, the resistance R, of a long 
longitudinal macrobond, for which s +so,  where 
so=exp(&4), is defined not by the maximum resistance of a 
bond or the quantity vCI, Eq. (lo), but rather by the charac- 
teristic resistance (3), i.e., R,=s,R. In view of what was said 
in the previous section, this resistance of the longitudinal 
macrobonds also determines the resistance of long chains 
made up of bonds of the critical subnet, independent of their 
orientation. 

4. CONDUCTIVITY 

The hopping conductivity of a system is determined by 
the optimum sequences of hops (paths) that correspond to 
maximum probability for transfer of a carrier between oppo- 
site ends of the macroscopic sample. Based on our discus- 
sion of the critical subnet in the previous section, we will 
now calculate the longitudinal and transverse hopping con- 
ductivities. 
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The critical subnet is anisotropic when inequality (11) 
holds, i.e., when both the average length of longitudinal 
chains of linked bonds i and the average length of longitu- 
dinal macrobonds s are large, where i 2 s . According to (6) 
and (13), these inequalities bound the temperature range 

Here the upper boundary T2 = (pak)-lJdla, while the 
lower boundary TI is determined by the equation i = s ,  , 
which leads to the following transcendental equation for TI : 

we find that TI - (pa k) - ' ( a ~ d ) ~  for reasonable values of the 
parameter Q, . 

We will show that the optimal paths that determine the 
longitudinal conductivity al consist of chains of bonds lying 
in the critical subnet, but that the conductivity is not always 
determined by the critical value vcr. We first consider the 
low-temperature portion of region (14), TI 5 TGT3, which 
corresponds to the inequalities so+ s , 5 i. The first of 
these inequalities bounds the temperature range from above, 
with the bound T3 determined by the equation 

exp(&4)=&, we find that the quantity pakT3 does 
not differ much from unity. 

Using the method introduced in Ref. 11 to calculate the 
pre-exponential factor, to accuracy up to a factor of order 
unity we obtain 

where and LC,, are the longitudinal and transverse corre- 
lation lengths (i.e., the projections of the characteristic dis- 
tances between nodes of the critical subnet onto the longitu- 
dinal and transverse directions), and R1 is the resistance of a 
longitudinal macrobond. Here we have taken into account 
the fact that for the present case of small concentrations of 
transverse bonds, the resistance of a longitudinal macrobond 
greatly exceeds the characteristic resistance of a crosslink. 
Since Lc,l=sl, while LC,,-d, we obtain for the total longitu- 
dinal resistivity of the system 

where R is given by Eq. (4). The paths under discussion that 
lie in the critical subnet are optimal, i.e., any departure of a 
path from the bounds of the critical subnet increases its 
length and resistance. For the range of temperatures under 
discussion, it is these paths that determine the longitudinal 
conductivity. However, their basic temperature dependence 
is determined not by the critical value of the transition rate, 
but by the quantity R-I, and is activated in character; the 
activation energy is proportional to (pa)-'. 

Let us now discuss the contribution to the transverse 
conductivity from paths lying in the critical subnet. This con- 
tribution can be written in the form 

where, as before, the primary contribution to the resistance 
of a path passing through nodes located on adjacent filaments 
is determined by the longitudinal macrobonds. It is clear that 
the length of the chain of bonds joining nodes lying on 

neighboring filaments is P=Lcdd times the distance between 
filaments; the component of the transverse conductivity as- 
sociated with transport along the critical subnet is @ times 
smaller than the longitudinal conductivity. Since P S l ,  the 
ratio a,/$' turns out to be large. Note that for the 
r-percolation problem this ratio is of order unity, and the 
anisotropy of the exponential factor does not appear in the 
condu~tivi t~. '~  The reason for this is that for n a S l ,  where n 
is the linear density of centers, as g increases above the 
critical value qcr, the number of transverse bonds increases 
so rapidly that the average number in a calculation for a 
single center becomes greater than unity even for 7- vc,-1; 
as a result, despite the anisotropy of the infinite cluster in the 
immediate vicinity of threshold, the critical subnet is essen- 
tially isotropic. When naGl ,  there is no anisotropy in the 
exponential factor because the resistance of the paths is de- 
termined by the transverse transitions, even when their lon- 
gitudinal unbranched segments are long.I6 

In accordance with what was said in Sec. 3, in the 
present case of an anisotropic critical subnet it can turn out 
that the contribution of paths that depart the critical subnet is 
nonnegligible, since despite their small hopping probabili- 
ties, these paths can be appreciably shorter than the subnet 
paths. Let us find the optimum transverse path that is not 
limited to bonds that belong to the critical subnet. By includ- 
ing in the finite cluster those bonds that correspond to larger 
and larger values of 7, i.e., larger than E and larger than v, , 
we obtain a cluster with shorter and shorter unbranched 
chains of bonds on the filaments. As before, we will refer to 
these as longitudinal macrobonds, and we will assume that 
the number of bonds in a macrobond s, is large. For fixed 7, 
an infinite cluster appears when zs, v, = v,,, consisting of 
longitudinal macrobonds with length of order s1 joined by 
transverse bonds; as in the earlier sections, the critical num- 
ber of bonds v,,, is of order unity. Taking (7) into account, 
we obtain for small K 

from which we have 

where To = (1 5 vCI1 13 2zpak) Jdla. We note that, generally 
speaking, the quantity 

can be large, despite the smallness of the parameter K, since 
d+a .  

