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Compton cooling is treated from the standpoint of the electrons for optically thick transport of 
thermal bremsstrahlung in a fully ionized plasma falling freely into a supermassive black 
hole. Here m = ~ c ~ / L ~ + l  is assumed, where M is the mass flux of the plasma and L, is the 
Eddington emissivity. The cooling gives rise to an exponential falloff in the spectrum for 
hv>mec2/m. The Compton temperature of the resulting spectrum is also determined. O 1995 
American Institute of Physics. 

1. INTRODUCTION 

Spherically symmetric accretion of interstellar material 
on a supermassive ( M , , > ~ O ~ M ~ ,  r,>3.101' cm) black 
hole is the basis of the simplest models of the emission from 
active galactic nuclei and quasars'.2 (for a general review see 
Ref. 3). In this connection it becomes important to study the 
nature of the thermal emission spectrum of the accreting 
plasma, which should make a considerable contribution to 
the total observed spectra. In fact, it may dominate in certain 
ranges. For the x-ray part of the continuous spectrum (0.2- 
100 keV), which is the subject of the present work, the prin- 
cipal factors determining the thermal emission are the brems- 
strahlung of the fully ionized plasma and Compton 
scattering. 

In the optically thin case the emission spectrum is deter- 
mined by spatial superposition of the original spectra of the 
sources. For plasma falling freely (i.e., with a density 

with an adiabatic temperature profile as a function 
of radius r,  

r min 
Te(r) = Tmax - 9  r 

~ e s z a r o s ~  found the total (integrated over the volume 
r>rmi, in Newtonian geometry) bremsstrahlung spectrum. 
The low-frequency asymptotic form of the spectral emissiv- 
ity took the form of a power law: 

with index a=0.5 determined as noted above by the density 
dependence of n, and T,, while the high-frequency part 
dropped off exponentially for h v> T,,, , due to the absence 
of radiation sources for r<rmin.  As shapiro5 has shown, the 
spectrum of optically thin radiation resulting from the accre- 
tion of interstellar gas on a black hole for Te(rg)=1.5-lo9 K 
has the same asymptotic behavior.') 

The spectrum of the radiation diffusing in a spherically 
accreting plasma was determined in the optically dense case6 
neglecting the Compton exchange of energy with electrons. 
The low-frequency asymptotic behavior of this spectrum is 
also dictated by the great radial variation of the source and 
hence agrees with the optically thin case. However, at high 
frequencies, due to adiabatic heating associated with the 
compression of the radiation itself the behavior (2) is again 

found with index a=2.0. Because of the logarithmic diver- 
gence, this spectrum does not permit the Compton radiation 
temperature 

to be determined with great accuracy; this temperature deter- 
mines the heating of the accreting gas7 and hence the possi- 
bility of self-consistent closure of the accretion flow model. 

The aim of the present work is to improve on the radia- 
tion spectrum in the optically dense case, which allows for 
the necessary treatment of Compton cooling of the radiation 
coming from the electron component of the accreting 
plasma. 

2. RADIATION TRANSPORT EQUATION 

Consider spherically symmetric accretion of a fully ion- 
ized plasma, i.e., with local velocity u= -cvr/r at a point r 
measured from the accretion center. Here c is the speed of 
light, so that v is a dimensionless variable. The radiation in 
the plasma can be described by the photon occupation num- 
ber n ph(r ,p, ,u) in momentum space [pc = h v;,u=cos(~r)], 

P=P( JCj2 cos sin +,,u). 

The radiation propagation $ depends on the local optical 
thickness T with respect to Thompson scattering (with cross 
section uT) on the electron component of the plasma with 
density n,. It is determined by 

T= /;UTnedr . 
Following Ref. 8 (see also Ref. 9), for PSI and v e l  the 
spectral density 

satisfies the diffusion equation 

The flux in configuration space 
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The boundary conditions for Eq. (4) are naturally ex- 
pressed by requiring that there be no extrinsic sources: 

describes photon diffusion from the accretion center and 
photons carried by the incoming material toward the accre- 
tion center. The flux 

in momentum space includes adiabatic compression of the 
photons propagating in a medium with convergent flow (i.e., 
div u= -(clr2)(d/dr)(r2v)<0), and also includes terms as- 
sociated with Compton cooling and heating. The first term in 
(4) describes bremsstrahlung and inverse bremsstrahlung. 
Here no= l/(eq- 1 )  is the Planck occupation number and 
the inverse bremsstrahlung coefficientlo can be written in the 
form 

where q=pclTe and Ko(s) is a modified Bessel function of 
the second kind. Here we have written 

where EH is the ionization energy of the hydrogen atom. In 
this expression it is assumed that the plasma consists of pro- 
tons with density np, an admixture of heavy ions (charge 
state z, atomic weight A) with density vnp, and electrons 
with density ne=(l+zv)np. For interstellar gas of the com- 
position usually assumed the main impurity is helium (z = 2, 
A = 4, q= 0.1). The proton density is determined by the con- 
tinuity equation for steady flow with a given total mass flux 
M: 