The transverse path consists of series-connected longitu- 
dinal macrobonds and transverse bonds, for which the corre- 
sponding resistances Rs=Ro exp(%). For large s, *so, the 
resistance of the path segment that joins nodes located on 
adjacent filaments is of order 

The optimum transverse path is found by minimizing this 
expression with respect to s , .  As a result we find 

- To yo,t+l 
Rtot(~o,t)=R - .7/2, 

T Yo,, 
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where yopt=(~olsop,~)2" is determined from the equation resistance is directly related to averaging the resistance cor- 

ST$ 
responding to transitions along the chain. The average ob- 

712 
Y opt ~ X P ( Y  opt) = - tained (the characteristic resistance of a bond) differs in gen- 

2TRc,' era1 from the critical value corresponding to the appearance 

while Rcr=R, exp(2dla) is the resistance corresponding to 
the percolation threshold. When T$ITR~,+~ we have 
yop,S-1, and the optimal path departs the critical subnet. It is 
clear that in this case the temperature dependence of yo,, and 
the length of the longitudinal fragment of the optimal path 
sop, associated with it are nonexponential. Taking (21) into 
account, we find that the primary contribution to Rtot(sopt) is 
given by longitudinal macrobonds, so that 

For the transverse conductivity determined by the opti- 
mized transverse paths, we have 

We see that the temperature dependence of the trans- 
verse conductivity is the same as that of the longitudinal 
conductivity. Like the latter, it is determined by the activated 
temperature dependence of the reciprocal of the mean resis- 
tance of the macrobonds (4); however, the pre-exponential 
factor is considerably smaller. For the ratio of longitudinal to 
transverse conductivity we have 

Thus, the anisotropy coefficient (23) is large and depends 
weakly (nonexponentially) on temperature. 

Recall that Eq. (22) was obtained for large sop,%so. For 
sop,<sO, i.e., in the temperature range 

the primary contribution to the resistance of the optimal 
transverse paths is given by transverse bonds, and the total 
resistance (21) is determined by the second term with s =l. 
Accordingly, in this case the transverse resistance has a tem- 
perature dependence of the form 

corresponding to the Mott law for a one-dimensional system. 
The difference between this result and that obtained in Ref. 
13 by independent direct optimization of transverse hops is 
the power in the argument of the exponential function (215 
instead of 112). 

5. DISCUSSION OF RESULTS 

Our discussion of the structure of the critical subnet in 
this paper shows that the conductivity of a quasi-one- 
dimensional system cannot always be obtained using the 
standard approach based on percolation theory. In fact, for a 
system of asymptotically long unlinked filaments, the longi- 
tudinal conductivity is finite due to the low probability of 
very large resistances between nodes. When the transverse 
transition rates are small, the calculation of an individual 

of an infinite cluster. 
It is for this reason that anomalously large anisotropy 

can appear in the conductivity. However, for systems with 
exponential scatter of the transition rates, in order for anisot- 
ropy of the exponential factor of the conductivity to appear it 
is necessary that the critical subnet be highly anisotropic. In 
systems with r-percolation, the rapid growth in the number 
of bonds near the percolation threshold causes the critical 
subnet to become isotropic, and prevents anisotropy in the 
conductivity exponential. For systems with r-E percolation, 
the temperature range (14) over which anisotropy is large 
becomes significant. This range is bounded from above by 
the condition of smallness of the number of transverse 
bonds, which increases with temperature due to the increase 
in the thickness of the layer of energy that contains centers 
for which the transitions are possible. The bound from below 
comes about because as the temperature decreases, the num- 
ber of bonds i in the longitudinal chains of bonds decreases 
as well. At low temperatures the hopping length becomes 
large compared to the distance between filaments, the quasi- 
one-dimensional character of the distribution of centers be- 
comes insignificant, and the paths effectively become three- 
dimensional. The change in the temperature dependence of 
the conductivity in this region, where the anisotropy is small, 
was discussed in Ref. 9 by the methods of percolation theory. 

A decrease in the anisotropy connected with spatial in- 
homogeneity of the system as the temperature decreases due 
to an increase in the hopping length is a general property of 
hopping problems. However, in Ref. 18 Kovacik et al. re- 
ported anomalous'behavior of the anisotropy of the hopping 
conductivity for single crystals of SmBa2Cu306,,. At tem- 
peratures around 20 K, they observed a transition from an- 
isotropic activated conductivity to anisotropic Mott conduc- 
tivity with different Mott parameters in the longitudinal and 
transverse directions; this transition has not been explained. 
In connection with this, we note the anomalous temperature 
dependence of the conductivity anisotropy obtained for our 
model within a certain temperature range. As the temperature 
drops below a value of order (pak)-'&, corresponding 
to a transition to the region of anisotropy (14) from above, 
the conductivity anisotropy increases. However, the applica- 
bility to this system of the quasi-one-dimensional model we 
have discussed here requires additional analysis, since the 
nature of the localized states, their parameters, and features 
of their spatial distribution for SmBa2Cu306.2 have not yet 
been clarified. 
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