In the case of free fall we have for the dimensionless quan- 
tity l=uTnerg and optical depth r 

Here we have introduced the dimensionless form of the mass 
flux m = MC'IL~ usually employed in the theory of accretion 
radiation in connection with the Eddington emissivity (the 
maximum value determined by Thompson scattering) 

When the mass flux is determined by hydrodynamic accre- 
tion of interstellar gas from a region of photoionization equi- 
librium with density n,- 1 cm and temperature T,- 1 eV, 
then (see, e.g., Ref. 1) 

r2H,=0(1)  for r - -+m,  r2H,=o( l )  for r+O, 

p 2 ~ p = o ( l )  for p--tm and p-0. 
(6) 

The spatial variation of n(r,p) in the limit h vGmec2/m 
is determined by the competition between diffusion and con- 
vection. Comparison of the corresponding flux terms in co- 
ordinate space in Eqs. (5) determines the characteristic scale 
of the problem, the so-called radiation trapping radius: 

In the limit h vBmec2/h it follows from a comparison of the 
diffusion term and the term describing Compton cooling in 
Eq. (4) that the characteristic scale depends on the frequency 

When (1) is satisfied, we find by comparing the orders of 
magnitude of the adiabatic and Compton heating of photons 
in (4) that the latter is turned on at radii rc-r,Y, where the 
Compton parameter 

is on the order of the ratio of the Compton heating to the 
diffusive term in (4) at the trapping radius. Note that this 
parameter is related by Y=3/16 Yc(r,) to the usual local 
nonrelativistic Compton parameter 

which is the fraction of the photon energy associated with 
scattering from the region with optical depth r. In the present 
work we treat the case YG1, i.e., un-Comptonized radiation. 
Hence the Compton heating in the region r B  rc corresponds 
to O(Y) corrections for the spectral moments. As will be 
clear below in the solution we obtain [cf. Eq. (13)], the ra- 
diation sources within the trapping radius make only an ex- 
ponentially small contribution to the spectrum for r B r t  . 
Consequently, including the Compton heating in the region 
r <<r, yields corrections of order 0 [Y -' exp(- IN)], where 
s > O .  This means that to lowest order in YG1 the Compton 
heating can be dropped. In contrast, the relative role of the 
Compton cooling does not depend on radius, and it domi- 
nates by a wide margin in the limit hvBmec2/iiz, so they 
cannot be omitted. Neglecting in addition the inverse brems- 
strahlung, which is not important for this part of the spec- 
trum, we find in the dimensionless variables 

a final equation for the spectral density of the un- 
Comptonized thermal emission of the accreting plasma: 
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Here the adiabatic index is y=5/2 and the source is 

where we have introduced the constant 

3. SOLUTION OF THE RADIATION TRANSPORT EQUATION 

Equation (8) can be solved by separation of variables. As 
was found in Ref. 6 (see also Ref. 11) the eigenfunctions of 
the operator in x on the left-hand side of (8) which satisfy the 
boundary condition (6) and the corresponding eigenvalues 
y+ k (k= 0, 1, 2, ...) are x YLX(x), where LX are the gener- 
alized Laguerre polynomials. Consequently, expanding the 
solution of (8) as a power series 

we find immediately from the orthogonality properties of the 
Laguerre polynomials that 

where 

Equation (11) has a singular point (a node): 

The presence of the singularity enables us to find a solution 
satisfying the two boundary conditions (6), even though the 
equation is first-order. This solution takes the form 

where 

Substituting (12) in the series (10) and performing the sum- 
mation in analogy to Ref. 6, we can obtain an integral rep- 
resentation for the complete solution (8). The principal term 
in the limit x-+O (i.e., for r+m) takes the form 

This expression can also be obtained by using the 
Green's function of the original equation (4) for isothermal 
flow, which was found'' by expanding in confluent hyper- 
geometric functions. For this purpose it suffices to go to the 
limit Te+O. 

Using (9) and integrating with respect to 6 in (13), we 
obtain a final representation for the spectral density of the 
radiation at large radii: 

where 

Here we have also changed variables according to 

and have introduced the functions 

The dependence of (14) on y and Y = 1/2a is shown in Fig. 
1. 

Using the expression for B at the end of the previous 
section, we can write the spectral emissivity 

in the form 

We give some asymptotic expressions for the function 
A(y,a) in the limit a + l ,  which have the explicit form: 
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FIG. 1. Energy spectrum of thermal bremsstrahlung from a spheri- 
cally accreting optically dense plasma. Here n ( y )  is the photon 
spectral density (14), and we have written y = h v/T,(r,),  where h v 
is the photon energy, T,(r,) is the plasma temperature at the trap- 
ping radius r , ,  and Y is the Compton parameter. 

The first asymptotic expression in (15) does not depend on For a comparison we give the asymptotic form for 
the situation at the characteristic radius r o .  It arises because q= h v / T e ( r g ) S l  of the spectrum found in Ref. 5 for opti- 
at a given photon energy h v  the effective contribution to the cally thin radiation associated with accretion on a black hole: 
emissivitv comes from sources at radius r  satisfving. the re- - - 
lation 

Hence for power-law profiles ne(r )  and Te(r )  the total power 
of the sources is an algebraic function of v  as well.4 In the 
same way the second asymptotic form does not depend on 
the source and is determined by balancing the adiabatic heat- 
ing and the Compton cooling at r , .  The third and fourth 
asymptotic forms are again consequences of the spatial varia- 
tion of Te(r ) .  They are determined by the radius at which the 
photon yield of the exponential tail of the source is largest, 
which follows from the relation 

corresponding to the maximum contribution of the integrand 
in the integral with respect to 6 in Eq. (13), and also to the 
maximum of the function g ( s )  in (14). Consequently, limit- 
ing ourselves to exponential accuracy we can write uni- 
formly with respect to y in the region y >a that 

It is immediately evident that this asymptotic form is deter- 
mined by the impact parameter 3d3 /2rg  for relativistic trap- 
ping of photons.12 

The spectrum (14) enables us to determine the normal- 
ized moments 

After some manipulations we can find the following repre- 
sentation: 

where 

84 JETP 80 (I), Janualy 1995 S. A. Vagner 84 



The main terms in the asymptotic expansion in the limit 
a % 1 take the form 

where C = 0.5 772.. . is Euler's constant. From these expres- 
sions we can find to the same accuracy the total emissivity 

and the Compton temperature (3): 

In the first expression we have also included the contribution 
-Y, which is required for the specified accuracy and is as- 
sociated with Compton heating. It was calculated by ordinary 
perturbation theory, using the solution of the equation for the 
total emissivity at Y=O given in Ref. 13. Both expressions 
can usefully be compared with the corresponding quantities 
for the optically thin spectrum found in Ref. 5: 

4. DISCUSSION 

The spectrum found in the previous section contains a 
free parameter Y and does not describe the accretion radia- 
tion self-consistently. However, it enables us to infer some- 
thing about the spectral properties of this radiation. The most 
important thing to point out is that the spectral emissivity 
determined from Eq. (14) in the optically dense region (i.e., 
r4h2r , )  is also found in the optically thin region to terms of 
order O(llm), since this is just the relative role of the adia- 
batic heating and the Compton cooling of photons (in the 
limit hv*rnec2/ri) in the transition region r-k2rg.  Conse- 
quently, this spectral emissivity is observable. In order to 
apply the spectrum (14) to x radiation with characteristic 
energy h%--10 keV, the latter quantity should not exceed 
the exponential drop. Then the condition m 9  1 for the appli- 
cability of the diffusion approximation also determines the 
lower limit of the applicable values of Y. Including (15) we 
have 

For magnitudes ~ - 1 0 - ~ - 1 0 - ~  the spectrum (14) in the re- 
gion h v*mec2/m has a slope 

d log Lv 
a=--- 0.7-2.0. 

d log v 

Including corrections associated with Compton heating and 
increasing as a function of Y and m [for fixed Te(r,)] should 
further flatten the spectrum." The departure from the diffu- 
sive regime of radiation propagation that results when m and 
Y decrease [for fixed Te(r,)] should have the opposite effect. 
However, in the optically thin spectrum5 a transition region 
with a-0.7-1.2 also exists over two to three decades. Hence 
it seems safe to conclude that these spectral indices are typi- 
cal for thermal accretion radiation regardless of the mass flux 
m. 

In concluding this section it should be noted that spectral 
measurements of active galactic nuclei and quasars in the 
range 2-10 keV, which are usually approximated by func- 
tions of the form (2), give rise to spectral indices close to 
those obtained above. For example, observations by the sat- 
ellite EXOSAT yield a=0.8920.06 (Ref. 14), observations 
of "Ginga" yield a=0.81+0.19 (Ref. 15) for groups of ob- 
jects. Similar data were obtained by ROSAT.'~ The spectra of 
Seyfert galaxies are closest to those treated in the present 
work. For example, the ROSAT data17 yield a spectral index 
a=1.38+0.25. Spectra of a similar nature are discussed in 
Refs. 18 and 19. Another argument that the spectra of these 
objects have a thermal origin is the observation of an expo- 
nential dropoff .20,21 

 he spectrum is given graphically in Ref. 5. In Sec. 3 of the present work 
some analytical properties of this spectrum are presented without deriva- 
tion under conditions formulated in Sec. 2 for the radiation source. 
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